Natural Proofs Barrier

CS640 Extra Talk By: Sakaar Khurana Instructor: Prof. Nitin Saxena

Topics Covered

- Basic introduction to Boolean Circuits
- ► Natural Proofs:
 - Why are circuit lower bounds so difficult? (Chapter 23, Computational Complexity: A Modern Approach)
 - Natural Proofs (Alexander A Razborov, Steven Rudich), 1994

Boolean Circuits and P_{/poly}

- Boolean circuit: An n input single output Boolean circuit is a directed acyclic graph where vertices are gates labelled with AND, OR or NOT. Size of a circuit denoted by |C| is the number of vertices in it.
- Circuit family: A T(n) size circuit family is a sequence $\{C_n\}_{n \in N}$ of Boolean circuits where C_n has n inputs and its size $C_n \leq T(n)$ for every n.
- Language recognition: We say that a language *L* is in SIZE(T(n)) if there exists a T(n)-size circuit family $\{C_n\}_{n \in N}$ such that for every $x \in \{0,1\}^n$, $x \in L \Leftrightarrow C_n(x) = 1$.
- $\mathbf{P}_{/poly}$ (decidable by polynomial circuit families) = $\bigcup_{c} SIZE(n^{c})$.

P_{/poly}, P and NP

- P_{/poly} is decided by a Turing machine which takes advice in polynomial time.
- ► $P \subseteq P_{/poly}$
- ▶ NP \nsubseteq P_{/poly} (conjectured) (if NP \subseteq P_{/poly} then PH = \sum_{2}^{p})
- Other circuit classes: NC, AC.

Circuit theory to solve P=NP - Motivation

- Why are problems like P=NP, P=PSPACE so difficult to solve? Known methods are inherently too weak to solve the problems such as P=NP.
- Baker, Gill, Solovay used oracle separation results for many major complexity classes to argue that relativizing proof techniques could not solve these problems.
- People then began to study these problems from the vantage of Boolean circuit complexity.
- New goal: A stronger non uniform version of P=NP, namely SAT does not have polynomial size circuits.
- Many proof techniques have been successfully applied to prove lower bounds in circuit complexity (all such known proofs are "natural").
- These techniques are not subject to relativization.
- ▶ There for every n>1 exists function $f: \{0,1\}^n \to \{0,1\}$ that cannot be by a circuit of size $\frac{2^n}{10n}$.

A General approach to solve P=NP

- Formulate some mathematical notion of a "property" of Boolean functions.
- Show that polynomial sized circuits cannot compute Boolean functions with the above "property"
- Show that SAT or some other NP-Complete problem satisfies the above "property" Formalizing:
- Let P be the property such that P(f) = 1 for a function f satisfying property P.
- ▶ The property *P* satisfies: $P(g) = 0 \forall g \in SIZE(n^c)$. (Such a property is called n^c -useful)
- Show that P(SAT) = 1.

This is the general framework that is used by any proof to prove some circuit lower bound.

We now define natural proofs.

Natural Proofs: definition

 \land NATURAL PROOF is a proof along the same lines (of previous slide) BUT with the property *P* satisfying following 2 conditions:

- **Constructiveness:** There is an $2^{o^{(n)}}$ time algorithm that on input the truth table of a function $g: \{0,1\}^n \rightarrow \{0,1\}$ outputs P(g). (Truth table has size 2^n so algorithm runs in time polynomial the input size.)
- Largeness: The probability that a random function $g: \{0,1\}^n \to \{0,1\}$ satisfies P(g) = 1 is at least $\frac{1}{n}$.

MAIN THEOREM

► If $2^{n^{\varepsilon}}$ hard one-way functions exist. Then there exists a constant $c \in N$ such that there is no n^{c} -useful property P.

So this proves that if the conjecture is true then there can be no natural proof for $NP \not\subseteq P_{poly}$.

Definition 9.4 (One way functions) A polynomial-time computable function $f : \{0,1\}^* \to \{0,1\}^*$ is a one-way function if for every probabilistic polynomial-time algorithm A there is a negligible function $\epsilon : \mathbb{N} \to [0,1]$ such that for every n,

$$\Pr_{\substack{x \in_{\mathbb{R}} \{0,1\}^n \\ y = f(x)}} [A(y) = x' \text{ s.t. } f(x') = y] < \epsilon(n) \,.$$

Conjecture 9.5 There exists a one-way function.

Complexity measure

- We formalize "complicatedness" of a Boolean function as a function μ that maps every Boolean function on $\{0,1\}^n$ to a non-negative integer.
- \blacktriangleright μ is a formal complexity measure if it satisfies:
 - ▶ $\mu(x_i) \leq 1$ and $\mu(\overline{x_i}) \leq 1$ (trivial functions)
 - $\blacktriangleright \ \mu(f \ AND \ g) \le \ \mu(f) + \mu(g) \ \forall \ f, g$
 - $\blacktriangleright \ \mu(f \ OR \ g) \le \mu(f) + \mu(g) \ \forall f, g$
- If μ is a formal complexity measure then $\mu(f)$ is a lower bound on the formula complexity of f.
- ▶ If $\mu(f) \ge S$ for some f, then for at least $\frac{1}{4}$ of all functions $g: \{0,1\}^n \to \{0,1\}$ we must have $\mu(g) \ge \frac{S}{4}$.

