Shor’s Factoring Algorithm

Anurag Pandey

Factoring Problem

* Problem: Given a large integer N (typically
several hundred digits long), factorize n as a
product of primes.

 We will assume that N = pg where p and g are
large unknown primes. We must determine p

and g
* Best known algo on a classical computer:
O (cexp |12 N)™? (1g1g N)*/? |)

Sub-exponentialll
(since the input size is logN)

 Can Quantum Computer solve it efficiently??

Quantum Computer

e Qubits

 Qubit vs Classical Bit

A qubit has a few similarities to a classical bit, but is overall very
different. Like a bit, a qubit can have two possible values—normally a O
or a 1. The difference is that whereas a bit must be either O or 1, a
qgubit can be 0, 1, or a superposition of both.

Representation:

The two states in which a qubit may be measured are known as basis
states (or basis vectors). As is the tradition with any sort of quantum
states, they are represented by Dirac—or "bra—ket"—notation. This
means that the two computational basis states are conventionally
written as |0>and |1> (pronounced "ket 0" and "ket 1").

* A pure qubit state is a linear superposition of
the basis states. This means that the qubit can
be represented as a linear combinationof | 0>
and |1>and :

[} = «|0) + 3|1),
— where a and 6 are probability amplitudes and can
in general both be complex numbers.

 Complex probability-amplitude and L-2 norm

' [
Xl =) k. xi= | Sl
r=| \‘ k=1

Superposition

e Superposition is essentially the ability of a quantum
system to be in multiple states at the same time

* Due to superposition, a quantum computer can process
a vast number of calculations simultaneously

— we can store 103% numbers on our 1,000 particles
simultaneously

* Then, by performing various operations on the particles
and on some auxiliary ones— perhaps hitting them
with a sequence of laser pulses or radio waves— we
can carry out an algorithm that transforms all 103%
numbers(each one a potential solution) at the same
time

* |f at the end of doing that, we could read out the
particles’ final quantum state accurately, we really
would have a magic computer: it would be able to
check 103% possible solutions to a problem, and at the
end we could quickly discern the right one

* Unfortunately, thereis a catch. When the particles are
measured (as is necessary to read out their final state),
the rules of quantum mechanics dictate that the
measurement will pick out just one of the 103%
possibilities at random and that all the others will then
disappear. We would seem to be no better off than if
we used a classical computer and tried out one
randomly chosen possible solution—in either case, we
end up knowing about only one such possible solution.

Speedups in Quantum?

Can’t pick a needle from the haystack

[Grover] Blackbox Quantum Algorithm: Quadratic speed-up over a brute
force search

the reason we get a quadratic speedup is that quantum mechanics is based
on the L, norm rather than the L, norm.

Classically, if there are N solutions, only one of which is right, then after
one query we have a 1/N probability of having guessed the right solution,
after two queries we have a 2/N probability, after three queries a 3/N
probability, and so on. Thus we need ~N queries to have a non-negligible
(i.e. close to 1) probability of having guessed the right solution.

But quantumly, we get to apply linear transformations to vectors

of amplitudes, which are the square roots of probabilities. So the way to
think about it is this: after one query we have a 1/VN amplitude of having
guessed the right solution, after two queries we have a 2/VN amplitude,
after three queries a 3/VN amplitude, and so on. So after T queries, the
amplitude of having guessed a right solution is T/VN, and the probability
is |T/VN|2 = T?/N. Hence the probability will be close to 1 after only T = VN
queries.

Further speedup?

* Happily, we still have tricks we can play to wring some
advantage out of the quantum particles. Amplitudes can
cancel out when positive ones combine with negative ones,
a phenomenon called destructive interference. So a good
guantum computer algorithm would ensure that
computational paths leading to a wrong answer would
cancel out in this way. It would also ensure that the paths
leading to a correct answer would all have amplitudes with
the same sign— which yields constructive interference and
there-by boosts the probability of finding them when the
particles are measured at the end.

