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Primes : The fundamental building blocks of a number.

Prime Number

A prime number (or a prime) is a natural number greater than 1 that has
no positive divisors other than 1 and itself.

Example : 2, 3, 5, 7, 11, 13 .....

Composite Number

A natural number greater than 1 that is not a prime number is called a
composite number.

Example : 4, 6, 8, 10, 12, 15 .....
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Carl Friedrich Gauss

“The problem of distinguishing prime numbers from
composites, and of resolving composite numbers into their prime
factors, is one of the most important and useful in all of
arithmetic. . . . The dignity of science seems to demand that
every aid to the solution of such an elegant and celebrated
problem be zealously cultivated.”
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Primes : The fundamental building blocks of a number.

Fundamental Theorem of Arithematic

Every integer greater than 1, either is prime itself or is the product of
prime numbers.

Also, although the order of the primes in the second case is arbitrary, the
primes themselves are not.

Example :

330 = 2× 3× 5× 11

1200 = 24 × 31 × 52 = 3× 2× 2× 2× 2× 5× 5 = · · · etc .
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Some Interesting Points

Euclid’s Theorem : There are infinitely many prime numbers.

Goldbach Conjecture : Every even number greater than 2 can be
written as a sum of two primes.

Twin Prime Conjecture : There are infinitely many primes p such
that p + 2 is also prime.

Prime Number Theorem : Number of primes ≤ x ≈ x
loge x
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Primality Testing

PRIMES

PRIMES = {bin(n)|n ≥ 2 is a prime number}

SO, Primality Testing algorithm is any algorithm which decides that given
any input n, whether bin(n) ∈ PRIMES ?

Which Complexity Class contains PRIMES ?

Examples :

Trial Division Test

Fermat’s Test based Primality test

Miller-Rabin primality test

Solovay-Strassen primality test

AKS primality test
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Trial Division Test

Algorithm 1 : Trial Division Test

Require: Integer n ≥ 2
1: i : integer
2: i ← 2
3: while i .i ≤ n do
4: if i divides n then
5: return COMPOSITE
6: end if
7: i ← i + 1
8: end while
9: return PRIME

This algortithm never gives
an error

The running time of the
algorithm is exponential
(In terms of number of
binary bits needed to
represent the number)

Several minor optimizations
may be carried out, but not
much gain in the time
complexity.
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Trial Division Test : Is it good enough?

For moderately large n, this algorithm can be used for a calculation
by hand.

As the value of n grows, a computer may be used to carry out the
desired calculations.

But, what happens when n becomes exceedingly large?

The following table estimates the usefulness of the Algorithm 1 !
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Trial Division Test : Is it good enough?

Number Decimal Digits Binary Digits Running Time

11 2 4 0.069 sec
191 3 8 0.081 sec
7927 4 13 0.111 sec
1300391 7 21 0.34 sec
179426549 9 28 13.56 sec
32416190071 11 35 1 hr 33 min 23.5 sec

Table: Running time vs n

These tests were carried out on a core i5 machine with 8 GB RAM
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Trial Division Test : Is it good enough?

A 62 digit giant

74838457648748954900050464578792347604359487509026452654305481

The 62 digit number above happens to be a prime.

The loop happens to run for more than 1031 rounds.

Even after applying several tricks and optimizations, and under the
assumption that a very fast computer is used that can carry out one
trial division in 1 nanosecond, say, a simple estimate shows that this
would take more than 1013 years of computing time on a single
computer.

There are several real world algorithms that make use of prime numbers of
this magnitude

Example: RSA System
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Lets Explore !!

Stated by Pierre de Fermat in 1640.

Fermat’s Little Theorem

If p is a prime number, and 1 ≤ a < p. then ap−1 ≡ 1 (mod p)

Points to note :

All prime numbers will satisfy the above thorem.

Some composite number may or may not satisfy it.

Any number which does not satisfy the Fermat’s Little Theorem, is
for sure a composite number.

Can we use these properties to design a Primality Test ?
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Fermat’s Test

Let us take a = 2, and for given n, calculate f (n) = 2n−1 mod n.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f (n) 1 0 1 2 1 0 4 2 1 8 1 2 4 0 1

Table: an−1 mod n, for a = 2

For prime numbers n ≤ 17, we get f (n) = 1

For non Primes we get some value different from 1.

