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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

Computation Model

Motivation

The efficiency of an algorithm is judged by application
Worst Case Time, Expected Time, Space, Updation Time etc.
Given an instance of the problem that changes over time.
Aim is to preprocess such that it can be updated easily.
Trivial: Recompute from scratch after every update.
Idea: Data structure that is queried and updated.

Replacement Model of Computation

Given an instance I of a decision problem π.
We allow an algorithm to preprocess I to build D.
An update is in form of ∆ bit flips of I .
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

Contents

Topics covered

Define incremental complexity classes and reductions.
Problems hard to parallelize are hard to dynamize.
Problems hard to solve in small space are hard to dynamize.
Describe the complete problems for class P.
Problems solvable is small space have better dynamic solutions.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

General Definitions

Basic Notation

Given decision problem π with initial instance I o .
Positive Instance (π(I ) = 1) and Negative otherwise.
Update ∆ changes current instance I to I ′.
Size of instance |I | = |I ′| = |I o | = n.
Any algorithm A has two stages: preprocess and update.
We allow an algorithm to preprocess I to build D.
A preprocesses I o to form data structure DIo .
A processes ∆ by reporting π(I ′) and updating DI to DI ′ .
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

General Definitions

Definition

incr-TIME[f (n)]: (analogous to DTIME[f (n)])
Decision problem π belongs to incr -TIME[f (n)] if there exists RAM
programs P1 and P2 such that ∀n ∈ N

P1 efficiently processes I o , where |I o | = n to compute Dio .
Given update ∆ on I and current data structure DI in RAM,
P2 computes π(I ′) and updates data structure DI to DI ′

in O(|∆|f (n)) time.

Basic Classes
incr -CONSTANT-TIME, incr -LOG-TIME

incr -POLYLOGTIME =
⋃
k≥0

incr -TIME[logk n]
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

Incremental Reductions

Motivation

To compare hardness of solving two problems dynamically.
The complexity of P1 is not significant, main focus on P2. (f )
Relative size of updates i.e. ∆1 and ∆2. (g)
Relative size of mapping i.e. π1 and π2. (p)
Represented as π1 ≤incr [f (n),g(n),p(n)] π2
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Problem Description
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Complete Problems
NRP Completeness

Space bounded Computations

Incremental Reducibility

Definition π1 ≤incr [f (n),g(n),p(n)] π2

Decision problem π1 is incrementally reducible to π2 if there exist
transformation T and RAM programs P and Q such that

T : π1 → π2, where |π2| = p(n) and π2(T (I )) = π1(I ).
Given I o ∈ π1, P efficiently computes T (I o) and SIo .
Given update ∆1 on I with SI in RAM, Q computes ∆2 on T (I )
such that |∆2| ≤ g(n)|∆1| and modifies data structure SI to SI ′

using O(|∆|f (n)) time.

Theorem

If π1 ≤incr [f (n),g(n),p(n)] π2 and π2 ∈ incr -TIME[h(n)]
then π1 ∈ incr -TIME[f (n) + g(n).h(p(n))].
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T : π1 → π2, where |π2| = p(n) and π2(T (I )) = π1(I ).
Given I o ∈ π1, P efficiently computes T (I o) and SIo .
Given update ∆1 on I with SI in RAM, Q computes ∆2 on T (I )
such that |∆2| ≤ g(n)|∆1| and modifies data structure SI to SI ′

using O(|∆|f (n)) time.

Theorem

If π1 ≤incr [f (n),g(n),p(n)] π2 and π2 ∈ incr -TIME[h(n)]
then π1 ∈ incr -TIME[f (n) + g(n).h(p(n))].
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

Some Definitions and Theorems

Definition

Decision problem π is incr [f (n), g(n), p(n)]-Complete for class C if

1 π ∈ C .
2 ∀π1 ∈ C , π1 ≤incr [f (n),g(n),p(n)] π.

Definition (incr -PLTC)

incr -POLYLOGTIME-Complete =incr [logk1 n, logk2 , nk3 ]-Complete

Theorem

General P-Complete problems are incr -PLTC for P.
There exist P-Complete problems in incr -POLYLOGTIME.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

P-Completeness

Definition
P-Complete is a class complete for the class P, under two reductions

Problems difficult to parallelize.
P-Hard problems in P under NC reductions. P=NC?
Problems difficult to solve in small space.
P-Hard problems in P under L reductions. P=L?