* For which computational problems can we choreograph this
sort of interference , using fewer steps than it would take to
solve the problem classically? — Factoring! [Peter Shor]

Shor’s Algorithm Idea

1. Foranumber N = pqg, choose randomly a number x<N
s.t GCD(x,N) =1

2. Find the period r of x3(mod N) on a Quantum
computer (using Quantum Fourier Transform)

e j.e.x=1(mod N)

¢ (x72—=1) (x72+1)=1 (mod N)

3. GCD(x72—1,N) and GCD(x72+ 1, N) gives the desired
factor using Euclid’s algo

J Quantum computer is relevant only for step 2.

e Other steps efficiently computable for classical computers
too

JFor x€R and a0, the value of x2 (modn) can also
be determined in polynomial time and space using
repeated squaring technique.

Example: To compute 2183 mod n, first write
183 in binary as 10110111. Then

183=$128 32,116,421

xXr r I I r T

where the powers z2,z% 28, ... are found by

successively squaring mod n, then multiplied
together (mod n) two at a time only. This
way if n has 100 digits, say, then intermediate
computations have at most 200 digits.

=314 _ 323422421 __ 323392 901 _ (32)%)2.(32)2.32

 Euclid’s Algo computes GCD(a,b) in O(log(max{a,b}))

Discrete Fourier Transform

The Discrete Fourier Transform of order q is

the unitary matrix U =00 =1
/11 1 1
1 ¢ 2 . ¢a—1
1|1 <2 ¢4 oo (20D
Ug = % 1 C3 C6 .. C3(q—1)
\1 ol 2D L a-1)?)

where ¢ = e27/4.

If g is a product of small prime factors, then Uqg can be factored as a
product of a small number (polynomialin log(q)) of simpler unitary
transformations, each representing the action of a quantum gate acting on
only one or two qubits. (E.g. if g =2! then only I(I+1)/2 such gates are
necessary.)

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Shor’s algorithm

Given n, find 2n? < g < 3n? such that ¢ is a

product of small prime factors. We'll suppose
__ ~f

q = 2*.

Construct a quantum computer with g2 = 22¢
qubits (plus additional qubits for ‘workspace’).
T he base states are denoted

la,b) = |a)|b)

where a, b are binary vectors (i.e. vectors with
entries 0,1) of length £. Equivalently, a and
b (called registers 1 and 2) are integers < g
written in binary.

At any time, the state of the system is given

by —1g-1
) = Z > capla.b)
a=0 =0
where

2
Ca.b € C, Z |Ca,b| —
a.b

and |«~:ﬂ.ﬁ,1_,|2 is the probability that a measure-
ment of the system will find the state to be
la, b).

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Example

 We simulate a qguantum computer attempting
to factor n=55. This leads to q =213=8192.

e Let’s fix x=13. (This happens to have order r=
20.)

Step 1: Initial state.

* Prepare the computerin initial state 1¥) =10, 0).

 Then apply the quantum gate po L (1 1)
A\ -1
to each of the £ qubits in the first register; this leaves the

computerin the state 1 a1
[y = — 1) |0).
|4) \/EED |a)|0)

* Forexample for g=22 we have

Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

Nl

(applies R to aqg) 1
2

X
o 0000+ |

M=

O OORFFF

(applies R to aq)

= = (/00,00) +[10,00)
+101,00) + |11,00))

where all vectors have length g2 =16 and all matrices are 16x16.

For our example' afterstep 1

|O 0)+1[1,0) +

2,0) +

+(8191,0))

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Step 2: Apply modular exponentiation.

Fix a randomly chosen = between 1 and n.

Apply the reversible transformation

la,0) — |a,z" mod n)

to the state of the quantum computer. This
transforms the state |¢) from

— Z |a)|0)

9 4=0
to

7—az_:0 la)|z® mod n).

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

* Our example after Modular exponentiation

) = 755 (10,1) +1,13) + 2,132 mod 55)
+ -4 8191,138191 mod 55))

\/8192 (

0,1)

1,13)

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse,

2,4)

+ 18191, 2))

UW Math

Step 3: Observe register 2.

Measure the second register only. We observe
the second register to be in a base state |k)
where k is some power of x mod n (and all
powers of mod n are equally likely to be
observed).

T his measurement projects the state |¢) € ca’
into the g-dimensional subspace spanned by all
base states |a, k) for the fixed k whose value
we have observed.

