Complexity Models for Incremental Computation

Shahbaz Khan, PhD CSE

Paper by
Peter Bro Miltersen, Sairam Subramanian, Jeffery Scott Vitter and Roberto Tamassia

Outline

(1) Problem Description
(2) Preliminaries
(3) Complete Problems
(4) NRP Completeness
(5) Space bounded Computations

Computation Model

Motivation

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

- Given an instance / of a decision problem π.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

- Given an instance / of a decision problem π.
- We allow an algorithm to preprocess / to build D.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

- Given an instance / of a decision problem π.
- We allow an algorithm to preprocess I to build D.
- An update is in form of Δ bit flips of I.

Contents

Topics covered

Contents

Topics covered

- Define incremental complexity classes and reductions.

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.
- Problems hard to solve in small space are hard to dynamize.

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.
- Problems hard to solve in small space are hard to dynamize.
- Describe the complete problems for class P.

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.
- Problems hard to solve in small space are hard to dynamize.
- Describe the complete problems for class P.
- Problems solvable is small space have better dynamic solutions.

Outline

(1) Problem Description
(2) Preliminaries
(3) Complete Problems
(4) NRP Completeness
(5) Space bounded Computations

General Definitions

Basic Notation

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.
- Positive Instance $(\pi(I)=1)$ and Negative otherwise.

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.
- Positive Instance $(\pi(I)=1)$ and Negative otherwise.
- Update Δ changes current instance $/$ to I^{\prime}.

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.
- Positive Instance $(\pi(I)=1)$ and Negative otherwise.
- Update Δ changes current instance I to I^{\prime}.
- Size of instance $|I|=\left|I^{\prime}\right|=\left|I^{\circ}\right|=n$.

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.
- Positive Instance $(\pi(I)=1)$ and Negative otherwise.
- Update Δ changes current instance I to I^{\prime}.
- Size of instance $|I|=\left|I^{\prime}\right|=\left|I^{\circ}\right|=n$.
- Any algorithm \mathcal{A} has two stages: preprocess and update.

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.
- Positive Instance $(\pi(I)=1)$ and Negative otherwise.
- Update Δ changes current instance I to I^{\prime}.
- Size of instance $|I|=\left|I^{\prime}\right|=\left|I^{\circ}\right|=n$.
- Any algorithm \mathcal{A} has two stages: preprocess and update.
- We allow an algorithm to preprocess / to build D.

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.
- Positive Instance $(\pi(I)=1)$ and Negative otherwise.
- Update Δ changes current instance I to I^{\prime}.
- Size of instance $|I|=\left|I^{\prime}\right|=\left|I^{\circ}\right|=n$.
- Any algorithm \mathcal{A} has two stages: preprocess and update.
- We allow an algorithm to preprocess / to build D.
- \mathcal{A} preprocesses I° to form data structure D_{10}.

General Definitions

Basic Notation

- Given decision problem π with initial instance I°.
- Positive Instance $(\pi(I)=1)$ and Negative otherwise.
- Update Δ changes current instance I to I^{\prime}.
- Size of instance $|I|=\left|I^{\prime}\right|=\left|I^{\circ}\right|=n$.
- Any algorithm \mathcal{A} has two stages: preprocess and update.
- We allow an algorithm to preprocess $/$ to build D.
- \mathcal{A} preprocesses I° to form data structure D_{10}.
- \mathcal{A} processes Δ by reporting $\pi\left(I^{\prime}\right)$ and updating D_{I} to $D_{I^{\prime}}$.

General Definitions

Definition

incr-TIME[$f(n)$]:
(analogous to $\operatorname{DTIME}[f(n)])$
Decision problem π belongs to incr-TIME[$f(n)]$ if there exists RAM programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$

General Definitions

Definition

incr-TIME[$f(n)$]:
(analogous to DTIME $[f(n)]$)
Decision problem π belongs to incr-TIME[f(n)] if there exists RAM programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$

- P_{1} efficiently processes I°, where $\left|I^{\circ}\right|=n$ to compute D_{i} 。

General Definitions

Definition

incr-TIME[$f(n)$]:
(analogous to $\operatorname{DTIME}[f(n)])$
Decision problem π belongs to incr- $\operatorname{TIME}[f(n)]$ if there exists RAM programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$

- P_{1} efficiently processes I°, where $\left|I^{\circ}\right|=n$ to compute D_{i}.
- Given update Δ on I and current data structure D_{I} in RAM, P_{2} computes $\pi\left(I^{\prime}\right)$ and updates data structure D_{I} to $D_{I^{\prime}}$ in $O(|\Delta| f(n))$ time.

General Definitions

Definition

 incr-TIME[$f(n)$]:Decision problem π belongs to incr- $\operatorname{TIME}[f(n)]$ if there exists RAM programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$

- P_{1} efficiently processes I°, where $\left|I^{\circ}\right|=n$ to compute D_{i}.
- Given update Δ on I and current data structure D_{I} in RAM, P_{2} computes $\pi\left(I^{\prime}\right)$ and updates data structure D_{I} to $D_{I^{\prime}}$ in $O(|\Delta| f(n))$ time.

