Fast Polynomial Factorization And Modular Composition

Ashish Dwivedi

IIT Kanpur

April 15, 2017
Table of Contents

1 Introduction
2 Idea
3 Problem Statements
4 Some Facts
5 Reduction from MOC to MME
6 Fast Multivariate Multipoint Evaluation
7 Combine
8 Application to Factoring over \mathbb{F}_q
This is work of Kedlaya and Umans [2008].

A randomized algorithm for factoring degree n univariate polynomial over \mathbb{F}_q taking $O(n^{1.5+o(1)} \log^{1+o(1)} q + n^{1+o(1)} \log^{2+o(1)} q)$ bit operations.

For $\log q < n$ this is asymptotically fastest algorithm and for $\log q \geq n$ it is same as best previous algorithms [von zur Gathen, Shoup [GS92] and Kaltofen, Shoup [KS98]].
Asymptotic bottleneck in GS92 and KS98 is "Modular Composition" (MOC) of univariate polynomials of degree n.

This work improves MOC and hence the above factoring algorithms.

Complexities of previous works for MOC were dependent over the exponent of matrix multiplication.

This work gives a different approach to solve MOC by reducing it to "Multivariate Multipoint Evaluation" (MME) problem.

It solves MME by lifting it to \mathbb{Z}, applying small number of multimodular reduction and then completing with a small number of multidimensional FFTs.
Problem Statements

We formally define the problems MOC and MME.

Modular Composition

Given $f(X_0, \ldots, X_{m-1})$ in $R[X_0, \ldots, X_{m-1}]$ with individual degrees at most $d - 1$, and polynomials $g_0(X), \ldots, g_{m-1}(X)$ and $h(X)$, all in $R[X]$ with degree at most $N - 1$, and with the leading coefficient of h invertible in R, output $f(g_0(X), \ldots, g_{m-1}(X)) \mod h(X)$.

This is a slightly generalized version of simple modular composition.

Multivariate Multipoint Evaluation

Given $f(X_0, \ldots, X_{m-1})$ in $R[X_0, \ldots, X_{m-1}]$ with individual degrees at most $d - 1$, and evaluation points $\alpha_0, \ldots, \alpha_{N-1}$ in R^m, output $f(\alpha_i)$ for $i = 0, 1, 2, \ldots, N - 1$.
Inverse Kronecker substitution

The map $\psi_{h,l}$ from $R[X_0, X_1, ..., X_{m-1}]$ to $R[Y_0,0, ..., Y_{m-1},l-1]$ is defined as follows. Given X^a, write a in base h: $a = \sum_{j \geq 0} a_j h^j$ and define the monomial $M_a(Y_0, ..., Y_{l-1}) := Y_0^{a_0} Y_1^{a_1} \cdots Y_{l-1}^{a_{l-1}}$.

- The map $\psi_{h,l}$ sends X_i^a to $M_a(Y_i,0, ..., Y_i,l-1)$ and extends multilinearly to $R[X_0, X_1, ..., X_{m-1}]$.
- Note that this map is injective for the polynomials having individual degrees at most $h^l - 1$.

Number theory fact

For all integers $N \geq 2$, the product of the primes less than or equal to $16 \log N$ is greater than N.

Ashish Dwivedi (IIT Kanpur)

Modular Composition
April 15, 2017
We first reduce MOC to MME.

Theorem 1

Given \(f(X_0, ..., X_{m-1}) \) in \(R[X_0, ..., X_{m-1}] \) with individual degrees at most \(d - 1 \), and polynomials \(g_0(X), ..., g_{m-1}(X) \) and \(h(X) \), all in \(R[X] \) with degree at most \(N - 1 \), and with the leading coefficient of \(h \) invertible in \(R \), there is, for every \(2 \leq d_0 < d \), an algorithm that outputs

\[
f(g_0(X), ..., g_{m-1}(X)) \mod h(X)
\]

in \(O(((d^m + mN)d_0).poly \log(d^m + mN)) \) ring operations and one invocation of MME with parameters \(d_0, m' = lm, N' = Nmld_0 \), where \(l = \lceil \log_{d_0} d \rceil \), provided that the algorithm is supplied with \(N' \) distinct elements of \(R \) whose differences are units in \(R \).
Algorithm

1. Compute $f' = \psi_{d_0,l}(f)$.
2. Compute $g_{i,j}(X) := g_i(X)d_0^j \mod h(X)$ for all i and $j = 0, \ldots, l - 1$.
3. Select N' distinct elements of $\mathbb{R}, \beta_0, \ldots, \beta_{N' - 1}$, whose differences are units in \mathbb{R}. Compute $\alpha_{i,j,k} := g_{i,j}(\beta_k)$ for all i, j, k using fast (univariate) multipoint evaluation.
4. Compute $f'(\alpha_{0,0,k}, \ldots, \alpha_{m-1,l-1,k})$ for $k = 0, \ldots, N' - 1$.
5. Interpolate to recover $f'(g_{0,0}(X), \ldots, g_{m-1,l-1}(X))$ (which is a univariate polynomial of degree less than N') from these evaluations.
6. Output the result modulo $h(X)$.

We can see that $f'(g_{0,0}(X), \ldots, g_{m-1,l-1}(X)) \equiv f(g_0(X), \ldots, g_{m-1}(X)) \mod h(X)$.
Fast Multivariate Multipoint Evaluation

Over Prime fields

Given $f(X_0, \ldots, X_{m-1})$ in $\mathbb{F}_p[X_0, \ldots, X_{m-1}]$ with individual degrees at most $d - 1$, and evaluation points $\alpha_0, \ldots, \alpha_{N-1}$ in \mathbb{F}_p^m, there is deterministic algorithm that outputs $f(\alpha_i)$ for $i = 0, 1, 2, \ldots, N - 1$ in

$$O(m(d^m + p^m + N)poly(\log p))$$

bit operations.