By Fermat’s Little Theorem, if an−1 mod n 6= 1 we have a definite
certificate for the fact that n is composite.

We call such a, as F-Witness for n.
(Or, more exactly, witness of the fact that n is composite)

If n is a prime number than, an−1 mod n = 1,∀a|1 ≤ a ≤ n-1
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Fermat’s Test

Algorithm 2 : Fermat’s Test

Require: Odd Integer n ≥ 3
1: i ← 0
2: repeat
3: Let a be randomly chosen

from {2, · · · , n − 2}
4: if an−1 mod n 6= 1 then
5: return COMPOSITE
6: end if
7: i ← i + 1
8: until i < k
9: return PRIME

If the algorithm outputs
COMPOSITE, then n is
guaranteed to be composite.

The running time of the
algorithm depends on
calculation of an−1 mod n
(which takes O(log n)
arithematic operations.)

But, the algorithm might give
wrong output !!
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Fermat’s Test : When will it give error?

When will the algorithm give a wrong output ?

If the number is prime the algorithm will always give the output as
“PRIME”.

If the input number is composite, the algorithm might claim that the
number is prime. [Hence, give an error]

Why is this error generated?

Due to the presence of F-Liars

F-liar

For an odd composite number n we call an element a, 1 ≤ a ≤ n − 1, an
F-liar if an−1 mod n = 1
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Fermat’s Test : Error Probability

When is the probability that the algorithm give a wrong output ?

Let,

Let Z ∗
n = {a|1 ≤ a < n, gcd(a, n) = 1}

And the operations defined in Z ∗
n be +n and ×n

LF = {a|1 ≤ a < n, an−1 mod n = 1}

Theorem

If n ≥ 3 is an odd composite number such that there is at least one
F-witness a in Z ∗

n , then the Fermat test applied to n gives answer 1 with
probability more than 1

2 .
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Carmichael Numbers

Carmichael Number

An odd composite number n is called a Carmichael number if:
an−1 mod n = 1, for all a ∈ Z ∗

n ,

where
Z ∗
n = {a|1 ≤ a < n, gcd(a, n) = 1}

The smallest Carmichael number is 561.

In 1994 was it shown that there are infinitely many Carmichael
numbers.

If the Carmichael Number is fed into the Fermat’s Test, the
probability that a wrong answer PRIME is given is close to 1.

Hence Fermat’s test fail for Carmichael Numbers.
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Nontrivial Square Roots of 1

Let’s consider one more property of arithmetic modulo p, which we could
use as a certificate of compositeness.

Square Roots of 1

Let 1 ≤ a < n. Then a is called a square root of 1 modulo n if:
a2 mod n = 1.

1 and n-1 are trivial square roots of 1 modulo n.

If n is a prime number, there are no other square roots of 1 modulo n.

Thus, if we find some nontrivial square root of 1 modulo n, then n is
certainly composite.

More generally, if n = p1 · p2 · · · pr , for distinct odd primes
p1, p2 · · · pr , then there are exactly 2r square roots of 1 modulo n

This means that unless n has extremely many prime factors, it is
useless to try to find nontrivial square roots of 1 modulo n by testing
randomly chosen a.
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Back to Fermat’s Test

Fermat’s Test

If p is a prime number, and 1 ≤ a < p. then ap−1 ≡ 1 (mod p)

As p is odd, p − 1 would be even.

So, p − 1 = u · 2k , for some odd u and k ≥ 1

Thus, ap−1 ≡ ((au)mod n)2
k
mod n

This means that we may calculate an−1mod n with k+1 intermediate
steps, if we let:
b0 = au mod n; bi = b2i−1 mod n; for i = 1 · · · k
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Example

Let us take n = 325. So, 324 = 81 · 22

a b0 = a81 b1 = a162 b2 = a324

2 252 129 66
7 307 324 1
32 57 324 1
49 324 1 1
65 0 0 0
126 1 1 1
201 226 51 1
224 274 1 1

Table: an−1 mod n,with intermediate steps for n = 325

2, 65 are a F-witness for 325.

