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Definitions

Definition 1: (Boolean circuits)[ASB]

For every n ∈ N, an n-input single output Boolean circuit is a directed
acyclic graph with n sources (vertices with no incoming edges) and one
sink (vertex with no outgoing edges). All non-source vertices are called
gates and are labeled with one of OR, AND, and NOT. The size of C ,
denoted by |C |, is the number of vertices in it.

If C is a Boolean circuit, and x ∈ {0, 1} is some input, then the output of
C on x , denoted by C (x), is defined in the natural way. More formally, for
every vertex v of C we give it a value val(v) as follows: if v is the i th

input vertex then val(v) = xi and otherwise val(v) is defined recursively
by applying v ’s logical operation on the values of the vertices connected to
v . The output C (x) is the value of the output vertex.
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Definitions

Definition 2: (Circuit families and language recognition)[ASB]

Let T : N → N be a function. A T (n)-size circuit family is a sequence
{Cn } n ∈ N of Boolean circuits, where Cn has n inputs and a single
output, and its size |Cn| ≤ T (n) for every n.

We say that a language L is in SIZE(T (n)) if there exists a T (n)-size
circuit family {Cn } n ∈ N such that for every x ∈ {0, 1}n ,
x ∈ L⇔ Cn(x) = 1.
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Definitions

Definition 3: (Class AC0)

Class of all decision problems that are decided by circuit families of :

polynomial size,

constant depth,

unbounded fan-in
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Definitions

Definition 4: (k-CNF)

A boolean formula that is an AND of OR’s where each OR involves at
most k variables.

Definition 5: (k-DNF)

A boolean formula that is an OR of AND’s where each AND involves at
most k variables.
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Definitions

Definition 6: (Random Restriction)

Let f is a function on n variables. A random resrtiction ρ is a partial
assignment that assigns random values to t < n randomly selected
variables of f . We denote the random restriction of f under ρ by f |ρ.
That is, f |ρ takes an assignment τ to the variables not assigned by ρ as
input, and outputs f applied to ρ and τ .
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Theorem

Theorem 1([FSS81, Ajt83])

Let PARITY = {x ∈ {0, 1}n : x has odd number of 1’s}.
Then PARITY /∈ AC 0.
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PARITY /∈ AC 0

Proof Sketch [ASB]

The main tool in the proof of Theorem 1 is the concept of random
restrictions. Let f be a function computable by a depth d circuit of
polynomial size and suppose that we choose at random a vast majority
(i.e., n nε for some constant ε > 0 depending on d) of the input variables
and fix each such variable to be either 0 or 1 at random. By Hastad’s
switching lemma, it is clear that with positive probability, the function f
subject to this restriction is constant (i.e., it is either always zero or always
one). Since the parity function cannot be made a constant by fixing values
to a subset of the variables, it follows that it cannot be computed by a
constant depth polynomial-sized circuit.
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Theorem

Theorem

Any AC 0 circuit of size S and depth d can be simplified so that:

1 All gates have fan-out 1; the circuit is a tree.

2 All not gates are at the input level of the circuit; that is, the circuit
has 2n input wires, where the extra n input wires are negations of
original n input wires.

3 At each level of the tree there are either only AND gates or only OR
gates. And no two consecutive levels have same type of gates.

4 The bottom level gates have fan-in 1.

Moreover the simplified circuit has size poly(S) and depth O(d).
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Proof:PARITY /∈ AC 0

Assume that PARITY ∈ AC 0.

Then by definition, ∃ an AC 0 circuit of depth d which decides
PARITY.

Simplify the circuit using previous theorem.

Let nb be the upper bound on the number of gates in the simplified
circuit.

At each step, with high probability we reduce the depth of the circuit
by 1 by randomly restricting some variables.

We do this untill the depth of circuit becomes 2.
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Proof:PARITY /∈ AC 0

Let ni denote the number of unrestricted variables after step i .

We restrict ni -
√
ni variables at step i+1.

Since n0 is n, we have ni = n
1

2i .

Let fan-in of bottom level after i th step be atmost ki .

Suppose that bottom level of circuit contains AND gates. Therefore
the level above it contains OR gates.

Observe that each OR gate computes a ki -DNF.

Apply switching lemma to the function computed by this gate.
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Switching Lemma: Statement [ASB]

If f is a function that is expressible as a k−DNF and ρ is a random
restriction that assigns random values to t randomly selected input bits,
then ∀s ≥ 2

Pr
ρ

[f |ρ is not expressible as s-CNF] ≤
(

(n − t)k10

n

)s/2

(1)

Note that by applying this lemma to ¬f we get the same result with the
terms DNF and CNF interchanged.
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Proof:PARITY /∈ AC 0

By switching lemma, with probability 1 -

(
k10
i

n
1

2i+1

) ki+1
2

, we can convert

this ki -DNF to ki+1-CNF.

We want this probability to be atleast 1- 1
10nb

for any step i and for
sufficiently large n.

Note that we are free to choose any ki ≥ 2.

So we choose ki = 10b2i .

SK Naseer (IIT Kanpur) PARITY /∈ AC0 April 7, 2014 14 / 20



Proof:PARITY /∈ AC 0

By switching lemma, with probability 1 -

(
k10
i

n
1

2i+1

) ki+1
2

, we can convert

this ki -DNF to ki+1-CNF.

We want this probability to be atleast 1- 1
10nb

for any step i and for
sufficiently large n.

Note that we are free to choose any ki ≥ 2.

So we choose ki = 10b2i .

SK Naseer (IIT Kanpur) PARITY /∈ AC0 April 7, 2014 14 / 20



Proof:PARITY /∈ AC 0

By switching lemma, with probability 1 -

(
k10
i

n
1

2i+1

) ki+1
2

, we can convert

this ki -DNF to ki+1-CNF.

We want this probability to be atleast 1- 1
10nb

for any step i and for
sufficiently large n.

Note that we are free to choose any ki ≥ 2.

So we choose ki = 10b2i .

SK Naseer (IIT Kanpur) PARITY /∈ AC0 April 7, 2014 14 / 20



Proof:PARITY /∈ AC 0

By switching lemma, with probability 1 -

(
k10
i

n
1

2i+1

) ki+1
2

, we can convert

this ki -DNF to ki+1-CNF.

We want this probability to be atleast 1- 1
10nb

for any step i and for
sufficiently large n.

Note that we are free to choose any ki ≥ 2.

So we choose ki = 10b2i .

SK Naseer (IIT Kanpur) PARITY /∈ AC0 April 7, 2014 14 / 20



Proof:PARITY /∈ AC 0

Figure: Circuit before Hastad switching transformation.[ASB]
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Proof:PARITY /∈ AC 0

The symmetric reasoning applies in the case the bottom level
contains OR gates. In this case we use the switching lemma to
transform the ki -CNF to ki+1-DNF.

Note that we apply the lemma atmost once on each gate. And there
are nb gates.

By union bound , with probability 9
10 , if we apply this reduction d − 2

times we get a circuit with depth 2.

But this is either a k-CNF or a k-DNF where k = kd−2.

We can make such a formula constant by fixing atmost k variables.

But the parity function can not be made constant under any
restriction of less than n inputs.

We get a contradiction. Therefore our assumption is wrong. Hence
PARITY /∈ AC 0.
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The End
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