Basic Classes

$$
\begin{aligned}
& i n c r \text {-CONSTANT-TIME, incr-LOG-TIME } \\
& i n c r-\text { POLYLOGTIME }=\bigcup_{k \geq 0} i n c r-\text { TIME }\left[\log ^{k} n\right]
\end{aligned}
$$

General Definitions

Definition

incr-SPACE[$f(n)$]:
(analogous to DSPACE $[f(n)]$)
Decision problem π belongs to incr-SPACE $[f(n)]$ if there exists RAM programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$

General Definitions

Definition

incr-SPACE[$f(n)$]:
(analogous to DSPACE $[f(n)]$)
Decision problem π belongs to incr-SPACE $[f(n)]$ if there exists RAM programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$

- P_{1} efficiently processes I°, where $\left|I^{\circ}\right|=n$ to compute $D_{i o}$ 。

General Definitions

Definition

incr-SPACE[$f(n)$]:
(analogous to DSPACE[$f(n)]$) Decision problem π belongs to incr-SPACE $[f(n)]$ if there exists RAM programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$

- P_{1} efficiently processes I°, where $\left|I^{\circ}\right|=n$ to compute D_{i}.
- Given update Δ on I and current data structure D_{I} in read only RAM, P_{2} computes $\pi\left(I^{\prime}\right)$ and constructs data structure $D_{I^{\prime}}$ on write-only-memory using $O(|\Delta| f(n))$ work space.

General Definitions

Definition

incr-SPACE[$f(n)$]:

 programs P_{1} and P_{2} such that $\forall n \in \mathbb{N}$- P_{1} efficiently processes I°, where $\left|I^{\circ}\right|=n$ to compute D_{i} 。
- Given update Δ on I and current data structure D_{I} in read only RAM, P_{2} computes $\pi\left(I^{\prime}\right)$ and constructs data structure $D_{I^{\prime}}$ on write-only-memory using $O(|\Delta| f(n))$ work space.

Basic Classes

$$
\begin{aligned}
& \text { incr-LOGSPACE } \\
& i n c r-P O L Y L O G S P A C E ~=\bigcup_{k \geq 0} i n c r-S P A C E\left[\log ^{k} n\right]
\end{aligned}
$$

Incremental Reductions

Motivation

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_{1} is not significant, main focus on P_{2}.

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_{1} is not significant, main focus on P_{2}.
- Relative size of updates i.e. Δ_{1} and Δ_{2}.

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_{1} is not significant, main focus on P_{2}.
- Relative size of updates i.e. Δ_{1} and Δ_{2}.
- Relative size of mapping i.e. π_{1} and π_{2}.

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_{1} is not significant, main focus on P_{2}.
- Relative size of updates i.e. Δ_{1} and Δ_{2}.
- Relative size of mapping i.e. π_{1} and π_{2}.
- Represented as $\pi_{1} \leq_{i n c r[f(n), g(n), p(n)]} \pi_{2}$

Incremental Reducibility

Definition $\quad \pi_{1} \leq_{i n c r[f(n), g(n), p(n)]} \pi_{2}$

Decision problem π_{1} is incrementally reducible to π_{2} if there exist transformation T and RAM programs P and Q such that

Incremental Reducibility

Definition $\quad \pi_{1} \leq_{i n c r[f(n), g(n), p(n)]} \pi_{2}$

Decision problem π_{1} is incrementally reducible to π_{2} if there exist transformation T and RAM programs P and Q such that

- $T: \pi_{1} \rightarrow \pi_{2}$, where $\left|\pi_{2}\right|=p(n)$ and $\pi_{2}(T(I))=\pi_{1}(I)$.

Incremental Reducibility

Definition $\quad \pi_{1} \leq i n c r[f(n), g(n), p(n)] \pi_{2}$

Decision problem π_{1} is incrementally reducible to π_{2} if there exist transformation T and RAM programs P and Q such that

- $T: \pi_{1} \rightarrow \pi_{2}$, where $\left|\pi_{2}\right|=p(n)$ and $\pi_{2}(T(I))=\pi_{1}(I)$.
- Given $I^{\circ} \in \pi_{1}, P$ efficiently computes $T\left(I^{\circ}\right)$ and $S_{l o}$.

Incremental Reducibility

Definition $\quad \pi_{1} \leq i n c r[f(n), g(n), p(n)] \pi_{2}$

Decision problem π_{1} is incrementally reducible to π_{2} if there exist transformation T and RAM programs P and Q such that

- $T: \pi_{1} \rightarrow \pi_{2}$, where $\left|\pi_{2}\right|=p(n)$ and $\pi_{2}(T(I))=\pi_{1}(I)$.
- Given $I^{\circ} \in \pi_{1}, P$ efficiently computes $T\left(I^{\circ}\right)$ and S_{10}.
- Given update Δ_{1} on I with S_{I} in RAM, Q computes Δ_{2} on $T(I)$ such that $\left|\Delta_{2}\right| \leq g(n)\left|\Delta_{1}\right|$ and modifies data structure S_{I} to $S_{I^{\prime}}$ using $O(|\Delta| f(n))$ time.

Incremental Reducibility

Definition $\quad \pi_{1} \leq_{i n c r[f(n), g(n), p(n)]} \pi_{2}$

Decision problem π_{1} is incrementally reducible to π_{2} if there exist transformation T and RAM programs P and Q such that

- $T: \pi_{1} \rightarrow \pi_{2}$, where $\left|\pi_{2}\right|=p(n)$ and $\pi_{2}(T(I))=\pi_{1}(I)$.
- Given $I^{\circ} \in \pi_{1}, P$ efficiently computes $T\left(I^{\circ}\right)$ and S_{10}.
- Given update Δ_{1} on I with S_{I} in RAM, Q computes Δ_{2} on $T(I)$ such that $\left|\Delta_{2}\right| \leq g(n)\left|\Delta_{1}\right|$ and modifies data structure S_{I} to $S_{\prime \prime}$ using $O(|\Delta| f(n))$ time.

Theorem

If $\pi_{1} \leq_{\text {incr[} f(n), g(n), p(n)]} \pi_{2}$ and $\pi_{2} \in \operatorname{incr}-\operatorname{TIME}[h(n)]$ then $\pi_{1} \in$ incr- $\operatorname{TIME}[f(n)+g(n) \cdot h(p(n))]$.

