
Parity 6∈ AC 0 using Hastad’s Switching Lemma

Utkarsh Patange

Indian Institute of Technology Kanpur

April 6, 2014

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 1 / 20

Motivation for a weaker class

To prove P 6= NP, knowing P ⊆ NP, we must find a language
L ∈ NP and L 6∈ P. That is a lower bound on the resources required
to decide a language must be obtained.

Since our conventional models of computation are very powerful, it
becomes difficult to comment on the lower bounds. An indirect line
of attack, to quote Johan Hastad [H] would be:

“We want to prove that the computer cannot do something quickly.
We cannot do this. But if we tie the hands and feet of the computer
together maybe we will have better luck. The hope being of course
that we eventually will be able to remove the ropes and prove that
the full powered computer needs a long time”

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 2 / 20

Boolean Circuits

Keeping the above motivation in mind, We define a boolean circuit as
a Directed Acyclic Graph where internal nodes are labeled with one of
∨,∧ and ¬ representing that the ”output of the node” is OR, AND or
NEGATION of it’s input(s)

An edge (u, v) in the DAG represents that the output of node u is
given as an input to node v

Leaf nodes (nodes with in-degree = 0) are bits of the input string.

Output of the circuit is defined to be the output of the root node
(node with out-degree = 0). There is only one root node in any
circuit
We define some terms here:

Depth of a circuit:= Longest path from root to any leaf node.
Fan in of a node:= The in-degree of the node

Note that fan in of a node labeled ¬ can only be 1. Also, we have not
restricted fan-in’s of any other node, neither have we restricted the
depth of the circuit

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 3 / 20

Boolean Circuits

Keeping the above motivation in mind, We define a boolean circuit as
a Directed Acyclic Graph where internal nodes are labeled with one of
∨,∧ and ¬ representing that the ”output of the node” is OR, AND or
NEGATION of it’s input(s)

An edge (u, v) in the DAG represents that the output of node u is
given as an input to node v

Leaf nodes (nodes with in-degree = 0) are bits of the input string.

Output of the circuit is defined to be the output of the root node
(node with out-degree = 0). There is only one root node in any
circuit
We define some terms here:

Depth of a circuit:= Longest path from root to any leaf node.
Fan in of a node:= The in-degree of the node

Note that fan in of a node labeled ¬ can only be 1. Also, we have not
restricted fan-in’s of any other node, neither have we restricted the
depth of the circuit

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 3 / 20

Boolean Circuits

Keeping the above motivation in mind, We define a boolean circuit as
a Directed Acyclic Graph where internal nodes are labeled with one of
∨,∧ and ¬ representing that the ”output of the node” is OR, AND or
NEGATION of it’s input(s)

An edge (u, v) in the DAG represents that the output of node u is
given as an input to node v

Leaf nodes (nodes with in-degree = 0) are bits of the input string.

Output of the circuit is defined to be the output of the root node
(node with out-degree = 0). There is only one root node in any
circuit
We define some terms here:

Depth of a circuit:= Longest path from root to any leaf node.
Fan in of a node:= The in-degree of the node

Note that fan in of a node labeled ¬ can only be 1. Also, we have not
restricted fan-in’s of any other node, neither have we restricted the
depth of the circuit

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 3 / 20

Boolean Circuits

We define a T(n)-size circuit family to be a sequence {Cn}n∈N of
Boolean circuits, where Cn has n inputs, single output and
|Cn| ≤ T (n) ∀n ∈ N [AB]

A language L is said to be recognized by a circuit family {Cn}n∈N if
∀x ∈ {0, 1}n, x ∈ L ⇐⇒ Cn(x) = 1 [AB]

Now, we impose some more restrictions on general boolean circuits to
get the class AC 0

L ∈ AC 0 if L can be decided by a family of circuits {Cn} where Cn

has

size polynomial in n
constant depth
unbounded fan-in. i.e., any node (except input nodes, of course) can
have arbitrarily many inputs.