7, 32, 49, 126, 201, 224 are F-liars
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Possible Cases

b0 b1 · · · · · · bk−1 bk Case

1 1 · · · 1 1 1 · · · 1 1 No Info.
n-1 1 · · · 1 1 1 · · · 1 1 No Info.
* * · · · * n-1 1 · · · 1 1 No Info.
* * · · · * * * · · · * n-1 Composite
* * · · · * * * · · · * * Composite
* * · · · * 1 1 · · · 1 1 Composite
* * · · · * * * · · · * 1 Composite

Table: Powers of an−1 mod n,with intermediate steps, possible cases
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Miller Rabin Test

Algorithm 3 : Miller Rabin Test

1: For u odd and k so that n − 1 = u.2k

2: Let a be randomly chosen from {2, · · · , n − 2} and b ← au mod n
3: if b ∈ {1, n − 1} then
4: return PRIME
5: end if
6: repeat
7: b ← b2 mod n
8: if b = n − 1 then
9: return PRIME

10: end if
11: if b = 1 then
12: return COMPOSITE
13: end if
14: until i < k
15: return COMPOSITE
Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 23 / 47



Error Probability : Miller Rabin Test

If n is not a Carmichael Number, the miller rabin test performs better
than Fermat’s Test.

Hence, the probability to give an error is at most 1
2 .

Lets see what happens if n is a Carmichael number

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 24 / 47



Error Probability : Miller Rabin Test

If n is not a Carmichael Number, the miller rabin test performs better
than Fermat’s Test.

Hence, the probability to give an error is at most 1
2 .

Lets see what happens if n is a Carmichael number

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 24 / 47



Error Probability : Miller Rabin Test

Let Ln be set that contains all Miller-Rabin Liars (MR-Liar) of
number n.

Our aim would be now to proof that Ln is a proper subgroup of Z ∗
n .

Let i0 be the maximal i ≥ 0 such that there is some MR-Liar a0 with
a0

u.2i0 mod n = n − 1.

Since n is a Carmichael number, a0
u.2k = a0

n−1 = 1 mod n. Hence,
0 ≤ i0 < k

Now, we define :
Bn = {a | 0 ≤ a < n, au.2

i0 mod n ∈ {1, n − 1}}, and Ln = Set of all
MR-Liars for n

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 25 / 47



Error Probability : Miller Rabin Test

Let Ln be set that contains all Miller-Rabin Liars (MR-Liar) of
number n.

Our aim would be now to proof that Ln is a proper subgroup of Z ∗
n .

Let i0 be the maximal i ≥ 0 such that there is some MR-Liar a0 with
a0

u.2i0 mod n = n − 1.

Since n is a Carmichael number, a0
u.2k = a0

n−1 = 1 mod n. Hence,
0 ≤ i0 < k

Now, we define :
Bn = {a | 0 ≤ a < n, au.2

i0 mod n ∈ {1, n − 1}}, and Ln = Set of all
MR-Liars for n

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 25 / 47



Error Probability : Miller Rabin Test

Now, the basic idea would be to prove that Ln is a proper subgroup of Z ∗
n .

We will prove it in three steps by showing :

Ln ⊆ Bn

Bn is a subgroup of Z ∗
n

Z ∗
n − Bn 6= φ

Lets look at them one by one !
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Error Probability : Miller Rabin Test

1. To show : Ln ⊆ Bn

Let a be arbitrary MR-Liar.
Case 1 : If au mod n = 1. Then, au.2

i0 mod n = 1 as well, and hence
a ∈ Bn

Case 2 : If au.2
i

mod n = n-1, for some i. Then,
0 ≤ i ≤ i0.
Now, if i = i0, we directly have a ∈ Bn.
and, if i < i0, then :
au.2

i
0 mod n = (au.2

i
mod n)2

i0−i
mod n = 1

Hence, a ∈ Bn
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Error Probability : Miller Rabin Test

2. To show : Bn is a subgroup of Z ∗
n

We know that Bn is a subset of Z ∗
n .

Since Z ∗
n is a finite group, and

(a) 1 ∈ Bn, since1u.2
i
0 mod n = 1

(b) Bn is closed under operations in Z ∗
n .