Outline

(1) Problem Description

(2) Preliminaries
(3) Complete Problems
(4) NRP Completeness
(5) Space bounded Computations

Some Definitions and Theorems

Definition

Decision problem π is $\operatorname{incr}[f(n), g(n), p(n)]$-Complete for class C if

Some Definitions and Theorems

Definition

Decision problem π is $\operatorname{incr}[f(n), g(n), p(n)]$-Complete for class C if (1) $\pi \in C$.

Some Definitions and Theorems

Definition

Decision problem π is $\operatorname{incr}[f(n), g(n), p(n)]$-Complete for class C if
(1) $\pi \in C$.
(c) $\forall \pi_{1} \in C, \pi_{1} \leq i n c r[f(n), g(n), p(n)]$.

Some Definitions and Theorems

Definition

Decision problem π is $\operatorname{incr}[f(n), g(n), p(n)]$-Complete for class C if
(1) $\pi \in C$.
(2) $\forall \pi_{1} \in C, \pi_{1} \leq i n c r[f(n), g(n), p(n)]$.

Definition (incr-PLTC)

incr-POLYLOGTIME-Complete $=$ incr $\left[\log ^{k_{1}} n, \log ^{k_{2}}, n^{k_{3}}\right]$-Complete

Some Definitions and Theorems

Definition

Decision problem π is $\operatorname{incr}[f(n), g(n), p(n)]$-Complete for class C if
(1) $\pi \in C$.
(c) $\forall \pi_{1} \in C, \pi_{1} \leq i n c r[f(n), g(n), p(n)]$.

Definition (incr-PLTC)

 incr-POLYLOGTIME-Complete $=$ incr $\left[\log ^{k_{1}} n, \log ^{k_{2}}, n^{k_{3}}\right]$-Complete
Theorem

Some Definitions and Theorems

Definition

Decision problem π is $\operatorname{incr}[f(n), g(n), p(n)]$-Complete for class C if
(1) $\pi \in C$.
(2) $\forall \pi_{1} \in C, \pi_{1} \leq i n c r[f(n), g(n), p(n)]$.

Definition (incr-PLTC)

incr-POLYLOGTIME-Complete $=$ incr $\left[\log ^{k_{1}} n, \log ^{k_{2}}, n^{k_{3}}\right]$-Complete

Theorem

- General P-Complete problems are incr-PLTC for P.

Some Definitions and Theorems

Definition

Decision problem π is $\operatorname{incr}[f(n), g(n), p(n)]$-Complete for class C if
(1) $\pi \in C$.
(c) $\forall \pi_{1} \in C, \pi_{1} \leq i n c r[f(n), g(n), p(n)]$.

Definition (incr-PLTC)

incr-POLYLOGTIME-Complete $=$ incr $\left[\log ^{k_{1}} n, \log ^{k_{2}}, n^{k_{3}}\right]$-Complete

Theorem

- General P-Complete problems are incr-PLTC for P.
- There exist P-Complete problems in incr-POLYLOGTIME.

P-Completeness

Definition

P-Complete is a class complete for the class P , under two reductions

P-Completeness

Definition

P-Complete is a class complete for the class P , under two reductions

- Problems difficult to parallelize. P -Hard problems in P under NC reductions. $\mathrm{P}=\mathrm{NC}$?

P-Completeness

Definition

P-Complete is a class complete for the class P , under two reductions

- Problems difficult to parallelize.

P -Hard problems in P under NC reductions. $\mathrm{P}=\mathrm{NC}$?

- Problems difficult to solve in small space. P-Hard problems in P under L reductions. $P=L$?

P-Completeness

Definition

P-Complete is a class complete for the class P , under two reductions

- Problems difficult to parallelize.

P -Hard problems in P under NC reductions. $\mathrm{P}=\mathrm{NC}$?

- Problems difficult to solve in small space.

P -Hard problems in P under L reductions. $\mathrm{P}=\mathrm{L}$?

Comments

P-Completeness

Definition

P-Complete is a class complete for the class P , under two reductions

- Problems difficult to parallelize.

P -Hard problems in P under NC reductions. $\mathrm{P}=\mathrm{NC}$?

- Problems difficult to solve in small space. P -Hard problems in P under L reductions. $\mathrm{P}=\mathrm{L}$?

Comments

- L reduction are weaker than NC reductions.

P-Completeness

Definition

P-Complete is a class complete for the class P , under two reductions

- Problems difficult to parallelize.

P -Hard problems in P under NC reductions. $\mathrm{P}=\mathrm{NC}$?

- Problems difficult to solve in small space. P -Hard problems in P under L reductions. $\mathrm{P}=\mathrm{L}$?

Comments

- L reduction are weaker than NC reductions.
- P-Complete under L \subseteq P-Complete under NC.

P-Completeness

Definition

P-Complete is a class complete for the class P , under two reductions

- Problems difficult to parallelize.

P -Hard problems in P under NC reductions. $\mathrm{P}=\mathrm{NC}$?

- Problems difficult to solve in small space. P -Hard problems in P under L reductions. $\mathrm{P}=\mathrm{L}$?

Comments

- L reduction are weaker than NC reductions.
- P-Complete under L \subseteq P-Complete under NC.
- We consider L reduction variant.

P-Completeness and incr-POLYLOGTIME-Completeness

Circuit Value Problem

Given a circuit in form of a DAG, where each node is either input, output or gate(AND,OR,NOT). Given an assignment of 0 and 1 for each input node, aim is to find value of an output node.

P-Completeness and incr-POLYLOGTIME-Completeness

Circuit Value Problem

Given a circuit in form of a DAG, where each node is either input, output or gate(AND,OR,NOT). Given an assignment of 0 and 1 for each input node, aim is to find value of an output node.

Theorem

CVP is P -Complete under logspace reduction for P . For any problem $\pi \in \mathrm{P}$, a circuit whose inputs are the bits of input instance of π and simulates turing machine use to solve problem π.