One of the first successes in proving lower bounds using restricted
classes came from proving ⊕ 6∈ AC 0

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 4 / 20

Boolean Circuits

We define a T(n)-size circuit family to be a sequence {Cn}n∈N of
Boolean circuits, where Cn has n inputs, single output and
|Cn| ≤ T (n) ∀n ∈ N [AB]

A language L is said to be recognized by a circuit family {Cn}n∈N if
∀x ∈ {0, 1}n, x ∈ L ⇐⇒ Cn(x) = 1 [AB]

Now, we impose some more restrictions on general boolean circuits to
get the class AC 0

L ∈ AC 0 if L can be decided by a family of circuits {Cn} where Cn

has

size polynomial in n
constant depth
unbounded fan-in. i.e., any node (except input nodes, of course) can
have arbitrarily many inputs.

One of the first successes in proving lower bounds using restricted
classes came from proving ⊕ 6∈ AC 0

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 4 / 20

Proof Sketch

We will first prove Hastad’s Switching Lemma and using that prove
⊕ 6∈ AC 0

The original proof given by Johan Hastad [H] is rather complicated.
We present here an alternate proof by Razborov [RA].

Before we state the lemma, we need to define a few terms:

k−CNF:= A boolean formula that is in conjunctive normal form and
every clause of which has at most k literals. Similarly, we define
k−DNF.
Restriction on a function:= Assigning some value to some of the input
variables to the function
f |ρ:= A function f under restriction ρ. That is, f |ρ takes an
assignment τ to variables not assigned any value by ρ and outputs f
applied to ρ and τ .
f |πρ := f |π|ρ for restrictions π and ρ that are on disjoint sets of
variables

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 5 / 20

Proof Sketch

We will first prove Hastad’s Switching Lemma and using that prove
⊕ 6∈ AC 0

The original proof given by Johan Hastad [H] is rather complicated.
We present here an alternate proof by Razborov [RA].

Before we state the lemma, we need to define a few terms:

k−CNF:= A boolean formula that is in conjunctive normal form and
every clause of which has at most k literals. Similarly, we define
k−DNF.
Restriction on a function:= Assigning some value to some of the input
variables to the function
f |ρ:= A function f under restriction ρ. That is, f |ρ takes an
assignment τ to variables not assigned any value by ρ and outputs f
applied to ρ and τ .
f |πρ := f |π|ρ for restrictions π and ρ that are on disjoint sets of
variables

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 5 / 20

Switching Lemma: Statement

If f is a function that is expressible as a k−DNF and ρ is a random
restriction that assigns random values to t randomly selected input bits,
then ∀s ≥ 2

Pr
ρ

[f |ρ is not expressible as s-CNF] ≤
(

(n − t)k10

n

)s/2

(1)

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 6 / 20

Terms Used

min-term of f := A partial assignment to f ’s variables that makes f
output 1 regardless of what value is assigned to the rest of the
variables

max-term of f := A partial assignment to f ′s variables that makes f
output 0 regardless of what value is assigned to the rest of the
variables
For example, Consider a function that is expressible as a k−DNF.
Every clause in this formula can yield a size-k min-term of f .
Similarly in a function that is expressible as a k−CNF, every clause
can yield a size-k max-term.

We will assume henceforth that the min-terms (respectively
max-terms) are minimal. That is, no assignment to a proper subset of
the term’s variables would make the function 1(respectively 0).

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 7 / 20

Terms Used

min-term of f := A partial assignment to f ’s variables that makes f
output 1 regardless of what value is assigned to the rest of the
variables

max-term of f := A partial assignment to f ′s variables that makes f
output 0 regardless of what value is assigned to the rest of the
variables
For example, Consider a function that is expressible as a k−DNF.
Every clause in this formula can yield a size-k min-term of f .
Similarly in a function that is expressible as a k−CNF, every clause
can yield a size-k max-term.