Let a, b ∈ Bn

Then, au.2
i0 mod n, bu.2

i0 mod n ∈ {1, n − 1}
Since, 1.1 = 1,
1.(n-1) = (n-1).1 = (n-1), and
(n-1).(n-1) mod n = 1,

we have, (ab)u.2
i0 mod n = (au.2

i0 mod n).(bu.2
i0 ) mod n ∈ {1, n − 1}

Hence, (ab)u.2
i0 mod n ∈ Bn

So, Bn is a subgroup of Z ∗
n
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Error Probability : Miller Rabin Test

3. To show : Z ∗
n − Bn 6= φ

We know that any Carmichael number has atleast 3 different prime
factors.

Hence can be written as n = n1.n2 for odd numbers n1 and n2 which
are relatively prime.

We had, a0
u.2i0 ≡ −1 (mod n)

Let a1 = a0 mod n1.

By CRT, there is a unique number a ∈ {0, ..., n − 1}, with
a ≡ a1 (mod n1) and a ≡ 1 (mod n2)

Calculating modulo n1, we have that a ≡ a1 (mod n1), hence

au.2
i0 ≡ −1 (mod n1)

Calculating modulo n2, we have that a ≡ 1 (mod n2), hence

au.2
i0 ≡ 1u.2

i0 ≡ 1 (mod n2)
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Error Probability : Miller Rabin Test

3. To show : Z ∗ − Bn 6= φ (...Continued)

We have,
au.2

i0 ≡ −1 (mod n1), =⇒ au.2
i0 6≡ 1 (mod n)

au.2
i0 ≡ 1u.2

i0 ≡ 1 (mod n2) =⇒ au.2
i0 6≡ −1 (mod n)

This means au.2
i0 (mod n) 6∈ {1, n − 1}, hence

a 6∈ Ln

Further, au.2
i0+1 ≡ 1 (mod n1), and

au.2
i0+1 ≡ 1 (mod n2).

Hence, by CRT, au.2
i0+1 ≡ 1 (mod n),

So, a ∈ Z ∗

Hence, a ∈ Z ∗ − Bn =⇒ Z ∗ − Bn 6= φ
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Error Probability : Miller Rabin Test

By the 3 parts above, we can conclude :
Bn is a proper subgroup of Z ∗

Hence, |Bn| divides |Z ∗|
Also, |Bn| 6= |Z ∗|
Therefore, |Bn| ≤ n

2

Error Probability : Miller Rabin Test

The error probability of Miller Rabin is 1
2 , for one iteration.

For k iterations of Miller Rabin Test, the probability of error is bounded by
(12)k
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Experimental Results
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Running Time vs Size of input

To carry out this analysis, we randomly selected 1000 integers each
for bitsize ranging from 2 to 2048.

Hence, 1000× 2047 = 2, 047, 000 numbers in total.

Then the running time was aggregated corresponding to number of
bits.

The result is summarized in the following plot.
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Running Time vs Size of input
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Dataset Used

To carry out further analysis, we used the dataset provided by :
Center for Experimental and Constructive Mathematics, Simon Fraser
University, British Columbia, Canada.

The dataset was last updated on 25-April-2013.

It contains data on all base-2 Fermat pseudoprimes below 264.

Pseudoprimes Strong Pseudoprimes Carmichael Numbers

118,968,378 31,894,014 4,279,356

Table: Data Set Statistics
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Error Probability

To analyze the error probability we used the dataset mentioned.

As we know that all the numbers in the dataset are composites, we
recorded the number of primes detected by our algorithm.

We recorded these number of false positives for differnet number of
iterations of the algorithm.

We expected that, as the number of iteration will increase, the
number of false positive will decrease drastically. (Error Probability
≤ 1

2k
)

We carried out the experiment for the entire datset, as well as for
Carmichael numbers explicitely.

Our findings are present in the folllowing slides.
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Error Probability (Carmichael Numbers)

The following table summarizes the result of running k iterations of Miller
Rabin test on Carmichael Numbers.

Iterations (k) Number of Composites Number of primes

1 4267107 12249
2 4278338 1018
3 4279188 168
4 4279328 28
5 4279344 12
6 4279355 1
7 4279356 0

Table: Experimental Result for Carmichael Numbers vs k
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Error Probability (Carmichael Numbers)
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Error Probability (Entire Dataset)

The following table summarizes the result of running k iterations of Miller
Rabin test on Entire Dataset.

