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Factoring Problem 

• Problem: Given a large integer N (typically 
several hundred digits long), factorize n as a 
product of primes. 

• We will assume that N = pq where p and q are 
large unknown primes. We must determine p 
and q 

• Best known algo on a classical computer:  

Sub-exponential!! 
(since the input size is logN) 



• Can Quantum Computer solve it efficiently?? 



Quantum Computer 

• Qubits 
 

• Qubit vs Classical Bit 
A qubit has a few similarities to a classical bit, but is overall very 
different. Like a bit, a qubit can have two possible values—normally a 0 
or a 1. The difference is that whereas a bit must be either 0 or 1, a 
qubit can be 0, 1, or a superposition of both. 
 
Representation: 
The two states in which a qubit may be measured are known as basis 
states (or basis vectors). As is the tradition with any sort of quantum 
states, they are represented by Dirac—or "bra–ket"—notation. This 
means that the two computational basis states are conventionally 
written as  |0> and |1>   (pronounced "ket 0" and "ket 1"). 



• A pure qubit state is a linear superposition of 
the basis states. This means that the qubit can 
be represented as a linear combinationof |0> 
and |1> and  : 

 

– where α and β are probability amplitudes and can 
in general both be complex numbers. 

• Complex probability-amplitude and L-2 norm 

 



Superposition 

• Superposition is essentially the ability of a quantum 
system to be in multiple states at the same time 

• Due to superposition, a quantum computer can process 
a vast number of calculations simultaneously 
– we can store 10300 numbers on our 1,000 particles 

simultaneously 

• Then, by performing various operations on the particles 
and on some auxiliary ones— perhaps hitting them 
with a sequence of laser pulses or radio waves— we 
can carry out an algorithm that transforms all 10300 
numbers(each one a potential solution) at the same 
time 



• If at the end of doing that, we could read out the 
particles’ final quantum state accurately, we really 
would have a magic computer: it would be able to 
check 10300 possible solutions to a problem, and at the 
end we could quickly discern the right one 

 

• Unfortunately, there is a catch. When the particles are 
measured (as is necessary to read out their final state), 
the rules of quantum mechanics dictate that the 
measurement will pick out just one of the 10300 
possibilities at random and that  all the others will then 
disappear. We would seem to be no better off than if 
we used a classical computer and tried out one 
randomly chosen possible solution—in either case, we 
end up knowing about only one such possible solution.  

 

 



Speedups in Quantum? 

• Can’t pick a needle from the haystack 
• [Grover] Blackbox Quantum Algorithm: Quadratic speed-up over a brute 

force search 
• the reason we get a quadratic speedup is that quantum mechanics is based 

on the L2 norm rather than the L1 norm. 
•  Classically, if there are N solutions, only one of which is right, then after 

one query we have a 1/N probability of having guessed the right solution, 
after two queries we have a 2/N probability, after three queries a 3/N 
probability, and so on. Thus we need ~N queries to have a non-negligible 
(i.e. close to 1) probability of having guessed the right solution.  

• But quantumly, we get to apply linear transformations to vectors 
of amplitudes, which are the square roots of probabilities. So the way to 
think about it is this: after one query we have a 1/√N amplitude of having 
guessed the right solution, after two queries we have a 2/√N amplitude, 
after three queries a 3/√N amplitude, and so on. So after T queries, the 
amplitude of having guessed a right solution is T/√N, and the probability 
is |T/√N|2 = T2/N. Hence the probability will be close to 1 after only T ≈ √N 
queries. 
 



Further speedup? 
 

• Happily, we still have tricks we can play to wring some 
advantage out of the quantum particles. Amplitudes can 
cancel out when positive ones combine with negative ones, 
a phenomenon called destructive interference. So a good 
quantum computer algorithm would ensure that 
computational paths leading to a wrong answer would 
cancel out in this way. It would also ensure that the paths 
leading to a correct answer would all have amplitudes with 
the same sign— which yields constructive interference and 
there-by boosts the probability of finding them when the 
particles are measured at the end. 
 

• For which computational problems can we choreograph this 
sort of interference , using fewer steps than it would take to 
solve the problem classically? – Factoring! [Peter Shor] 



Shor’s Algorithm Idea 

1. For a number N = pq, choose randomly a number x<N 
s.t GCD(x,N) = 1 

2. Find the period r of xa(mod N) on a Quantum 
computer (using Quantum Fourier Transform) 

• i.e. xr= 1 (mod N)  
• (xr/2 – 1) (xr/2 + 1) = 1 (mod N)  
3. GCD(xr/2 – 1,N) and GCD(xr/2 + 1, N) gives the desired 

factor using Euclid’s algo 
  Quantum computer is relevant only for step 2. 

• Other steps efficiently computable for classical computers 
too 



For x∈R and a≥0, the value of xa (modn) can also 
be determined in polynomial time and space using 
repeated squaring technique. 