P-Completeness and incr-POLYLOGTIME-Completeness

Circuit Value Problem

Given a circuit in form of a DAG, where each node is either input, output or gate(AND,OR,NOT). Given an assignment of 0 and 1 for each input node, aim is to find value of an output node.

Theorem

CVP is P -Complete under logspace reduction for P . For any problem $\pi \in \mathrm{P}$, a circuit whose inputs are the bits of input instance of π and simulates turing machine use to solve problem π.

Reduction

One bit change in instance of π refers to exactly one bit change in instance of CV, i.e. the corresponding input bit. Done in constant time, so CV is incr-POLYLOGTIME-Compelete for P.

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary
If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

- All mentions here are for some given P-Complete problems.

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in incr-POLYLOGTIME.

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in incr-POLYLOGTIME.
- However those are not incr-POLYLOGTIME-Complete.

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in incr-POLYLOGTIME.
- However those are not incr-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in incr-POLYLOGTIME.
- However those are not incr-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that - It remains P-Complete.

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in incr-POLYLOGTIME.
- However those are not incr-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that
- It remains P-Complete.
- It becomes incr-POLYLOGTIME.

P-Completeness and incr-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr-POLYLOGTIME then all of P are in incr-POLYLOGTIME.

Comments

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in incr-POLYLOGTIME.
- However those are not incr-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that
- It remains P-Complete.
- It becomes incr-POLYLOGTIME.
- It is no longer incr-POLYLOGTIME-Complete.

P-Complete problems in incr-POLYLOGTIME

Construction

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P -Complete language L over $\sigma=\{0,1\}$.

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.
- We construct a language $L^{\prime}=\left\{w^{|w|} \mid w \in L\right\}$.

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.
- We construct a language $L^{\prime}=\left\{w^{|w|} \mid w \in L\right\}$.

Comments

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.
- We construct a language $L^{\prime}=\left\{w^{|w|} \mid w \in L\right\}$.

Comments

- By construction if $|w|=n, w^{|w|}=n^{2}$.

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.
- We construct a language $L^{\prime}=\left\{w^{|w|} \mid w \in L\right\}$.

Comments

- By construction if $|w|=n, w^{|w|}=n^{2}$.
- L is reducible to L^{\prime} under L and NC reduction.

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.
- We construct a language $L^{\prime}=\left\{w^{|w|} \mid w \in L\right\}$.

Comments

- By construction if $|w|=n, w^{|w|}=n^{2}$.
- L is reducible to L^{\prime} under L and NC reduction.
- L^{\prime} is solvable in $O\left(n^{c}\right)=O\left(n^{\prime c / 2}\right)$ and hence is in P.

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P -Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.
- We construct a language $L^{\prime}=\left\{w^{|w|} \mid w \in L\right\}$.

Comments

- By construction if $|w|=n, w^{|w|}=n^{2}$.
- L is reducible to L^{\prime} under L and NC reduction.
- L^{\prime} is solvable in $O\left(n^{c}\right)=O\left(n^{\prime c / 2}\right)$ and hence is in P.
- Divide Update work in $O(n)$ parts to get incr-TIME $\left\{n^{c-1}\right\}$.

P-Complete problems in incr-POLYLOGTIME

Construction

- Consider a given P -Complete language L over $\sigma=\{0,1\}$.
- Let it be in DTIME $\left\{n^{c}\right\}$ and hence incr-TIME $\left\{n^{c}\right\}$.
- We construct a language $L^{\prime}=\left\{w^{|w|} \mid w \in L\right\}$.

Comments

- By construction if $|w|=n, w^{|w|}=n^{2}$.
- L is reducible to L^{\prime} under L and NC reduction.
- L^{\prime} is solvable in $O\left(n^{c}\right)=O\left(n^{\prime c / 2}\right)$ and hence is in P.
- Divide Update work in $O(n)$ parts to get incr-TIME $\left\{n^{c-1}\right\}$.
- Repeated to get P-Complete Problem in incr-POLYLOGTIME.

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

- Let S_{L} be a subroutine that checks for membership in L.

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

- Let S_{L} be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$.

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

- Let S_{L} be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$.
- Return 0 untill $n / 2$ of a_{i} 's are same.

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

- Let S_{L} be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$.
- Return 0 untill $n / 2$ of a_{i} 's are same.
- Then start process S_{L} part wise in each update.

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

- Let S_{L} be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$.
- Return 0 untill $n / 2$ of a_{i} 's are same.
- Then start process S_{L} part wise in each update.
- Which will take atlaest $n / 2$ steps to form $w^{|w|}$.

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

- Let S_{L} be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$.
- Return 0 untill $n / 2$ of a_{i} 's are same.
- Then start process S_{L} part wise in each update.
- Which will take atlaest $n / 2$ steps to form $w^{|w|}$.
- Each update takes $O\left(n^{c} / n\right)$ times.

P-Complete problems in incr-POLYLOGTIME

Summary of Algorithm

- Let S_{L} be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$.
- Return 0 untill $n / 2$ of a_{i} 's are same.
- Then start process S_{L} part wise in each update.
- Which will take atlaest $n / 2$ steps to form $w^{|w|}$.
- Each update takes $O\left(n^{c} / n\right)$ times.
- Only problem is figuring out that $n / 2$ of a_{i} 's are same.

P-Complete problems in incr-POLYLOGTIME

Data Structure

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.
- Each set S_{j} stores two flags f_{j} and g_{j} denoting half and full.

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.
- Each set S_{j} stores two flags f_{j} and g_{j} denoting half and full.
- Each set stores majority word w_{j} for set that is alteast half.

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.
- Each set S_{j} stores two flags f_{j} and g_{j} denoting half and full.
- Each set stores majority word w_{j} for set that is alteast half.

