Department of Computer Science and Engg. I.I.T Kanpur

Equivalence of Polynomial Identity Testing and Polynomial Factorization

Swastik Kopparty, Shubhangi Saraf, Amir Shpilka, 2014

Pranav Bisht

April 15, 2017

Introduction

Basic Idea

Arithmetic Circuit Tools

Algebraic Tools

Main Theorem

Main Theorem

Suppose white box (black box) PIT for size s, degree d, n-variate arithmetic circuits over \mathbb{F} can be solved deterministically in time poly(n,s,d). Now, suppose we are given white-box(black box, resp.) access to a polynomial $f(\bar{x}) \in \mathbb{F}[x_1, \dots, x_n]$ computed by an arithmetic circuit of size at most s and degree at most d. Let

$$f=\prod_{i=1}^k g_i{}^{j_i,p^\epsilon}$$

be the factorization of f, where the g_i are irreducibles and $p \nmid j_i$ for each i. Then, we can compute for each $i \in [k]$: (i) e_i , (ii) j_i , and (iii) an arithmetic circuit (black box, resp.) for the factor $g_i^{p^{\theta_i}}$ (the factor g_i resp.) in deterministic time poly(n,s,d,t), where: (i) t = l.p, if $\mathbb{F} = \mathbb{F}_{p^l}$ (ii) t = max bit-complexity of the constants used in the circuit, if $\mathbb{F} = \mathbb{Q}$

Hilbert's Irreducibility Theorem

Let $S \subseteq \mathbb{F}$ be a finite set of size $\geq 7d^7$, $f(x, \bar{y})$ be a polynomial in $\mathbb{F}[x, y_1, \cdots, y_n]$ of total degree d. If $\partial_x \neq 0$ and $\Pr_{\bar{a}, \bar{b} \in S^n}[f(x, a_1t + b_1, \cdots, a_nt + b_n)] \geq \frac{(7d^6 + 2d^2 + d)}{|S|}$, then f is reducible.

Recap - Kaltofen Mutivariate Factoring

- ▶ Randomly reduce f to a three variate projection $f_{a,b}(x, t_1, t_2)$.
- ► Factor *fa*,*b* in randomized poly time
- Apply Hensel lifting and linear system solving to construct blackboxes for the absolute factors of *f*.

Input: An arithmetic circuit for the polynomial $f(x, \overline{y})$ **Ouput:** Irreducible factors of *f*.

- 1. If $ch(\mathbb{F}) = p$, then make f not a p^{th} power.
- 2. Make f monic in x.
- 3. Reduce to the case where *f* is square free.
- 4. Reduce to bivariate factoring over a large field.
 - 4.1 Define $\overline{f}(x, t, a_1, \dots, a_n) = f(x, t.a_1, \dots, t.a_n)$, where \overline{a} are formal variables.
 - **4.2** Show correspondence between factors of \overline{f} in $\mathbb{F}(\overline{a})[x, t]$ and factors of f in $\mathbb{F}[x, \overline{a}]$.

Deterministic Whitebox Factoring algorithm

- 5. Univariate factorization
 - **5.1** $\overline{f}(x,0,\overline{a}) \in \mathbb{F}[x]$
 - 5.2 Find irreducible factor g_0 of $\overline{f}(x, 0, \overline{a})$, using univariate factorization.
 - **5.3** In **K**[*x*, *t*],

$$\overline{f}(x,t,\overline{a}) = g_0(x,t,\overline{a}) \cdot h_0(x,t,\overline{a}) \pmod{t}$$

6. Hensel lift k times to get

$$\overline{f}(x,t,\overline{a}) = g_{\mathcal{K}}(x,t,\overline{a}) \cdot h_{\mathcal{K}}(x,t,\overline{a}) \pmod{t^{2^k}}$$

7. Solve linear system of $O(d.2^k)$ homogeneous linear equations in $O(d.2^k)$ unknowns.

$$\widetilde{g} = g_k \cdot I_k \pmod{t^{2^k}}$$

- If no solution then *t* is irreducible, otherwise we get a non trivial factor gcd(*t*, *g*)
- 9. Recursively repeat the algorithm to factor *f* completely.

Homogenization Lemma

Given an arithmetic circuit of size s, that computes a polynomial $f \in \mathbb{F}[x, y_1, \dots, y_n]$ of degree d, we can construct arithmetic circuits for the homogeneous components of f in time poly(n,d,s). Furthermore, the circuit for each $H^i(f)$ is of size O(ds). Similarly, if we let $f(x, y_1, \dots, y_n) = \sum_{i=0}^{d} f_i(y_1, \dots, y_n) \cdot x^i$, then we can in time poly(n,d,s) compute arithmetic circuits of size O(ds) for the polynomials f_i .

Non-vanishing assignment Lemma

Given an arithmetic circuit C of size s computing a non-zero n-variate polynomial $f(\bar{y})$ of degree d, and a white-box PIT algorithm that runs in time polynomial in s,n,d, then we can find a point $\bar{b} \in \mathbb{F}^n$ in time poly(s,n,d) such that $f(\bar{b}) \neq 0$

Discriminant Lemma

Let $f(x, y_1, \dots, y_n)$ be a degree *d* polynomial computed by an arithmetic circuit of size *s*. Given this arithmetic circuit, we can find in deterministic time poly(*s*,*n*,*d*) an arithmetic circuit of size poly(*s*,*n*,*d*) computing the discriminant $D_f(y_1, \dots, y_n)$.

Linear system solving Lemma

Let $M = (m_{i,j})$ be a k X n matrix, with each entry being a degree $\leq \Delta$ polynomial in $\mathbb{F}[a_1, \dots, a_n]$. Suppose we have an arithmetic circuit of size s computing M. Then, given access to a PIT oracle, we can deterministically in time poly (k, n, s, Δ) , either: (i) declare that there are no non-zero vectors $(\bar{v}) \in (\mathbb{F}[a_1, \dots, a_n])^n$, such that $M\bar{v} = 0$, or (ii) find arithmetic circuit of size at most poly (k, n, s, Δ) computing a

non-zero vector \bar{v} , such that $M\bar{v} = 0$.

Division with remainder Lemma

Let $f, g \in \mathbb{F}(a_1, \dots, a_n)[x]$ be polynomials of degree atmost d, where g is monic in x. Assume there is a circuit of size s computing all the coefficients of f, g with respect to x. Then one can add to this circuit poly(d) many gates to obtain a circuit computing all the coefficients of polynomials h, r such that f = hg + r with deg(r) < deg(g). Moreover, this new circuit can be computed in a black box fashion.

Efficient GCD using PIT

GCD Lemma

Suppose we have access to a PIT oracle. Let f and g be univariate polynomials of degree at most Δ in $\mathbb{F}(t, \bar{y})[x]$. Assume there is a size s circuit computing all the coefficients of f and g. Then one can compute in time $s + poly(\Delta)$, a circuit that outputs the coefficients of f,g and the monic $GCD(f, g) \in \mathbb{F}(t, \bar{y})[x]$.

- Kopparty Swastik, Shubhangi Saraf, and Amir Shpilka.
 "Equivalence of polynomial identity testing and polynomial factorization." computational complexity 24.2 (2015): 295-331.
- [2] Shpilka, Amir, and Ilya Volkovich. "On the relation between polynomial identity testing and finding variable disjoint factors." Automata, Languages and Programming (2010): 408-419.
- [3] Nitin Saxena. Lecture Notes CS-748: Arithmetic Circuit Complexity. Sem II, 2015-16.
- [4] Nitin Saxena. Lecture Notes CS-681: Computational Number Theory and Algebra. Sem II, 2016-17