 

 Euclid’s Algo computes GCD(a,b) in O(log(max{a,b})) 



If q is a product of small prime factors, then Uq can be factored as a 
product of a small number (polynomial in log(q)) of simpler unitary 
transformations, each representing the action of a quantum gate acting on 
only one or two qubits. (E.g. if q =2l then only l(l+1)/2 such gates are 
necessary.) 
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Shor’s algorithm 
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Example 

• We simulate a quantum computer attempting 
to factor n= 55. This leads to q =213=8192.  

• Let’s fix x= 13. (This happens to have order r= 
20.) 

 



• Prepare the computer in initial state 

• Then apply the quantum gate 

 

  to each of the qubits in the first register; this leaves the 
computer in the state 

 

• For example for q=22 we have  

Shor’s Algorithm  or Factorizing Large Integers G. Eric Moorhouse, UW Math 



where all vectors have length q2 =16 and all matrices are 16×16. 

For our example: after step 1 
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• Our example after Modular exponentiation 
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• For our example:-  
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For Our Example: 
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2 M 
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For Our Example:  

Shor’s Algorithm  or Factorizing Large Integers G. Eric Moorhouse, UW Math 



Shor’s Algorithm  or Factorizing Large Integers G. Eric Moorhouse, UW Math 



Continued Fractions 
• A real number α can be approximated by a set 

of positive integers a0,a1, ... , an as 

 

Example: 



For Our Example: 
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r has to be even – 
else repeat ! 
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• This succeeds in factoring n 25% of the time; 
the remaining 75% of the time we obtain the 
trivial factors 1 and n 



Remarks: 

• The factoring problem is neither known nor believed to be 
NP-complete. To create his algorithm, Shor exploited certain 
mathematical properties of composite numbers and their 
factors that are particularly well suited to producing the kind 
of constructive and destructive interference that a quantum 
computer can thrive on. The NP-complete problems do not 
seem to share those special properties. 
 

• Only few other algo with exponential speedup 
 
 

• Fro structurd problem and not structureless– for structure 
less, brute force search- Quadratic Speedup 



BQP 

• Bounded-Error Quantum Polynomial-Time 

• A language L is in BQP if and only if there 
exists a polynomial-time uniform family of 
quantum circuits                 ,such that 



Relation to Classical Complexity 
Classes 

• BPP ⊆ BQP: 
– any time you were gonna flip a coin, you just apply a Hadamard gate 

instead 

• BQP ⊆ EXP: 
– quantum computers can provide at most an exponential advantage over 

classical computers. 
– because if you allow exponential slowdown, then a classical computer 

can just simulate the whole evolution of the state vector! 

• BQP ⊆ PSPACE (Bernstein and Vazirani) 
• BQP ⊆ PP (Adleman, DeMarrais, and Huang) 
• BPP ≠ BQP?? 

– whether quantum computing is more powerful than classical : Shor’s 
Algorithm 

• NP ⊄ BQP?? 
– Even if P=NP, then also NP ⊄ BQP?? 



Currently-known inclusions 
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EXTRA SLIDES 



Sub-Exponential 

• A problem is said to be sub-exponential time 
solvable if it can be solved in running times 
whose logarithms grow smaller than any given 
polynomial.  

• i.e. a problem is in sub-exponential time if for 
every ε > 0 there exists an algorithm which solves 
the problem in time O(2n^ε). The set of all such 
problems is the complexity class SUBEXP which 
can be defined in terms of DTIME as follows. 

 



What is required to build a quantum 
computer? 

 • Simply put: we need qubits that behave the way we want them to. These 
qubits could be made of photons, atoms, electrons, molecules or perhaps 
something else. Scientists at IQC are researching a large array of them as 
potential bases for quantum computers. But qubits are notoriously tricky 
to manipulate, since any disturbance causes them to fall out of their 
quantum state (or “decohere”). Decoherence is the Achilles heel of 
quantum computing, but it is not insurmountable. The field of quantum 
error correction examines how to stave off decoherence and combat other 
errors. Every day, researchers at IQC and around the world are discovering 
new ways to make qubits cooperate. 
 

• decoherence (unwanted interaction between a  quantum computer and 
its environment, which introduces errors). In particular, the bounds on 
what it is mathematically possible to program a computer to do would 
apply even if physicists  managed to build a quantum computer with no 
decoherence at all 
 

https://uwaterloo.ca/institute-for-quantum-computing/quantum-computing-101 



So when will there be a real quantum 
computer? 

 
• It depends on your definition. There are quantum 

computers already, but not of sufficient power to replace 
classical computers. A team of researchers from IQC and 
MIT hold the current world record for the most number of 
qubits used in an experiment . While practical quantum 
technologies are already emerging — including highly 
effective sensors, actuators and other devices — a true 
quantum computer that outperforms a classical computer 
is still years away. Theorists are continually figuring out 
better ways to overcome decoherence, while 
experimentalists are gaining more and more control over 
the quantum world through various technologies and 
instruments. The pioneering work being done today is 
paving the way for the coming quantum era. 
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