Algorithm

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.
- Each set S_{j} stores two flags f_{j} and g_{j} denoting half and full.
- Each set stores majority word w_{j} for set that is alteast half.

Algorithm

- If atleast one g_{j} is 0 answer 0 .

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.
- Each set S_{j} stores two flags f_{j} and g_{j} denoting half and full.
- Each set stores majority word w_{j} for set that is alteast half.

Algorithm

- If atleast one g_{j} is 0 answer 0 .
- If and all f_{j} are 1 and S_{L} not started, start S_{L} on $w_{1} \ldots w_{k}$.

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.
- Each set S_{j} stores two flags f_{j} and g_{j} denoting half and full.
- Each set stores majority word w_{j} for set that is alteast half.

Algorithm

- If atleast one g_{j} is 0 answer 0 .
- If and all f_{j} are 1 and S_{L} not started, start S_{L} on $w_{1} \ldots w_{k}$.
- If atleast one f_{j} is 0 stop S_{L}.

P-Complete problems in incr-POLYLOGTIME

Data Structure

- Divide each a_{i} into k words of size $\log n, a_{i}^{1}, \ldots, a_{i}^{k}$.
- Construct k sets, where S_{j} has j th word of each a_{i}.
- Each set S_{j} stores two flags f_{j} and g_{j} denoting half and full.
- Each set stores majority word w_{j} for set that is alteast half.

Algorithm

- If atleast one g_{j} is 0 answer 0 .
- If and all f_{j} are 1 and S_{L} not started, start S_{L} on $w_{1} \ldots w_{k}$.
- If atleast one f_{j} is 0 stop S_{L}.
- If all g_{j} equal to 1 return answer of S_{L}.

P-Complete problems in incr-POLYLOGTIME

Correctness

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced $\operatorname{BST} T_{j}$.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced BST T_{j}.

Maintaining S_{j}

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced BST T_{j}.

Maintaining S_{j}

- Each update acts on only one S_{j}.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced BST T_{j}.

Maintaining S_{j}

- Each update acts on only one S_{j}.
- Each word in S_{j} ie. $a_{j}^{1}, \ldots, a_{j}^{n}$ are stored at leaves.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced BST T_{j}.

Maintaining S_{j}

- Each update acts on only one S_{j}.
- Each word in S_{j} ie. $a_{j}^{1}, \ldots, a_{j}^{n}$ are stored at leaves.
- They are lexicographically sorted.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced BST T_{j}.

Maintaining S_{j}

- Each update acts on only one S_{j}.
- Each word in S_{j} ie. $a_{j}^{1}, \ldots, a_{j}^{n}$ are stored at leaves.
- They are lexicographically sorted.
- An update is performed as deletion followed by insertion of a_{j}^{i}.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced BST T_{j}.

Maintaining S_{j}

- Each update acts on only one S_{j}.
- Each word in S_{j} ie. $a_{j}^{1}, \ldots, a_{j}^{n}$ are stored at leaves.
- They are lexicographically sorted.
- An update is performed as deletion followed by insertion of a_{j}^{i}.
- Internal node store max, left,right and corresponding words.

P-Complete problems in incr-POLYLOGTIME

Correctness

- To prove that S_{L} is completed on $w_{1} w_{2} \ldots w_{k}$ when all $g_{j}=1$.
- Starts with all $f_{j}=1$, take atleast $n / 2$ steps till all $g_{j}=1$.
- Each S_{j} maintained dynamically using augmented balanced BST T_{j}.

Maintaining S_{j}

- Each update acts on only one S_{j}.
- Each word in S_{j} ie. $a_{j}^{1}, \ldots, a_{j}^{n}$ are stored at leaves.
- They are lexicographically sorted.
- An update is performed as deletion followed by insertion of a_{j}^{i}.
- Internal node store max, left,right and corresponding words.
- Root visited to check for f_{i} or g_{i} after an update.

Problem Description

P-Complete problems in incr-POLYLOGTIME

Comments

P-Complete problems in incr-POLYLOGTIME

Comments

- Some P-Complete problems are not incr-PLTC.

P-Complete problems in incr-POLYLOGTIME

Comments

- Some P-Complete problems are not incr-PLTC.
- NC and L reductions do not capture this extensions.

P-Complete problems in incr-POLYLOGTIME

Comments

- Some P-Complete problems are not incr-PLTC.
- NC and L reductions do not capture this extensions.
- Hence some new more restrictive reduction required.

P-Complete problems in incr-POLYLOGTIME

Comments

- Some P-Complete problems are not incr-PLTC.
- NC and L reductions do not capture this extensions.
- Hence some new more restrictive reduction required.
- Important to address the redundancy issue.

P-Complete problems in incr-POLYLOGTIME

Comments

- Some P-Complete problems are not incr-PLTC.
- NC and L reductions do not capture this extensions.
- Hence some new more restrictive reduction required.
- Important to address the redundancy issue.
- Stricter definition of P-Completeness in terms of projections.

Outline

(1) Problem Description

(2) Preliminaries
(3) Complete Problems

4 NRP Completeness
(5) Space bounded Computations

Projection of a function

Definition

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called a projection of a function $g\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ if

Projection of a function

Definition

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called a projection of a function $g\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ if

- There is a mapping $\sigma:\left\{y_{1}, \ldots, y_{m}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}$

Projection of a function

Definition

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called a projection of a function $g\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ if

- There is a mapping $\sigma:\left\{y_{1}, \ldots, y_{m}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}$
- Where $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(\sigma\left(y_{1}\right), \sigma\left(y_{2}\right), \ldots, \sigma\left(y_{m}\right)\right)$

Projection of a function

Definition

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called a projection of a function $g\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ if

- There is a mapping $\sigma:\left\{y_{1}, \ldots, y_{m}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}$
- Where $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(\sigma\left(y_{1}\right), \sigma\left(y_{2}\right), \ldots, \sigma\left(y_{m}\right)\right)$

Comments

Projection of a function

Definition

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called a projection of a function $g\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ if

- There is a mapping $\sigma:\left\{y_{1}, \ldots, y_{m}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}$
- Where $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(\sigma\left(y_{1}\right), \sigma\left(y_{2}\right), \ldots, \sigma\left(y_{m}\right)\right)$

Comments

- Used by [Skyum and Valiant 1981] to define reduction.