We will assume henceforth that the min-terms (respectively
max-terms) are minimal. That is, no assignment to a proper subset of
the term’s variables would make the function 1(respectively 0).

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 7 / 20

Size of max-term

Theorem

If all max-terms of a function are of size at most s, then the function is
expressible as an s−CNF.

It is a known result from boolean algebra (circuit minimization) that
if two functions have same set of max-terms then they are equivalent.
This can be proved by representing the functions as product of sums
for which there is a unique representation

In the function f , we consider each of its max-terms σi one-by-one
and construct a clause Ci corresponding to it

For any variable x that is assigned 1 in σi , we include x in Ci and for
y = 0 in σi , we include y in Ci .

Taking OR of all of the literals in Ci , we get a clause.

Doing this for every max-term gives us a set of clauses each having at
most s literals. Thus, the theorem stands proved.

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 8 / 20

Size of max-term

Theorem

If all max-terms of a function are of size at most s, then the function is
expressible as an s−CNF.

It is a known result from boolean algebra (circuit minimization) that
if two functions have same set of max-terms then they are equivalent.
This can be proved by representing the functions as product of sums
for which there is a unique representation

In the function f , we consider each of its max-terms σi one-by-one
and construct a clause Ci corresponding to it

For any variable x that is assigned 1 in σi , we include x in Ci and for
y = 0 in σi , we include y in Ci .

Taking OR of all of the literals in Ci , we get a clause.

Doing this for every max-term gives us a set of clauses each having at
most s literals. Thus, the theorem stands proved.

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 8 / 20

Size of max-term

Theorem

If all max-terms of a function are of size at most s, then the function is
expressible as an s−CNF.

Due to the above theorem we can say something about the size of the
max-term of a function which cannot be expressed as an s−CNF

If a function f cannot be expressed as an s−CNF, then there must be at
least one max-term of f of size ≥ s + 1

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 9 / 20

Finding the probability

Let Rt be the set of all restrictions of t ≥ n/2 variables. We have
|Rt | =

(n
t

)
2t

Let B be the set of bad restrictions – those ρ ∈ Rt for which f |ρ is
not expressible as an s−CNF

To prove the switching lemma, we must prove a specific bound on
probability of a random restriction being bad = |B|

|Rt |
To compute |B|, we establish a one-to-one mapping
G : B → Rt+s × {0, 1}` for some ` = O(s log k)

This will give us |B| =
(n
t+s

)
2t+s+` =

(n
t+s

)
2t2skO(s)

If such G exists, we get

|B|
|Rt |

=

(n
t+s

)
2t2skO(s)(n
t

)
2t

=

(n
t+s

)
2skO(s)(n
t

) (2)

To prove the lemma, it suffices to prove
(n
t+s

)
≤
(n
t

) (e(n−t)
n

)s
since this

will imply a bound that is stronger than the lemma

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 10 / 20

Finding the probability

Let Rt be the set of all restrictions of t ≥ n/2 variables. We have
|Rt | =

(n
t

)
2t

Let B be the set of bad restrictions – those ρ ∈ Rt for which f |ρ is
not expressible as an s−CNF

To prove the switching lemma, we must prove a specific bound on
probability of a random restriction being bad = |B|

|Rt |
To compute |B|, we establish a one-to-one mapping
G : B → Rt+s × {0, 1}` for some ` = O(s log k)

This will give us |B| =
(n
t+s

)
2t+s+` =

(n
t+s

)
2t2skO(s)

If such G exists, we get

|B|
|Rt |

=

(n
t+s

)
2t2skO(s)(n
t

)
2t

=

(n
t+s

)
2skO(s)(n
t

) (2)

To prove the lemma, it suffices to prove
(n
t+s

)
≤
(n
t

) (e(n−t)
n

)s
since this

will imply a bound that is stronger than the lemma
Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 10 / 20

Proving
(

n
t+s

)
≤
(
n
t

) (e(n−t)
n

)s
It suffices if we prove,

t!(n − t)!

