Fast Polynomial Factorization And Modular Composition

Ashish Dwivedi

IIT Kanpur

April 15, 2017

Ashish Dwivedi (IIT Kanpur)

Modular Composition

April 15, 2017 1 / 16

Table of Contents

Introduction

- O Problem Statements
- 4 Some Facts
- 5 Reduction from MOC to MME
- 6 Fast Multivariate Multipoint Evaluation
 - 7 Combine
- (8) Application to Factoring over \mathbb{F}_q

- This is work of Kedlaya and Umans[2008].
- A randomized algorithm for factoring degree n univariate polynomial over F_q taking O(n^{1.5+o(1)} log^{1+o(1)} q + n^{1+o(1)} log^{2+o(1)} q) bit operations.
- For $\log q < n$ this is asymptotically fastest algorithm and for $\log q \ge n$ it is same as best previous algorithms [von zur Gathen, Shoup [GS92] and Kaltofen, Shoup [KS98]].

- Asmptotic bottleneck in GS92 and KS98 is "Modular Composition" (MOC) of univariate polynomials of degree *n*.
- This work improves MOC and hence the above factoring algorithms.
- Complexities of previous works for MOC were dependent over the exponent of matrix multiplication.
- This work gives a different approach to solve MOC by reducing it to "Multivariate Multipoint Evaluation" (MME) problem.
- It solves MME by lifting it to Z, applying small number of multimodular reduction and then completing with a small number of multidimensional FFTs.

We formally define the problems MOC and MME.

Modular Composition

Given $f(X_0, \ldots, X_{m-1})$ in $R[X_0, \ldots, X_{m-1}]$ with individual degrees at most d-1, and polynomials $g_0(X), \ldots, g_{m-1}(X)$ and h(X), all in R[X] with degree at most N-1, and with the leading coefficient of h invertible in R, output $f(g_0(X), \ldots, g_{m-1}(X)) \mod h(X)$.

This is a slightly generalized version of simple modular composition.

Multivariate Multipoint Evaluation

Given $f(X_0, ..., X_{m-1})$ in $R[X_0, ..., X_{m-1}]$ with individual degrees at most d-1, and evaluation points $\alpha_0, ..., \alpha_{N-1}$ in R^m , output $f(\alpha_i)$ for i = 0, 1, 2, ..., N-1.

Inverse Kronecker substitution

The map $\psi_{h,l}$ from $R[X_0, X_1, ..., X_{m-1}]$ to $R[Y_{0,0}, ..., Y_{m-1,l-1}]$ is defined as follows. Given X^a , write a in base h: $a = \sum_{j \ge 0} a_j h^j$ and define the monomial $M_a(Y_0, ..., Y_{l-1}) := Y_0^{a_0} Y_1^{a_1} \dots Y_{l-1}^{a_{l-1}}$.

- The map ψ_{h,l} sends X^a_i to M_a(Y_{i,0},..., Y_{i,l-1}) and extends multilinearly to R[X₀, X₁,..., X_{m-1}].
- Note that this map is injective for the polynomials having individual degrees at most $h^{l} 1$.

Number theory fact

For all integers $N \ge 2$, the product of the primes less than or equal to $16 \log N$ is greater than N.

We first reduce MOC to MME.

Theorem 1

Given $f(X_0, ..., X_{m-1})$ in $R[X_0, ..., X_{m-1}]$ with individual degrees at most d-1, and polynomials $g_0(X), ..., g_{m-1}(X)$ and h(X), all in R[X] with degree at most N-1, and with the leading coefficient of h invertible in R, there is, for every $2 \le d_0 < d$, an algorithm that outputs

$$f(g_0(X), ..., g_{m-1}(X)) \mod h(X)$$

in $O(((d^m + mN)d_0).poly \log(d^m + mN))$ ring operations and one invocation of MME with parameters $d_0, m' = Im, N' = Nmld_0$, where $I = \lceil \log_{d_0} d \rceil$, provided that the algorithm is supplied with N' distinct elements of R whose differences are units in R.

Reduction from MOC to MME Cont..

Algorithm

- Compute $f' = \psi_{d_0,l}(f)$.
- Compute $g_{i,j}(X) := g_i(X)^{d_0^j} \mod h(X)$ for all i and $j = 0, \ldots, l-1$.
- Select N' distinct element of R, β₀,..., β_{N'-1}, whose differences are units in R. Compute α_{i,j,k} := g_{i,j}(β_k) for all i, j, k using fast (univariate) multipoint evaluation.
- Compute $f'(\alpha_{0,0,k}, ..., \alpha_{m-1,l-1,k})$ for k = 0, ..., N' 1.
- Interpolate to recover f'(g_{0,0}(X),...,g_{m-1,l-1}(X)) (which is a univariate polynomial of degree less than N') from these evaluations.
- Output the result modulo h(X).

We can see that $f'(g_{0,0}(X), ..., g_{m-1,l-1}(X)) \equiv f(g_0(X), ..., g_{m-1}(X))$ mod h(X).

Over Prime fields

Given $f(X_0, ..., X_{m-1})$ in $\mathbb{F}_p[X_0, ..., X_{m-1}]$ with individual degrees at most d-1, and evaluation points $\alpha_0, ..., \alpha_{N-1}$ in \mathbb{F}_p^m , there is deterministic algorithm that outputs $f(\alpha_i)$ for i = 0, 1, 2, ..., N-1 in

$$O(m(d^m + p^m + N)poly(logp))$$

bit operations.

