
Shor’s Factoring Algorithm

Anurag Pandey

Factoring Problem

• Problem: Given a large integer N (typically
several hundred digits long), factorize n as a
product of primes.

• We will assume that N = pq where p and q are
large unknown primes. We must determine p
and q

• Best known algo on a classical computer:

Sub-exponential!!
(since the input size is logN)

• Can Quantum Computer solve it efficiently??

Quantum Computer

• Qubits

• Qubit vs Classical Bit
A qubit has a few similarities to a classical bit, but is overall very
different. Like a bit, a qubit can have two possible values—normally a 0
or a 1. The difference is that whereas a bit must be either 0 or 1, a
qubit can be 0, 1, or a superposition of both.

Representation:
The two states in which a qubit may be measured are known as basis
states (or basis vectors). As is the tradition with any sort of quantum
states, they are represented by Dirac—or "bra–ket"—notation. This
means that the two computational basis states are conventionally
written as |0> and |1> (pronounced "ket 0" and "ket 1").

• A pure qubit state is a linear superposition of
the basis states. This means that the qubit can
be represented as a linear combinationof |0>
and |1> and :

– where α and β are probability amplitudes and can
in general both be complex numbers.

• Complex probability-amplitude and L-2 norm

Superposition

• Superposition is essentially the ability of a quantum
system to be in multiple states at the same time

• Due to superposition, a quantum computer can process
a vast number of calculations simultaneously
– we can store 10300 numbers on our 1,000 particles

simultaneously

• Then, by performing various operations on the particles
and on some auxiliary ones— perhaps hitting them
with a sequence of laser pulses or radio waves— we
can carry out an algorithm that transforms all 10300
numbers(each one a potential solution) at the same
time

• If at the end of doing that, we could read out the
particles’ final quantum state accurately, we really
would have a magic computer: it would be able to
check 10300 possible solutions to a problem, and at the
end we could quickly discern the right one

• Unfortunately, there is a catch. When the particles are
measured (as is necessary to read out their final state),
the rules of quantum mechanics dictate that the
measurement will pick out just one of the 10300
possibilities at random and that all the others will then
disappear. We would seem to be no better off than if
we used a classical computer and tried out one
randomly chosen possible solution—in either case, we
end up knowing about only one such possible solution.

Speedups in Quantum?

• Can’t pick a needle from the haystack
• [Grover] Blackbox Quantum Algorithm: Quadratic speed-up over a brute

force search
• the reason we get a quadratic speedup is that quantum mechanics is based

on the L2 norm rather than the L1 norm.
• Classically, if there are N solutions, only one of which is right, then after

one query we have a 1/N probability of having guessed the right solution,
after two queries we have a 2/N probability, after three queries a 3/N
probability, and so on. Thus we need ~N queries to have a non-negligible
(i.e. close to 1) probability of having guessed the right solution.

• But quantumly, we get to apply linear transformations to vectors
of amplitudes, which are the square roots of probabilities. So the way to
think about it is this: after one query we have a 1/√N amplitude of having
guessed the right solution, after two queries we have a 2/√N amplitude,
after three queries a 3/√N amplitude, and so on. So after T queries, the
amplitude of having guessed a right solution is T/√N, and the probability
is |T/√N|2 = T2/N. Hence the probability will be close to 1 after only T ≈ √N
queries.

Further speedup?

• Happily, we still have tricks we can play to wring some
advantage out of the quantum particles. Amplitudes can
cancel out when positive ones combine with negative ones,
a phenomenon called destructive interference. So a good
quantum computer algorithm would ensure that
computational paths leading to a wrong answer would
cancel out in this way. It would also ensure that the paths
leading to a correct answer would all have amplitudes with
the same sign— which yields constructive interference and
there-by boosts the probability of finding them when the
particles are measured at the end.

• For which computational problems can we choreograph this
sort of interference , using fewer steps than it would take to
solve the problem classically? – Factoring! [Peter Shor]

Shor’s Algorithm Idea

1. For a number N = pq, choose randomly a number x<N
s.t GCD(x,N) = 1

2. Find the period r of xa(mod N) on a Quantum
computer (using Quantum Fourier Transform)

• i.e. xr= 1 (mod N)
• (xr/2 – 1) (xr/2 + 1) = 1 (mod N)
3. GCD(xr/2 – 1,N) and GCD(xr/2 + 1, N) gives the desired

factor using Euclid’s algo
 Quantum computer is relevant only for step 2.

• Other steps efficiently computable for classical computers
too

For x∈R and a≥0, the value of xa (modn) can also
be determined in polynomial time and space using
repeated squaring technique.

 Euclid’s Algo computes GCD(a,b) in O(log(max{a,b}))

If q is a product of small prime factors, then Uq can be factored as a
product of a small number (polynomial in log(q)) of simpler unitary
transformations, each representing the action of a quantum gate acting on
only one or two qubits. (E.g. if q =2l then only l(l+1)/2 such gates are
necessary.)