Projection of a function

Definition

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called a projection of a function $g\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ if

- There is a mapping $\sigma:\left\{y_{1}, \ldots, y_{m}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}$
- Where $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(\sigma\left(y_{1}\right), \sigma\left(y_{2}\right), \ldots, \sigma\left(y_{m}\right)\right)$

Comments

- Used by [Skyum and Valiant 1981] to define reduction.
- Even though g is derived from f we get exactly how many bits affected.

Reduction based on Projection

Definition

$\pi_{1} \leq_{\text {proj }} \pi_{2}$
π_{1} is projection reducible to π_{2} if there is a polynomial $p(n)$ and a polynomially computable family of mappings $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$

$$
\sigma_{n}:\left\{y_{1}, \ldots, y_{p(n)}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}
$$

Reduction based on Projection

Definition

$\pi_{1} \leq_{\text {proj }} \pi_{2}$
π_{1} is projection reducible to π_{2} if there is a polynomial $p(n)$ and a polynomially computable family of mappings $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$

$$
\sigma_{n}:\left\{y_{1}, \ldots, y_{p(n)}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}
$$

- n bit instance of π_{1} is $x_{1}, x_{2}, \ldots, x_{n}$.

Reduction based on Projection

Definition

$\pi_{1} \leq_{\text {proj }} \pi_{2}$
π_{1} is projection reducible to π_{2} if there is a polynomial $p(n)$ and a polynomially computable family of mappings $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$

$$
\sigma_{n}:\left\{y_{1}, \ldots, y_{p(n)}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}
$$

- n bit instance of π_{1} is $x_{1}, x_{2}, \ldots, x_{n}$.
- $p(n)$ bit instance of π_{2} is $\sigma_{n}\left(y_{1}\right), \sigma_{n}\left(y_{2}\right), \ldots, \sigma_{n}\left(y_{p(n)}\right)$.

Reduction based on Projection

Definition

$\pi_{1} \leq_{\text {proj }} \pi_{2}$
π_{1} is projection reducible to π_{2} if there is a polynomial $p(n)$ and a polynomially computable family of mappings $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$

$$
\sigma_{n}:\left\{y_{1}, \ldots, y_{p(n)}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}
$$

- n bit instance of π_{1} is $x_{1}, x_{2}, \ldots, x_{n}$.
- $p(n)$ bit instance of π_{2} is $\sigma_{n}\left(y_{1}\right), \sigma_{n}\left(y_{2}\right), \ldots, \sigma_{n}\left(y_{p(n)}\right)$.
- $\pi_{1}(X)=1$ iff $p_{2}(\sigma(Y))=1$

Reduction based on Projection

Definition

$\pi_{1} \leq_{\text {proj }} \pi_{2}$
π_{1} is projection reducible to π_{2} if there is a polynomial $p(n)$ and a polynomially computable family of mappings $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$

$$
\sigma_{n}:\left\{y_{1}, \ldots, y_{p(n)}\right\} \rightarrow\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}, 0,1\right\}
$$

- n bit instance of π_{1} is $x_{1}, x_{2}, \ldots, x_{n}$.
- $p(n)$ bit instance of π_{2} is $\sigma_{n}\left(y_{1}\right), \sigma_{n}\left(y_{2}\right), \ldots, \sigma_{n}\left(y_{p(n)}\right)$.
- $\pi_{1}(X)=1$ iff $p_{2}(\sigma(Y))=1$
- For each y_{i} the corresponding bit on instance of π_{2} is either some constant or one of x_{i} or $\overline{x_{i}}$

Problem Description
Preliminaries

Reduction based on Projection

Comments

Reduction based on Projection

Comments

- Intuitively π_{1} is a projection of π_{2}.

Reduction based on Projection

Comments

- Intuitively π_{1} is a projection of π_{2}.
- Almost same as Karp-Reduction except gives a notion of bits of I^{\prime} being directly influenced by bits of I.

Reduction based on Projection

Comments

- Intuitively π_{1} is a projection of π_{2}.
- Almost same as Karp-Reduction except gives a notion of bits of I^{\prime} being directly influenced by bits of I.

Definition

A problem π is <proj complete for a class C, if

Reduction based on Projection

Comments

- Intuitively π_{1} is a projection of π_{2}.
- Almost same as Karp-Reduction except gives a notion of bits of I^{\prime} being directly influenced by bits of I.

Definition

A problem π is <proj complete for a class C , if

- π is in C.

Reduction based on Projection

Comments

- Intuitively π_{1} is a projection of π_{2}.
- Almost same as Karp-Reduction except gives a notion of bits of I^{\prime} being directly influenced by bits of I.

Definition

A problem π is <proj complete for a class C , if

- π is in C.
- There is a function $p(n)$ bounded above by a polynomial in n.

Reduction based on Projection

Comments

- Intuitively π_{1} is a projection of π_{2}.
- Almost same as Karp-Reduction except gives a notion of bits of I^{\prime} being directly influenced by bits of I.

Definition

A problem π is $<_{\text {proj }}$ complete for a class C, if

- π is in C.
- There is a function $p(n)$ bounded above by a polynomial in n.
- $\forall \pi_{1} \in \mathrm{C}, \pi_{1}<_{\text {proj }} \pi$ by a projection $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ bounded by polynomial p.