Algorithm

- Compute reduction \overline{f} of f modulo $X_i^p X_j$ for all $j \in [m-1]$.
- Use FFT to compute $\overline{f}(\alpha) = f(\alpha) \ \forall \alpha \in \mathbb{F}_p^m$.
- Look up and return $f(\alpha_i)$'s.

Fast Multivariate Multipoint Evaluation Cont..

Over Rings $\mathbb{Z}/r\mathbb{Z}$

Here we will apply t rounds of multimodular reduction. So algorithm for this takes additional parameter t (which is actually a small constant).

Algorithm Multimodular($f, \alpha_0, \ldots, \alpha_{N-1}, r, t$)

- Consider \overline{f} , the version of f over \mathbb{Z} and also $\overline{\alpha}_i$ the version of α over \mathbb{Z}^m .
- Compute primes p_1, \ldots, p_k less than or equal to $l = 16 \log(d^m (r-1)^{md})$.
- Compute reduction $f_h = \overline{f} \mod p_h$ and $\alpha_{h,i} = \overline{\alpha}_i \mod p_h$.
- If t = 1, for h = 1, ..., k apply theorem for prime fields to compute $f_h(\alpha_{h,i})$ for i = 0, ..., N 1; Otherwise run this algorithm again with updated parameters p_h and t 1 and compute $f_h(\alpha_{h,i})$ for i = 0, ..., N 1.
- Apply chinese remaindering to compute \bar{f} and reduce it modulo r.

Corollary 1

For every constant $\delta > 0$ there is an algorithm for MME over $\mathbb{Z}/r\mathbb{Z}$ with parameters d, m, N, and with running time $(d^m + N)^{1+\delta} \log^{1+o(1)} r$, for all d, m, N with d sufficiently large and $m \leq d^{o(1)}$.

Fast Multivariate Multipoint Evaluation Cont..

Over Extension Rings $(\mathbb{Z}/r\mathbb{Z})[Z]/(E(Z))$

Here E is a monic poly of degree e, so coefficients in this ring are poly of degree at most e - 1 and have coefficient at most r - 1.

Algorithm MultimodularExtension($f, \alpha_0, \ldots, \alpha_{N-1}, t$)

Let $M = d^m (e(r-1))^{(d-1)m+1}$ and $r' = M^{(e-1)dm+1}$.

- Consider *f*, the version of *f* over Z[Z] and also *α*_i the version of *α*_i over Z[Z]^m.
- Compute the reduction \overline{f} of \widetilde{f} modulo r' and Z M and reduction $\overline{\alpha_i}$ of $\widetilde{\alpha_i}$ modulo r' and Z M. Reduction modulo r' don't do anything computationally.
- Call Multimodular $(\bar{f}, \bar{\alpha_0}, ..., \bar{\alpha}_{N-1}, r', t)$ to compute $\beta_i = \bar{f}(\bar{\alpha_i})$.
- Compute unique poly $Q_i(Z) \in \mathbb{Z}[Z]$ of degree atmost (e-1)dm with coefficients in [M-1] for which $Q_i(M)$ has remainder $\beta_i \mod r'$. Reduce it modulo r and E(Z).

Ashish Dwivedi (IIT Kanpur)

Corollary 2

For every constant $\delta > 0$ there is an algorithm for MME over $(\mathbb{Z}/r\mathbb{Z})[Z]/(E(Z))$ of cardinality q with parameters d, m, N, and with running time $(d^m + N)^{1+\delta} \log^{1+o(1)} q$, for all d, m, N with d sufficiently large and $m \leq d^{o(1)}$.

Theorem 2

Let *R* be a finite ring of cardinality *q* given as $(\mathbb{Z}/r\mathbb{Z})[Z]/(E(Z))$ for some monic polynomial E(Z). For every constant $\delta > 0$, if we have access to Nd^{δ} distinct elements of *R* whose differences are units in *R*, there is an algorithm for MOC over *R* with parameters *d*, *m*, *N*, and with running time $(d^m + N)^{1+\delta} \log^{1+o(1)} q$, for all *d*, *m*, *N* with *d*, *N* sufficiently large, provided $m \leq d^{o(1)}$.

Corollary 3

For every $\delta > 0$, there is an algorithm for MOC over \mathbb{F}_q with parameters d, m = 1, N = d running in $d^{1+\delta} \log^{1+o(1)} q$ bit operations, for sufficiently large d.

- KS98 gives a polynomial factoring algorithm requiring $O(n^{0.5+o(1)}C(n,q) + n^{1+o(1)}\log^{2+o(1)}q)$ bit operations, where C(n,q) is bit operations required for MOC of degree *n* polynomials over \mathbb{F}_q .
- Using the algorithm for MOC (Corollary 3), we get an algorithm for polynomial factorization which requires $O(n^{1.5+o(1)} \log^{1+o(1)} q + n^{1+o(1)} \log^{2+o(1)} q)$ bit operations.
- This is faster than previous algorithms GS92 and KS98 which required $(n^{2+o(1)}\log^{1+o(1)}q + n^{1+o(1)}\log^{2+o(1)}q)$ and $n^{1.815}\log^{2+o(1)}q)$ bit operations respectively, when $\log q < n$.

Thank You !