T hus the new state is
1
V) = —=—= D _ la, k)
M ac.A

where A is the set of all a < g such that
x® mod n is k and M = |A|. That is,

A= '{{I-.D, tlD—l—'?“; EID_I_QT: <.y HD+(ﬂI_1)T}
where M = % > 1. Thus

M—-1

1
1Y) = VT > lag+dr, k).

+ d=0 , . o .
Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

* For our example:-

All ten powers of x mod 55 are equally likely

to be observed. Suppose we observe 28 as a
power of x mod 55.

) =

(19,28) + [29,28) + |49, 28) + ;
+ |8189,28>)

\/410

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Step 4: Discrete Fourier Transform of
register 1.

Apply the Discrete Fourier Transform U, to
the first register. This transforms the state

from
1 M-1
ag-+dr, k
I 2, AR
to
1 1 M-1 o el
) = T Z Z exp(2midteatdr)y e i)

q—1 2micag/q M—1

:(:;OW > exp(2mi%)|c, k)

d=0

‘72:1 e2micap/q (\IZI)
— C IC k
c=0 V¥ d=0

where ¢ = e2micr/q,
) Shor’s Algorithm or Factorizing Large Integers G. Eric Moorhouse, UW Math

For Our Example:

8191 8271'@'-9(::/8192 409

)= D > ¢ le,28)

=, /3358720 \ =

where ¢ = 2m1:20c¢/8192

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Step 5: Measure register 1.

Measure register 1. We observe register 1 to
be in state |¢) with probability

1.4"12

ZC

d=0

Pr(c) =

2wt
where (= e 9.

If % is not very close to an integer, then pow-
ers of ¢ very nearly cancel out (‘destructive in-
terference') and such states |¢) are extremely
unlikely to be observed. Note that

Is small in thIS case.

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

But if

& == d
q
where d is an integer, then (= 1 and
M?
Pr(c) =~ 1VI
gM ¢

iIs much larger. Thus the observed probability
distribution of ¢ is concentrated around values

such that

q
where d is an integer.

gl
o

c d
-

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

For Our Example:

The probability of observing register 1 to be
in state |c) is

2
1 409

Pr(c) = a
") = 3358720 EOC

Let's say we observe register 1 to be in state
|4915). (This happens with probability 4.4%.)

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Step 6: Continued Fraction Convergents

For the observed value of ¢, we use a classical
computer to find fractions d/r very close to
c/q, hoping that this will give us the true order
r of x mod n.

For this we use the method of continued frac-
tions, computing the convergents dq/rq to ¢/q
for which the denominator » << n. Noting that
all the fractions

dq 2dq 3dq

rqy 2r7 3r1
are close to ¢/q, it is reasnoable to try small
multiples of rq{ as possible values of . Odlyzko

(1996) suggests trying

1, 271, 371,..., L|DQ(H)I+EJT"1

as possible values for r, checking whether " mod n
gi‘u"ES 1 in each case, and remaating the exper-
iment as often as necessary (O(l) times on
average, compared with O(loglogn) trials on
average if multiples of r1 are not CDﬂSidEFEd).
Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Continued Fractions

 Areal number a can be approximated by a set
of positive integers ag,a,, ..., a, as

_ 1 _ B .
Ch(a)=ap+ aj+———— Yo’ where F, and Q, are integers.
ay T —]—

Exa m p | e: If we decided to approximate & to four decimal places, we would have

3.1415...
1415

* 7 10000

1

10000
1415

1

3

3+

= 3+ 7%

T+ a3
1

T+ o
oI
1

T+
1
T+ 3

14+ 5

For Our Example:

c 4915 1
g 8192 1+ L
1+—=1—
2+m
Convergents:
1
— =1
1
11
==
1+1 2
1 3
1+-L+ 5
1+5
1 4915
14+ —L1 8192
T
1633

We stop before the denominator exceeds n =
55:

’i‘"1=5

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

Possible values for » are multiples of r{ = 5:

a | 13 mod 55
5 43
10 34
15 32
20 1
r hasto be even —
Evidently r = 20. Now else repeat !

y = 1319 mod 55 = 34

and the factors of n = 55 are

p =9cd(y + 1,n) = gcd(35,55) = 5;
g = gcd(y — 1,n) = gcd(33,55) = 11.