Non-Redundant Projection Completeness

Definition

Let π_{1} and π be two decision problems where $\pi_{1} \leq_{\text {proj }} \pi$
We say π is non-redundant w.r.t. π_{1} if there is poly time computable family $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_{i},\left|\sigma_{n}^{-1}\left(x_{i}, \overline{x_{i}}\right)\right|=O\left(\log ^{k} n\right)$

Non-Redundant Projection Completeness

Definition

Let π_{1} and π be two decision problems where $\pi_{1} \leq_{\text {proj }} \pi$
We say π is non-redundant w.r.t. π_{1} if there is poly time computable family $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_{i},\left|\sigma_{n}^{-1}\left(x_{i}, \overline{x_{i}}\right)\right|=O\left(\log ^{k} n\right)$

Comments

Non-Redundant Projection Completeness

Definition

Let π_{1} and π be two decision problems where $\pi_{1} \leq_{\text {proj }} \pi$
We say π is non-redundant w.r.t. π_{1} if there is poly time computable family $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_{i},\left|\sigma_{n}^{-1}\left(x_{i}, \overline{x_{i}}\right)\right|=O\left(\log ^{k} n\right)$

Comments

- Intuitively how many bits of Y are affected by single bit x_{i}.

Non-Redundant Projection Completeness

Definition

Let π_{1} and π be two decision problems where $\pi_{1} \leq_{\text {proj }} \pi$
We say π is non-redundant w.r.t. π_{1} if there is poly time computable family $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_{i},\left|\sigma_{n}^{-1}\left(x_{i}, \overline{x_{i}}\right)\right|=O\left(\log ^{k} n\right)$

Comments

- Intuitively how many bits of Y are affected by single bit x_{i}.
- Non-Redundant if bounded by poly logarithmic in n.

Non-Redundant Projection Completeness

Definition

Let π_{1} and π be two decision problems where $\pi_{1} \leq_{\text {proj }} \pi$
We say π is non-redundant w.r.t. π_{1} if there is poly time computable family $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_{i},\left|\sigma_{n}^{-1}\left(x_{i}, \overline{x_{i}}\right)\right|=O\left(\log ^{k} n\right)$

Comments

- Intuitively how many bits of Y are affected by single bit x_{i}.
- Non-Redundant if bounded by poly logarithmic in n.
- All NRP-Complete are incr-POLYLOGTIME-Complete.

Non-Redundant Projection Completeness

Definition

Let π_{1} and π be two decision problems where $\pi_{1} \leq_{\text {proj }} \pi$
We say π is non-redundant w.r.t. π_{1} if there is poly time computable family $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_{i},\left|\sigma_{n}^{-1}\left(x_{i}, \overline{x_{i}}\right)\right|=O\left(\log ^{k} n\right)$

Comments

- Intuitively how many bits of Y are affected by single bit x_{i}.
- Non-Redundant if bounded by poly logarithmic in n.
- All NRP-Complete are incr-POLYLOGTIME-Complete.
(1) In preprocessing we calculate this projection map.

Non-Redundant Projection Completeness

Definition

Let π_{1} and π be two decision problems where $\pi_{1} \leq_{\text {proj }} \pi$
We say π is non-redundant w.r.t. π_{1} if there is poly time computable family $\sigma=\left\{\sigma_{n}\right\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_{i},\left|\sigma_{n}^{-1}\left(x_{i}, \overline{x_{i}}\right)\right|=O\left(\log ^{k} n\right)$

Comments

- Intuitively how many bits of Y are affected by single bit x_{i}.
- Non-Redundant if bounded by poly logarithmic in n.
- All NRP-Complete are incr-POLYLOGTIME-Complete.
(1) In preprocessing we calculate this projection map.
(2) Hence one bit change can easily be updated using the map.

Outline

(1) Problem Description

(2) Preliminaries
(3) Complete Problems
(4) NRP Completeness
(5) Space bounded Computations

For Computation from Scratch

Theorem

$\operatorname{NSPACE}[s(n)] \subseteq \operatorname{DTIME}\left[k^{\log (n)+s(n)}\right]=\operatorname{DTIME}\left[n .2^{s(n)}\right]$

For Computation from Scratch

Theorem

$\operatorname{NSPACE}[s(n)] \subseteq \operatorname{DTIME}\left[k^{\log (n)+s(n)}\right]=\operatorname{DTIME}\left[n .2^{s(n)}\right]$

Proof

Given a k string NDTM M with input and output that decides L in space $s(n)$.

For Computation from Scratch

Theorem

$\operatorname{NSPACE}[s(n)] \subseteq \operatorname{DTIME}\left[k^{\log (n)+s(n)}\right]=\operatorname{DTIME}\left[n .2^{s(n)}\right]$

Proof

Given a k string NDTM M with input and output that decides L in space $s(n)$.

- Configuration depends on <State,I/O Head, Work Tapes, Work Tape Head>

For Computation from Scratch

Theorem

$\operatorname{NSPACE}[s(n)] \subseteq \operatorname{DTIME}\left[k^{\log (n)+s(n)}\right]=\operatorname{DTIME}\left[n .2^{s(n)}\right]$

Proof

Given a k string NDTM M with input and output that decides L in space $s(n)$.

- Configuration depends on <State,I/O Head, Work Tapes, Work Tape Head>
- Number of configurations States $*(n+1) * \Sigma^{k * s(n)}=O\left(n \cdot c^{s(n)}\right)$.

For Computation from Scratch

Theorem

$\operatorname{NSPACE}[s(n)] \subseteq \operatorname{DTIME}\left[k^{\log (n)+s(n)}\right]=\operatorname{DTIME}\left[n .2^{s(n)}\right]$

Proof

Given a k string NDTM M with input and output that decides L in space $s(n)$.