Algorithm

- Compute reduction \bar{f} of f modulo $X_j^p - X_j$ for all $j \in [m - 1]$.
- Use FFT to compute $\bar{f}(\alpha) = f(\alpha) \forall \alpha \in \mathbb{F}_p^m$.
- Look up and return $f(\alpha_i)$’s.
Over Rings $\mathbb{Z}/r\mathbb{Z}$

Here we will apply t rounds of multimodular reduction. So algorithm for this takes additional parameter t (which is actually a small constant).

Algorithm Multimodular($f, \alpha_0, \ldots, \alpha_{N-1}, r, t$)

- Consider \bar{f}, the version of f over \mathbb{Z} and also $\bar{\alpha}_i$ the version of α over \mathbb{Z}^m.
- Compute primes p_1, \ldots, p_k less than or equal to $l = 16 \log(d^m(r - 1)^{md})$.
- Compute reduction $f_h = \bar{f} \mod p_h$ and $\alpha_{h,i} = \bar{\alpha}_i \mod p_h$.
- If $t = 1$, for $h = 1, \ldots, k$ apply theorem for prime fields to compute $f_h(\alpha_{h,i})$ for $i = 0, \ldots, N - 1$; Otherwise run this algorithm again with updated parameters p_h and $t - 1$ and compute $f_h(\alpha_{h,i})$ for $i = 0, \ldots, N - 1$.
- Apply chinese remaindering to compute \bar{f} and reduce it modulo r.
Corollary 1

For every constant $\delta > 0$ there is an algorithm for MME over $\mathbb{Z}/r\mathbb{Z}$ with parameters d, m, N, and with running time $(d^m + N)^{1+\delta} \log^{1+o(1)} r$, for all d, m, N with d sufficiently large and $m \leq d^{o(1)}$.
Fast Multivariate Multipoint Evaluation Cont..

Over Extension Rings \((\mathbb{Z}/r\mathbb{Z})[Z]/(E(Z))\)

Here \(E\) is a monic poly of degree \(e\), so coefficients in this ring are poly of degree at most \(e - 1\) and have coefficient at most \(r - 1\).

Algorithm MultimodularExtension\((f, \alpha_0, \ldots, \alpha_{N-1}, t)\)

Let \(M = d^m(e(r - 1))^{(d-1)m+1}\) and \(r' = M^{(e-1)dm+1}\).

- Consider \(\tilde{f}\), the version of \(f\) over \(\mathbb{Z}[Z]\) and also \(\tilde{\alpha}_i\) the version of \(\alpha_i\) over \(\mathbb{Z}[Z]^m\).

- Compute the reduction \(\bar{f}\) of \(\tilde{f}\) modulo \(r'\) and \(Z - M\) and reduction \(\bar{\alpha}_i\) of \(\tilde{\alpha}_i\) modulo \(r'\) and \(Z - M\). Reduction modulo \(r'\) don’t do anything computationally.

- Call Multimodular\((\bar{f}, \bar{\alpha}_0, \ldots, \bar{\alpha}_{N-1}, r', t)\) to compute \(\beta_i = \bar{f}(\bar{\alpha}_i)\).

- Compute unique poly \(Q_i(Z) \in \mathbb{Z}[Z]\) of degree at most \((e - 1)dm\) with coefficients in \([M - 1]\) for which \(Q_i(M)\) has remainder \(\beta_i\) mod \(r'\). Reduce it modulo \(r\) and \(E(Z)\).
Corollary 2

For every constant $\delta > 0$ there is an algorithm for MME over $(\mathbb{Z}/r\mathbb{Z})[Z]/(E(Z))$ of cardinality q with parameters d, m, N, and with running time $(d^m + N)^{1+\delta} \log^{1+\omega(1)} q$, for all d, m, N with d sufficiently large and $m \leq d^{\omega(1)}$.
Theorem 2
Let R be a finite ring of cardinality q given as $(\mathbb{Z}/r\mathbb{Z})[Z]/(E(Z))$ for some monic polynomial $E(Z)$. For every constant $\delta > 0$, if we have access to Nd^δ distinct elements of R whose differences are units in R, there is an algorithm for MOC over R with parameters d, m, N, and with running time $(d^m + N)^{1+\delta} \log^{1+o(1)} q$, for all d, m, N with d, N sufficiently large, provided $m \leq d^{o(1)}$.

Corollary 3
For every $\delta > 0$, there is an algorithm for MOC over \mathbb{F}_q with parameters $d, m = 1, N = d$ running in $d^{1+\delta} \log^{1+o(1)} q$ bit operations, for sufficiently large d.
KS98 gives a polynomial factoring algorithm requiring
\(O(n^{0.5+o(1)} C(n, q) + n^{1+o(1)} \log^{2+o(1)} q) \) bit operations, where
\(C(n, q) \) is bit operations required for MOC of degree \(n \) polynomials over \(\mathbb{F}_q \).

Using the algorithm for MOC (Corollary 3), we get an algorithm for
polynomial factorization which requires
\(O(n^{1.5+o(1)} \log^{1+o(1)} q + n^{1+o(1)} \log^{2+o(1)} q) \) bit operations.

This is faster than previous algorithms GS92 and KS98 which required
\((n^{2+o(1)} \log^{1+o(1)} q + n^{1+o(1)} \log^{2+o(1)} q) \) and \(n^{1.815} \log^{2+o(1)} q \) bit
operations respectively, when \(\log q < n \).
Thank You!