(t + s)!(n − t − s)!
≤ es · (n − t)s

ns

Consider

(
n − t

n − t
· n − t − 1

n − t
· . . . · n − t − s + 1

n − t

)
︸ ︷︷ ︸

≤1

·

 n

t + s︸ ︷︷ ︸
≤2

· n

t + s − 1︸ ︷︷ ︸
≤2

· . . . · n

t + 1︸ ︷︷ ︸
≤2


︸ ︷︷ ︸

≤2s≤es Since t≥n/2

Hence proved

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 11 / 20

Proving upper bound on probability

Thus we get,

|B|
|Rt |

=

(
n

t+s

)
2skO(s)(
n
t

) ≤
(

2e(n − t)

n

)s

kO(s)

Pr
ρ

[f |ρ is not expressible as s-CNF] ≤
(

2e(n − t)

n

)s

kO(s) ≤
(

(n − t)k10

n

)s/2

Which is the statement of the switching lemma

We will see later that the term O(s) is actually ≈ 2s. Thus, we are relaxing the

upper bound in the sense that power of a term less than 1 is being decreased and

that of a term greater than 1 is increased

Also, we are assuming here that

k ≥ 2 > (2e)
1
3 since for k = 1, we can always build an s−CNF ∀s ≥ 2.

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 12 / 20

Proving upper bound on probability

Thus we get,

|B|
|Rt |

=

(
n

t+s

)
2skO(s)(
n
t

) ≤
(

2e(n − t)

n

)s

kO(s)

Pr
ρ

[f |ρ is not expressible as s-CNF] ≤
(

2e(n − t)

n

)s

kO(s) ≤
(

(n − t)k10

n

)s/2

Which is the statement of the switching lemma

We will see later that the term O(s) is actually ≈ 2s. Thus, we are relaxing the

upper bound in the sense that power of a term less than 1 is being decreased and

that of a term greater than 1 is increased Also, we are assuming here that

k ≥ 2 > (2e)
1
3 since for k = 1, we can always build an s−CNF ∀s ≥ 2.

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 12 / 20

Constructing the Mapping

Thus to prove the switching lemma, it is sufficient to describe the
one-to-one mapping G : B → Rt+s × {0, 1}`.
Note that a bad restriction ρ cannot make any clause of f true, since
that will give f |ρ = 1. Similarly, not all clauses are made false by ρ

Since f |ρ is not expressible as an s−CNF, it has some max term π of
size greater than s.

Assuming π to be maximal, we can say that f |ρπ = 0 but
∀π′ ⊂ π f |ρπ′ 6= 0

We will define the mapping G (ρ) = (ρσ, c) where σ is a suitably
defined restriction on exactly s of π’s variables and c ∈ {0, 1}`

Thus, ρσ restricts exactly t + s variables and the proof follows

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 13 / 20

Constructing the Mapping

Let the clauses be ordered in an arbitrary fashion: t1, t2, . . . , ti , . . . , tn.
Within the clauses, the variables are also ordered in an arbitrary way.

By definition, ρπ is a restriction that sets all the clauses to zero

We split π into m ≤ s sub-restrictions π1, π2, . . . , πm inductively as
follows:

Assume we already have π1, π2, . . . , πi−1 such that π1π2 . . . πi−1 6= π
Let tli be the first clause in our ordering of terms that is not 0 under
ρπ1π2 . . . πi−1

Let Yi be the set of all variables set by π but not by ρπ1π2 . . . πi−1.
Since tli is 0 under π, Yi 6= φ
We define πi to be the restriction that is induced by π on the variables
of Yi (and hence sets tli to 0)
We define σi to be the restriction of Yi that keeps tli from being 0.
Such a restriction must exist since otherwise, tli would be 0 under
ρπ1π2 . . . πi−1 itself

Note that σi does not ensure tli = 1 since the clause is an ∧ of literals

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 14 / 20

Constructing the Mapping

Let the clauses be ordered in an arbitrary fashion: t1, t2, . . . , ti , . . . , tn.
Within the clauses, the variables are also ordered in an arbitrary way.

