ACC Circuit Lower Bounds

Rishabh Vaid IIT Kanpur

NEXP & ACC

- What does it mean?
- Why do we care?
- NEXP is simply the 'exponential' version of NP
- The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR, NOT and MOD_m gates, where m is an arbitrary constant.
- What is a circuit family?

Non-Uniform Computation

- Allow a different logical circuit A_n to run on inputs of length n
- P/Poly := Problems solvable with a circuit family {A_n}, where |A_n | < n^k
- Conjectured: NP & P/Poly
- Open: NEXP & P/Poly
- Non-Uniformity can be very powerful The halting problem can be solved with O(1) bits of advice!

Circuit Lower Bounds So Far

- Furst-Saxe-Sipser ('81) : PARITY & ACO
- Razborov-Smolensky ('87): MOD_p & ACO with MOD_q, if p and q are unequal primes
- Barrington ('89): Conjectured MAJORITY & ACC

ACC Lower Bounds

Theorem: There is a language L in NEXP such that L does not have polynomial size ACC circuits

Proof Outline:

- Prove that if NEXP were in ACC, we would have faster algorithms for NEXP
- Show a contradiction with the Non-
- Deterministic Time Hierarchy Theorem
- What should L be?

NEXP Completeness - SUCCINCT 3SAT

- Given: A Boolean circuit C with n inputs and poly(n) size
- Task: Determine whether T(C) is a Yes instance of 3SAT
- SUCCINCT 3SAT is *very* NEXP complete There are extremely efficient reductions from any language L in NEXP to SUCCINCT 3SAT

Efficient Cook Levin for NEXP

Theorem: For any language L in NTIME[2ⁿ], given a string x, there is a poly-time reduction R, such that :

- x ∈ L iff R(x) ∈ SUCCINCT 3SAT
- R(x) is poly(n) size
- R(x) has at most |x| + 4log|x| inputs

Corollary : SUCCINCT 3SAT cannot be solved in $O(2^{n-\omega(logn)})$ non-deterministic time on circuits with n inputs and poly(n) gates

Spinning Circuits into Algorithms

Theorem: If SUCCINCT 3SAT is solvable with poly-size ACC circuits, there is an $\epsilon > 0$ such that SUCCINT 3SAT is solvable in $O(2^{n-n^{\epsilon}})$ nondeterministic time, on all circuits with n inputs and poly(n) size This is essentially because:

• If NEXP C ACC, all sorts of expensive computations can be simulated with ACC circuits (which we guess)

• ACC circuits are 'weak' i.e. ACC SAT can be solved in faster than brute force time

Succinct Satisfying Assignments

- Impagliazzo, Kabanets, Wigderson ('02): Suppose NEXP C P/Poly. Then for every C_x ∈ SUCCINCT 3SAT, there is a circuit W_x of poly(|C_x |) size and O(|C_x |) inputs such that T(W_x) is a satisfying assignment for F_x
- We may also assume W_x is an ACC circuit
- This is because there is an ACC family that solves
 Circuit Value Problem (Given C, x, does C(x) = 1)
- In place of C, feed the circuit an encoding of W_x.
 For any input x, the ACC circuit now outputs the same value as W_x

Checking if T(W_x) Satisfies F_x

- The given circuit D_x outputs
 1 on input i, if the ith clause is
 satisfied
- Hence, if -D_x is unsatisfiable,
 T(W_x) satisfies F_x
- However, C_x is unrestricted
- We must somehow replace C_x with an ACC circuit
- Guess an ACC circuit A_x equivalent to C_x

Equivalence of Circuits via ACC SAT

- Using the obvious way to check if C_x is equivalent to the guessed circuit A_x, we are lead into an infinite regress
- Key insight is that the structure of the (unrestricted) circuit C_x can be encoded using a small ACC circuit G_x, and then each step of the computation of A_x can be verified to be consistent with the corresponding step in C_x

Equivalence of Circuits via ACC SAT

- Extend the definition of C_x to output the value on the jth wire
- G_x is a circuit which encodes the structure of C_x, by giving the controlling wires $j_1 \& j_2$ and the gate g for any wire j (G_x is hard coded) T checks consistency

A Faster ACC SAT Algorithm

Ingredients:

- A representation of ACC (Beigel-Tarui '94): Every ACC function f can be expressed in the form f(x) = g(h(x)), where h is a sparse multilinear polynomial, and g is a lookup table
- Let K be the number of monomials in h(x). K is quasipolynomial in circuit size
- Dynamic Programming Algorithm for computing h(x) for all x ∈ {0,1}ⁿ in 2ⁿpoly(n) time

A Faster ACC SAT Algorithm

Theorem: For all d, m there is an $\epsilon > 0$ such that ACC[m] SAT with depth d, n inputs, O(2^{n^{\epsilon}}) size can be solved in 2^{n - n^{\epsilon}} time

- Fix a subset of k input variables, and evaluate the circuit C on all 2^k assignments of these variables. Let the OR of the induced circuits be denoted by C'
- C' has n-k inputs
- Size(C') = 2^k Size(C)
- C' is satisfiable iff C is satisfiable
- Decompose C' = g'oh' where h' has n-k variables and the number of monomials is quasipolynomial in 2^kSize(C)
- Evaluate C' in O(2^{n-k}poly(n) + K) time