- Configuration depends on <State,I/O Head, Work Tapes, Work Tape Head>
- Number of configurations States $*(n+1) * \Sigma^{k * s(n)}=O\left(n . c^{s(n)}\right)$.
- Create a configuration graph, $x \in L$ if there is a path to accepting configuration.

For Incremental Computation

Theorem

Given $s(n)$ is computible in $O\left(n^{O(1)}\right)$ time such that $s(n)=O(\log n)$ $\operatorname{NSPACE}[s(n)] \subseteq$ incr-TIME[log $\left.n .2^{s(n)}\right]$

For Incremental Computation

Theorem

Given $s(n)$ is computible in $O\left(n^{O(1)}\right)$ time such that $s(n)=O(\log n)$ $\operatorname{NSPACE}[s(n)] \subseteq$ incr-TIME[log $\left.n .2^{s(n)}\right]$

Construction

Consider an NDTM M with read only input tape $x_{0}=\#, x_{1}, \ldots, x_{n}, x_{n+1}=\#$, such that

For Incremental Computation

Theorem

Given $s(n)$ is computible in $O\left(n^{O(1)}\right)$ time such that $s(n)=O(\log n)$ $\operatorname{NSPACE}[s(n)] \subseteq$ incr-TIME $\left[\log n .2^{s(n)}\right]$

Construction

Consider an NDTM M with read only input tape $x_{0}=\#, x_{1}, \ldots, x_{n}, x_{n+1}=\#$, such that

- M accepts X only if input head leaves the input tape part and rejects otherwise.

For Incremental Computation

Theorem

Given $s(n)$ is computible in $O\left(n^{O(1)}\right)$ time such that $s(n)=O(\log n)$ $\operatorname{NSPACE}[s(n)] \subseteq$ incr-TIME $\left[\log n .2^{s(n)}\right]$

Construction

Consider an NDTM M with read only input tape $x_{0}=\#, x_{1}, \ldots, x_{n}, x_{n+1}=\#$, such that

- M accepts X only if input head leaves the input tape part and rejects otherwise.
- Semi-Configuration S of M is description excluding input head.

For Incremental Computation

Theorem

Given $s(n)$ is computible in $O\left(n^{O(1)}\right)$ time such that $s(n)=O(\log n)$ $\operatorname{NSPACE}[s(n)] \subseteq$ incr-TIME $\left[\log n .2^{s(n)}\right]$

Construction

Consider an NDTM M with read only input tape $x_{0}=\#, x_{1}, \ldots, x_{n}, x_{n+1}=\#$, such that

- M accepts X only if input head leaves the input tape part and rejects otherwise.
- Semi-Configuration S of M is description excluding input head.
- Current configuration thus depends on $\left(S, x_{i}\right)$.

For Incremental Computation

Theorem

Given $s(n)$ is computible in $O\left(n^{O(1)}\right)$ time such that $s(n)=O(\log n)$ NSPACE $[s(n)] \subseteq$ incr-TIME $\left[\log n .2^{s(n)}\right]$

Construction

Consider an NDTM M with read only input tape $x_{0}=\#, x_{1}, \ldots, x_{n}, x_{n+1}=\#$, such that

- M accepts X only if input head leaves the input tape part and rejects otherwise.
- Semi-Configuration S of M is description excluding input head.
- Current configuration thus depends on $\left(S, x_{i}\right)$.
- Consider binary relation of form $R_{i, j}: S \times\{I, r\} \rightarrow S \times\{L, R\}$ $<u, I>R_{i j}<v, R>$: If M enters input tape region $x_{i} \ldots x_{j}$ from left with state u it leaves the region for first time from right with state v.

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

- We maintain R in form of binary tree with root $R_{0 n+1}$.

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

- We maintain R in form of binary tree with root $R_{0 n+1}$.
- $R_{i, j}$ has two children $R_{i k}$ and $R_{k+1 j}$ where $k=\left\lfloor\frac{i+j}{2}\right\rfloor$.

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

- We maintain R in form of binary tree with root $R_{0 n+1}$.
- $R_{i, j}$ has two children $R_{i k}$ and $R_{k+1 j}$ where $k=\left\lfloor\frac{i+j}{2}\right\rfloor$.
- Thus we have a binary tree of height $O(\log n)$

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

- We maintain R in form of binary tree with root $R_{0 n+1}$.
- $R_{i, j}$ has two children $R_{i k}$ and $R_{k+1 j}$ where $k=\left\lfloor\frac{i+j}{2}\right\rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root $R_{0 n+1}$.

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

- We maintain R in form of binary tree with root $R_{0 n+1}$.
- $R_{i, j}$ has two children $R_{i k}$ and $R_{k+1 j}$ where $k=\left\lfloor\frac{i+j}{2}\right\rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root $R_{0 n+1}$.
- An update updates exactly $O(\log n)$ nodes.

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

- We maintain R in form of binary tree with root $R_{0 n+1}$.
- $R_{i, j}$ has two children $R_{i k}$ and $R_{k+1 j}$ where $k=\left\lfloor\frac{i+j}{2}\right\rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root $R_{0 n+1}$.
- An update updates exactly $O(\log n)$ nodes.
- Each update done by transitive closure on set of size $O\left(2^{O(s(n))}\right)$.

For Incremental Computation

Proof

Clearly $R_{i j}$ can be recursively defined in terms of $R_{i k}$ and $R_{k+1 j}$ by transitive closure

- We maintain R in form of binary tree with root $R_{0 n+1}$.
- $R_{i, j}$ has two children $R_{i k}$ and $R_{k+1 j}$ where $k=\left\lfloor\frac{i+j}{2}\right\rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root $R_{0 n+1}$.
- An update updates exactly $O(\log n)$ nodes.
- Each update done by transitive closure on set of size $O\left(2^{O(s(n))}\right)$.
- Hence total time is $O\left(\log n 2^{O(s(n))}\right)$.