By definition, ρπ is a restriction that sets all the clauses to zero

We split π into m ≤ s sub-restrictions π1, π2, . . . , πm inductively as
follows:

Assume we already have π1, π2, . . . , πi−1 such that π1π2 . . . πi−1 6= π
Let tli be the first clause in our ordering of terms that is not 0 under
ρπ1π2 . . . πi−1

Let Yi be the set of all variables set by π but not by ρπ1π2 . . . πi−1.
Since tli is 0 under π, Yi 6= φ
We define πi to be the restriction that is induced by π on the variables
of Yi (and hence sets tli to 0)
We define σi to be the restriction of Yi that keeps tli from being 0.
Such a restriction must exist since otherwise, tli would be 0 under
ρπ1π2 . . . πi−1 itself

Note that σi does not ensure tli = 1 since the clause is an ∧ of literals

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 14 / 20

Constructing the Mapping

This process is continued until at least s variables are assigned due to
the restriction π1π2 . . . πm

We trim πm in an arbitrary way so as to make these restrictions assign
exactly s variables

Note that π assigned more than s variables. So, π1π2 . . . πm 6= π

Also note that ∀i < j , πj does not assign values to variables that are
already assigned by πi

We define G (ρ) = (ρσ1σ2 . . . σm, c). To prove that this is one-to-one
mapping, we must prove that we can invert it uniquely

Since there is no way to identify ρ from σ1, σ2, . . . , σm we keep some
additional information in c to help us

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 15 / 20

Constructing the Mapping

This process is continued until at least s variables are assigned due to
the restriction π1π2 . . . πm

We trim πm in an arbitrary way so as to make these restrictions assign
exactly s variables

Note that π assigned more than s variables. So, π1π2 . . . πm 6= π

Also note that ∀i < j , πj does not assign values to variables that are
already assigned by πi

We define G (ρ) = (ρσ1σ2 . . . σm, c). To prove that this is one-to-one
mapping, we must prove that we can invert it uniquely

Since there is no way to identify ρ from σ1, σ2, . . . , σm we keep some
additional information in c to help us

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 15 / 20

Uniquely inverting the mapping

Given the assignment ρσ1σ2 . . . σm, we plug this into f and try to
infer tl1 from it

tl1 is the first clause that is not fixed to 0 by ρ. This property is
maintained by σ1.

Also, σ2 . . . σm does not assign values to any variables in tl1 .

This is
because all variables of tl1 restricted by π were already there in π1
and therefore cannot be in later πi ‘s and hence σi ’s

In string c , we include

s1 := number of variables in π1
The indices in tl1 of the variables in π1
And the values that π1 assigns to these variables
We will need O(s1 log k) bits to store this information since each term
has at most k variables

Once we know tl1 , using the information in c , it is easy to reconstruct
π1

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 16 / 20

Uniquely inverting the mapping

Given the assignment ρσ1σ2 . . . σm, we plug this into f and try to
infer tl1 from it

tl1 is the first clause that is not fixed to 0 by ρ. This property is
maintained by σ1.

Also, σ2 . . . σm does not assign values to any variables in tl1 .This is
because all variables of tl1 restricted by π were already there in π1
and therefore cannot be in later πi ‘s and hence σi ’s

In string c , we include

s1 := number of variables in π1
The indices in tl1 of the variables in π1
And the values that π1 assigns to these variables
We will need O(s1 log k) bits to store this information since each term
has at most k variables

Once we know tl1 , using the information in c , it is easy to reconstruct
π1

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 16 / 20

Uniquely inverting the mapping

Given the assignment ρσ1σ2 . . . σm, we plug this into f and try to
infer tl1 from it

tl1 is the first clause that is not fixed to 0 by ρ. This property is
maintained by σ1.