Shor’s Algorithm orFactorizing Large Integers G. Eric Moorhouse, UW Math

e This succeeds in factoring n 25% of the time;
the remaining 75% of the time we obtain the
trivial factors 1 and n

Remarks:

* The factoring problem is neither known nor believed to be
NP-complete. To create his algorithm, Shor exploited certain
mathematical properties of composite numbers and their
factors that are particularly well suited to producing the kind
of constructive and destructive interference that a quantum
computer can thrive on. The NP-complete problems do not
seem to share those special properties.

* Only few other algo with exponential speedup

* Fro structurd problem and not structureless— for structure
less, brute force search- Quadratic Speedup

BQP

 Bounded-Error Quantum Polynomial-Time

 Alanguagel isin BQP if and only if there
exists a polynomial-time uniform family of
quantum circuits {@.:n<N} ,such that

e Forallp € [N, Q,takes n qubits as mput and outputs 1 bit

« ForallxinL, Pr(Qz(x) = 1) > ¢
e Forallxnotin L, Pr(Q,(x) =0

|.Il'll,r|.h.-'||!'-.'

9
3

E

Relation to Classical Complexity

Classes
BPP C BQP:
— any time you were gonna flip a coin, you just apply a Hadamard gate
instead
BQP < EXP:

— quantum computers can provide at most an exponential advantage over
classical computers.

— because if you allow exponential slowdown, then a classical computer
can just simulate the whole evolution of the state vector!

BQP < PSPACE (Bernstein and Vazirani)
BQP < PP (Adleman, DeMarrais, and Huang)
BPP = BQP??

— whether guantum computing is more powerful than classical : Shor’s
Algorithm

NP & BQP??
— Even if P=NP, then also NP ¢« BQP??

Currently-known inclusions

PSPACE

PP

7\

BQP NP

\
BPP

N\
»

References:

Shor’s Algorithm or Factorizing Large Integers
G. Eric Moorhouse, UW Math

Quantum Computing Since Democritus [Scott
Aaronson]

http://en.wikipedia.org/wiki/Quantum comp
uter

http://www.scottaaronson.com/blog/?p=208

https://uwaterloo.ca/institute-for-quantum-
computing/quantum-computing-101

http://en.wikipedia.org/wiki/Quantum_computer
http://en.wikipedia.org/wiki/Quantum_computer
http://www.scottaaronson.com/blog/?p=208

EXTRA SLIDES

Sub-Exponential

* A problem is said to be sub-exponential time
solvable if it can be solved in running times
whose logarithms grow smaller than any given
polynomial.

* j.e. a problem is in sub-exponential time if for
every € > 0 there exists an algorithm which solves
the problem in time O(2""¢). The set of all such
problems is the complexity class SUBEXP which
can be defined in terms of DTIME as follows.

SUBEXP =] DTIME (2"
Lh

What is required to build a quantum
computer?

* Simply put: we need qubits that behave the way we want them to. These
qubits could be made of photons, atoms, electrons, molecules or perhaps
something else. Scientists at IQC are researching a large array of them as
potential bases for quantum computers. But qubits are notoriously tricky
to manipulate, since any disturbance causes them to fall out of their
guantum state (or “decohere”). Decoherence is the Achilles heel of
guantum computing, but it is not insurmountable. The field of quantum
error correction examines how to stave off decoherence and combat other
errors. Every day, researchers at IQC and around the world are discovering
new ways to make qubits cooperate.

e decoherence (unwanted interaction between a quantum computer and
its environment, which introduces errors). In particular, the bounds on
what it is mathematically possible to program a computer to do would
apply even if physicists managed to build a quantum computer with no
decoherence at all

https://uwaterloo.ca/institute-for-quantum-computing /quantum-computing-101

So when will there be a real quantum
computer?

* |t depends on your definition. There are quantum
computers already, but not of sufficient power to replace
classical computers. A team of researchers from IQC and
MIT hold the current world record for the most number of
qubits used in an experiment . While practical quantum
technologies are already emerging — including highly
effective sensors, actuators and other devices — a true
guantum computer that outperforms a classical computer
is still years away. Theorists are continually figuring out
better ways to overcome decoherence, while
experimentalists are gaining more and more control over
the quantum world through various technologies and
instruments. The pioneering work being done today is
paving the way for the coming quantum era.

https://uwaterloo.ca/institute-for-quantum-computing /quantum-computing-101