Proof: f = h XOR g where h = f XOR g, so $f = (\bar{h} AND g) OR (h AND \bar{g})$

▶ Generalization: If $\mu(f) \ge S$, then for all $\varepsilon > 0$, at least $1 - \varepsilon$ of all functions $g: \{0,1\}^n \to \{0,1\}$ we must have $\mu(g) \ge Omega(\frac{S}{(n+\log(\frac{1}{\varepsilon}))^2})$.

Largeness and Constructiveness

- ▶ Whenever size of a function $f: \{0,1\}^n \rightarrow \{0,1\}$ is at least *S*, then that also implies size of at least half of functions from $\{0,1\}^n \rightarrow \{0,1\}$ is greater than $\frac{S}{2}$ – 10. Hence, lower bound on complexity of one function implies lower bound on complexity of half of the functions. Hence it gives intuition that probability that any random function possesses property *P* is non negligible, and tells why *P* should satisfy largeness.
- Constructiveness: The intuition behind constructiveness is that the majority of properties of Boolean functions or n-vertex graphs are at worst exponential, and also we don't yet understand mathematics of P outside exponential time. So this notion tries to encapsulate as many properties within the notion of natural as possible that we are comfortable working with.

Proof of the main theorem

If $2^{n^{\varepsilon}}$ hard one-way functions exist. Then there exists a constant $c \in N$ such that there is no n^{c} -useful property P.

- Given a one way function that can't be inverted in $2^{n^{\varepsilon}}$, we can obtain a pseudo random function family $\{f_s\}_{s \in \{0,1\}^*}$ such that $f_s(.)$ for $s \in {}_r \{0,1\}^m$ cannot be distinguished from a random function from $\{0,1\}^m \rightarrow \{0,1\}$ by $2^{m^{\varepsilon'}}$ -time algorithm for some constant ε' with non-negligible probability. (Also, there is a polynomial time algorithm that given s, x outputs $f_s(x)$).
- Proof idea: Suppose *P* be a n^c useful natural property. We show that *P* can be used to distinguish between $f_s(.)$ for $s \in {}_r \{0,1\}^m$ and a random function from $\{0,1\}^m \to \{0,1\}$ by $2^{m^{\varepsilon'}}$ -time algorithm with non-negligible probability. Since $2^{n^{\varepsilon}}$ hard one-way functions are conjectured to exist therefore *P* does not exist.

Proof of the main theorem

PROOF:

- Suppose *P* be a *n^c* useful natural property
- > P can be thought of as an algorithm running in $2^{O^{(n)}}$ time that
 - ▶ Outputs 0 on functions with circuit complexity lesser than n^c.
 - Outputs 1 on non-negligible number of functions.
- Let distinguisher has access to an oracle function h (which can either be a random function or a random function from the pseudo random family)
- Now distinguisher runs algorithm *D* as follows:
 - Let $n = m^{\epsilon/2}$ then construct truth table for g from $\{0,1\}^n \to \{0,1\}$ defined as: $g(x) = h(x0^{m-n})$.
 - \triangleright D then runs P on this function g and outputs whatever P outputs.

Analyzing distinguisher

- ▶ If *h* was a random function then *g* is also a random function, therefore *P* and hence *D* outputs 1 with probability $\ge \frac{1}{n}$.
- If h was f_s for some s then function g has circuit complexity at most n^c since the map $s, x \to f_s(x)$ can be computed in poly(m) time and hence map $x \to g(x)$ is computable by a circuit of size $poly(m) = n^c$. Hence D always outputs 0 in this case.
- Hence the distinguisher distinguishes with probability at least $\frac{1}{n}$ and takes $2^{O(n)} < 2^{m^{\varepsilon}}$ time.
- Hence natural property P cannot exist.
- Hence proved!

Unnatural proofs - intuition

- Subject to truth of hard pseudo-random generator conjecture:
 - Any proof that some function does not have small circuits must seize on some very specialized property i.e. one shared by negligible fraction of functions.

OR

- The proof must define a very complicated property, one that is outside the bounds of most mathematical experience(not exponential).
- So the proof must be unnatural by violating either largeness or constructivity.

Parameterized natural proof

- Let S and T be complexity classes. Then we call a combinatorial property Tnatural if it is constructible in time T.
- ▶ Usefulness: For any Boolean function f such that P(f) = 1 then $f \notin S$.
- So, a lower bound proof that some explicit function is not in S is called Tnatural if it states a T-natural property P and is useful against S.

Circuit lower bounds for other classes

- Following the same lines of the main proof before it is clear that any complexity class that has plausible pseudo-random function generator can't be used to prove circuit lower bounds.
- Hence in the parameterized framework defined before, we can have a natural proof only if class S does not have a plausible pseudo-random function generator.
- Proving circuit lower bounds comes stops at AC.
- Almost all circuit bounds follow from natural proofs or are naturalizable.

THANK YOU ③