Also, σ2 . . . σm does not assign values to any variables in tl1 .This is
because all variables of tl1 restricted by π were already there in π1
and therefore cannot be in later πi ‘s and hence σi ’s

In string c , we include

s1 := number of variables in π1
The indices in tl1 of the variables in π1
And the values that π1 assigns to these variables
We will need O(s1 log k) bits to store this information since each term
has at most k variables

Once we know tl1 , using the information in c , it is easy to reconstruct
π1

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 16 / 20

Uniquely inverting the mapping

Knowing π1, we can change the restriction to ρπ1σ2 . . . σm

Since we know the variables to which π1 assigns values, we only need
to change them to the exact assignment that π1 assigns
This information is there in c

Now, we can similarly work out which clause is tl2 . It is again the first
non-zero clause under the new restriction

Here, we will need to use the next O(s2 log k) bits of c to reconstruct
π2

We continue this process until we have processed all m clauses and
figured out π1, π2, . . . , πm. We can then simply remove the
assignments by πi ‘s to get ρ

We get, |c| = O((s1 + s2 + . . .+ sm) log k) = O(s log k)

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 17 / 20

Uniquely inverting the mapping

Knowing π1, we can change the restriction to ρπ1σ2 . . . σm
Since we know the variables to which π1 assigns values, we only need
to change them to the exact assignment that π1 assigns
This information is there in c

Now, we can similarly work out which clause is tl2 . It is again the first
non-zero clause under the new restriction

Here, we will need to use the next O(s2 log k) bits of c to reconstruct
π2

We continue this process until we have processed all m clauses and
figured out π1, π2, . . . , πm. We can then simply remove the
assignments by πi ‘s to get ρ

We get, |c| = O((s1 + s2 + . . .+ sm) log k) = O(s log k)

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 17 / 20

Uniquely inverting the mapping

Knowing π1, we can change the restriction to ρπ1σ2 . . . σm
Since we know the variables to which π1 assigns values, we only need
to change them to the exact assignment that π1 assigns
This information is there in c

Now, we can similarly work out which clause is tl2 . It is again the first
non-zero clause under the new restriction

Here, we will need to use the next O(s2 log k) bits of c to reconstruct
π2

We continue this process until we have processed all m clauses and
figured out π1, π2, . . . , πm. We can then simply remove the
assignments by πi ‘s to get ρ

We get, |c| = O((s1 + s2 + . . .+ sm) log k) = O(s log k)

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 17 / 20

Summary

We first proved a theorem stating that if a function cannot be
expressed as an s−CNF, then it must have at least one max-term of
size > s

We called a restriction ρ a bad restriction if f |ρ cannot be expressed
as an s−CNF

For a function f |ρ that cannot be expressed as an s−CNF, we
assumed one such max-term π

Using π we constructed σ and defined G (ρ) = (ρσ, c) where c
contained information about π that helped us reconstruct ρ when we
are given ρσ. This proved G to be a one-to-one mapping

Since the one-to-one mapping was from a set of bad restrictions to
another set that could be easily counted, we got an idea of the
cardinality of the set of bad restrictions

Using this cardinality, we were able to bound the probability of
choosing a bad restriction among all possible restrictions of a
particular size

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 18 / 20

References

Hastad, Johan (1987)

Computational limitations of small depth circuits

Ph.D. thesis, Massachusetts Institute of Technology.

Arora Barak (2009)

Computational Complexity: A Modern Approach

Published on April 2009 by Cambridge University Press

Razborov, Alexander A. (1993)

An equivalence between second order bounded domain bounded arithmetic and first
order bounded arithmetic

Arithmetic, proof theory and computational complexity 23: 247277

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 19 / 20

The End

Utkarsh Patange (IIT-K) Proving the Switching Lemma April 6, 2014 20 / 20

	Introduction
	Subsection Example