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Shor’s algorithm

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Example

• We simulate a quantum computer attempting
to factor n= 55. This leads to q =213=8192.

• Let’s fix x= 13. (This happens to have order r=
20.)

• Prepare the computer in initial state

• Then apply the quantum gate

 to each of the qubits in the first register; this leaves the
computer in the state

• For example for q=22 we have

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

where all vectors have length q2 =16 and all matrices are 16×16.

For our example: after step 1

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

• Our example after Modular exponentiation

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

• For our example:-

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

For Our Example:

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

2 M

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

For Our Example:

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Continued Fractions
• A real number α can be approximated by a set

of positive integers a0,a1, ... , an as

Example:

For Our Example:

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

r has to be even –
else repeat !

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

• This succeeds in factoring n 25% of the time;
the remaining 75% of the time we obtain the
trivial factors 1 and n

Remarks:

• The factoring problem is neither known nor believed to be
NP-complete. To create his algorithm, Shor exploited certain
mathematical properties of composite numbers and their
factors that are particularly well suited to producing the kind
of constructive and destructive interference that a quantum
computer can thrive on. The NP-complete problems do not
seem to share those special properties.

• Only few other algo with exponential speedup

• Fro structurd problem and not structureless– for structure
less, brute force search- Quadratic Speedup

BQP

• Bounded-Error Quantum Polynomial-Time

• A language L is in BQP if and only if there
exists a polynomial-time uniform family of
quantum circuits ,such that

Relation to Classical Complexity
Classes

• BPP ⊆ BQP:
– any time you were gonna flip a coin, you just apply a Hadamard gate

instead

• BQP ⊆ EXP:
– quantum computers can provide at most an exponential advantage over

classical computers.
– because if you allow exponential slowdown, then a classical computer

can just simulate the whole evolution of the state vector!

• BQP ⊆ PSPACE (Bernstein and Vazirani)
• BQP ⊆ PP (Adleman, DeMarrais, and Huang)
• BPP ≠ BQP??

– whether quantum computing is more powerful than classical : Shor’s
Algorithm

• NP ⊄ BQP??
– Even if P=NP, then also NP ⊄ BQP??

Currently-known inclusions

References:

• Shor’s Algorithm or Factorizing Large Integers
G. Eric Moorhouse, UW Math

• Quantum Computing Since Democritus [Scott
Aaronson]

• http://en.wikipedia.org/wiki/Quantum_comp
uter

• http://www.scottaaronson.com/blog/?p=208

• https://uwaterloo.ca/institute-for-quantum-
computing/quantum-computing-101

http://en.wikipedia.org/wiki/Quantum_computer
http://en.wikipedia.org/wiki/Quantum_computer
http://www.scottaaronson.com/blog/?p=208

EXTRA SLIDES

Sub-Exponential

• A problem is said to be sub-exponential time
solvable if it can be solved in running times
whose logarithms grow smaller than any given
polynomial.

• i.e. a problem is in sub-exponential time if for
every ε > 0 there exists an algorithm which solves
the problem in time O(2n^ε). The set of all such
problems is the complexity class SUBEXP which
can be defined in terms of DTIME as follows.

What is required to build a quantum
computer?

 • Simply put: we need qubits that behave the way we want them to. These
qubits could be made of photons, atoms, electrons, molecules or perhaps
something else. Scientists at IQC are researching a large array of them as
potential bases for quantum computers. But qubits are notoriously tricky
to manipulate, since any disturbance causes them to fall out of their
quantum state (or “decohere”). Decoherence is the Achilles heel of
quantum computing, but it is not insurmountable. The field of quantum
error correction examines how to stave off decoherence and combat other
errors. Every day, researchers at IQC and around the world are discovering
new ways to make qubits cooperate.

• decoherence (unwanted interaction between a quantum computer and
its environment, which introduces errors). In particular, the bounds on
what it is mathematically possible to program a computer to do would
apply even if physicists managed to build a quantum computer with no
decoherence at all

https://uwaterloo.ca/institute-for-quantum-computing/quantum-computing-101

So when will there be a real quantum
computer?

• It depends on your definition. There are quantum

computers already, but not of sufficient power to replace
classical computers. A team of researchers from IQC and
MIT hold the current world record for the most number of
qubits used in an experiment . While practical quantum
technologies are already emerging — including highly
effective sensors, actuators and other devices — a true
quantum computer that outperforms a classical computer
is still years away. Theorists are continually figuring out
better ways to overcome decoherence, while
experimentalists are gaining more and more control over
the quantum world through various technologies and
instruments. The pioneering work being done today is
paving the way for the coming quantum era.

https://uwaterloo.ca/institute-for-quantum-computing/quantum-computing-101

