Directed Planar Reachability reduces to Grid Graph Reachability in Logspace

By

Tanvi Soni

Directed Planar Graph Reachability logspace reducible to Grid Graph Reachability

- Obtain undirected spanning tree T of directed planar graph G
- Impose T on grid graph
- Lay all non-tree edges on grid graph
- s lies on top left corner of grid, t lies on bottom right corner of grid
- Reduction is complete!!!

Grid graph - Vertices lie on a grid and edges are between two adjacent vertices on grid

We assume that vertices s and t lie on the same external face.
i. If s and t already lie on same face, then there is no problem. Any face can be assumed to be external face.
ii. If s and t lie on different face, then we may need to reorient the edges of the graph.

$$
\mathrm{P}=\mathrm{s} \rightarrow \mathrm{w} \rightarrow \mathrm{v} \rightarrow \mathrm{t}
$$

If s and t do not lie on the same face, then
i. Determine undirected path from s to t. - Can be done in logspace
ii. If there is no such path, then there cannot exist directed path from s to t.
iii. Else, let P be the required undirected path.

$$
P=\left(s, v_{1}, v_{2}, \ldots, v_{m}, t\right)
$$

Duplicate all the v_{i}^{\prime} 's on path $P=\left(s, v_{1}, v_{2}, \ldots, v_{m}, t\right)$ Therefore, for each v_{i}, we have $v_{i, a}$ and $v_{i, b}$

Connect vertices marked a with each other. Similarly, for vertices marked with b.

Edges above (or left) of the path are connected to vertices marked with a Edges below (or right) of the path are connected to vertices marked with b

Essentially, we cut the graph along path P and reoriented the edges around that path so that we could obtain s and t on the same face.

Now we reduce directed Planar s-t reachability to grid graph reachability

We assume the following:

- All edges are unidirectional. (Merge vertices joined by bidirectional edges).
- Assume no vertex in G has degree > 3 .
- Vertex s has degree 2

1. Compute undirected spanning tree. - Possible in logspace
2. Compute undirected spanning tree. - Possible in logspace

$h(v)=$ height of vertex v
$w(v)=$ number of leaf nodes strictly to the left of v

Coordinate of a vertex is $(\mathrm{h}(\mathrm{v}), \mathrm{w}(\mathrm{v})+1)$.

Hence, we obtain required grid graph that preserves s-t connectivity.

Reference:
The Directed Planar Reachability
By Eric Allender, Samir Datta and Sambuddha Roy