Iterations (k) Number of Composites Number of primes

1 115639122 3329256
2 118592423 375955
3 118915714 52664
4 118960099 8279
5 118967046 1332
6 118968151 227
7 118968331 47
8 118968376 2

Table: Experimental Result for Entire Dataset vs k

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 39 / 47



Error Probability (Entire Dataset)
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Conclusion (Error Probability)

The Miller Rabin test performs indifferently for Carmichael Numbers
(unlike Fermat’s Test)

The number of false positives detected reduces drastically as number
of iterations increases.

For 8 iterations of Miller Rabin, the error reduces to almost 0.
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Density of Primes

For this test, we chose 109 integers, randomly, of bit length 64, 128,
256, 512 and 1024.

We used 5 iterations of Miller Rabin Test, to calculate the number of
primes in the set.

D = No.of Primes
No.of sample numbers(=109)

The density of primes is given by : 1
ln t

The following table shows the results.
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Density of Primes

The following table compares the value of density of primes that we get
(D) with the expected value of density (Density)

Bit Length Number of Primes D Density

64 23164312 .023164 .022542
128 12091211 .012091 .011271
256 5678645 .005678 .00563552
512 2820804 .002820 .0028177
1024 1408923 .001408 .0014088

Table: Density of primes
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Divisibility with small prime set

Primes Least No. that is false positive

2 341 (11× 31)
3 91 (7× 13)
5 217 (7× 31)
7 25 (5× 5)

2, 3 1105 (5× 13× 17)
2, 5 561(3× 11× 17)
2, 7 561(3× 11× 17)
3, 5 1541(23× 67)
3, 7 703(19× 37)
5, 7 561(3× 11× 17)

2, 3, 5 1729(7× 13× 19)
2, 3, 7 1105(5× 13× 17)
3, 5, 7 29341(13× 37× 61)

Table: Least Composite that base fails to identify
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Conclusion

Miller Rabin Test, perform equivalently well than any deterministic
counterparts.

It is much more easier to implement compared to deterministic
counterpart.

Miller Rabin is robust enough that it is defacto for working with
primes in RSA
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Is Randomization worth practicing?

These randomized algorithms, are sufficient for solving the primality
problem for quite large inputs for all practical purposes.

For practical purposes, there is no reason to worry about the risk of
giving output PRIME on a composite input n.

Such a small error probability is negligible in relation to other
(hardware or software) error risks that are inevitable with real
computer systems.

Still, from a theoretical point of view, the question remained whether
there was an absolutely error-free algorithm for solving the primality
problem with a small time bound.

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 46 / 47



Is Randomization worth practicing?

These randomized algorithms, are sufficient for solving the primality
problem for quite large inputs for all practical purposes.

For practical purposes, there is no reason to worry about the risk of
giving output PRIME on a composite input n.

Such a small error probability is negligible in relation to other
(hardware or software) error risks that are inevitable with real
computer systems.

Still, from a theoretical point of view, the question remained whether
there was an absolutely error-free algorithm for solving the primality
problem with a small time bound.

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 46 / 47



Is Randomization worth practicing?

These randomized algorithms, are sufficient for solving the primality
problem for quite large inputs for all practical purposes.

For practical purposes, there is no reason to worry about the risk of
giving output PRIME on a composite input n.

Such a small error probability is negligible in relation to other
(hardware or software) error risks that are inevitable with real
computer systems.

Still, from a theoretical point of view, the question remained whether
there was an absolutely error-free algorithm for solving the primality
problem with a small time bound.

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 46 / 47



Is Randomization worth practicing?

These randomized algorithms, are sufficient for solving the primality
problem for quite large inputs for all practical purposes.

For practical purposes, there is no reason to worry about the risk of
giving output PRIME on a composite input n.

Such a small error probability is negligible in relation to other
(hardware or software) error risks that are inevitable with real
computer systems.

Still, from a theoretical point of view, the question remained whether
there was an absolutely error-free algorithm for solving the primality
problem with a small time bound.

Shubham Sahai Srivastava (IITK) Primality Test April 5, 2014 46 / 47



The End
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