Comments

L reduction are weaker than NC reductions.
P-Complete under L ⊆ P-Complete under NC.
We consider L reduction variant.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

P-Completeness and incr -POLYLOGTIME-Completeness

Circuit Value Problem
Given a circuit in form of a DAG, where each node is either input, output
or gate(AND,OR,NOT). Given an assignment of 0 and 1 for each input
node, aim is to find value of an output node.

Theorem

CVP is P-Complete under logspace reduction for P. [Lardner 1975]
For any problem π ∈ P, a circuit whose inputs are the bits of input
instance of π and simulates turing machine use to solve problem π.

Reduction
One bit change in instance of π refers to exactly one bit change in
instance of CV, i.e. the corresponding input bit. Done in constant time,
so CV is incr-POLYLOGTIME-Compelete for P.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

P-Completeness and incr -POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in incr -POLYLOGTIME then all
of P are in incr -POLYLOGTIME.

Comments

All mentions here are for some given P-Complete problems.
Some P-Complete problems are in incr -POLYLOGTIME.
However those are not incr -POLYLOGTIME-Complete.
Infact any P-Complete problem can be converted such that

It remains P-Complete.
It becomes incr -POLYLOGTIME.
It is no longer incr–POLYLOGTIME-Complete.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

P-Complete problems in incr -POLYLOGTIME

Construction

Consider a given P-Complete language L over σ = {0, 1}.
Let it be in DTIME{nc} and hence incr -TIME{nc}.
We construct a language L′ = {w |w ||w ∈ L}.

Comments

By construction if |w | = n, w |w | = n2.
L is reducible to L′ under L and NC reduction.
L′ is solvable in O(nc) = O(n′c/2) and hence is in P.
Divide Update work in O(n) parts to get incr -TIME{nc−1}.
Repeated to get P-Complete Problem in incr -POLYLOGTIME.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

P-Complete problems in incr -POLYLOGTIME

Summary of Algorithm

Let SL be a subroutine that checks for membership in L.
Let the string be divided into equal sized a1, a2, a3, ..., an.
Return 0 untill n/2 of ai ’s are same.
Then start process SL part wise in each update.
Which will take atlaest n/2 steps to form w |w |.
Each update takes O(nc/n) times.
Only problem is figuring out that n/2 of ai ’s are same.
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Data Structure

Divide each ai into k words of size log n, a1i , ..., a
k
i .

Construct k sets, where Sj has jth word of each ai .
Each set Sj stores two flags fj and gj denoting half and full.
Each set stores majority word wj for set that is alteast half.

Algorithm

If atleast one gj is 0 answer 0.
If and all fj are 1 and SL not started, start SL on w1...wk .
If atleast one fj is 0 stop SL.
If all gj equal to 1 return answer of SL.
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Correctness

To prove that SL is completed on w1w2...wk when all gj = 1.
Starts with all fj = 1, take atleast n/2 steps till all gj = 1.
Each Sj maintained dynamically using augmented balanced BST Tj .

Maintaining Sj

Each update acts on only one Sj .
Each word in Sj ie. a1j , ..., a

n
j are stored at leaves.

They are lexicographically sorted.
An update is performed as deletion followed by insertion of ai

j .
Internal node store max , left,right and corresponding words.
Root visited to check for fi or gi after an update.
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P-Complete problems in incr -POLYLOGTIME

Comments

Some P-Complete problems are not incr -PLTC.
NC and L reductions do not capture this extensions.
Hence some new more restrictive reduction required.
Important to address the redundancy issue.
Stricter definition of P-Completeness in terms of projections.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

Projection of a function

Definition

A function f (x1, x2, ..., xn) is called a projection of a function
g(y1, y2, ..., ym) if

There is a mapping σ : {y1, ..., ym} → {x1, x1, ..., xn, xn, 0, 1}
Where f (x1, x2, ..., xn) = g(σ(y1), σ(y2), ..., σ(ym))

Comments

Used by [Skyum and Valiant 1981] to define reduction.
Even though g is derived from f we get exactly how many bits
affected.
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Space bounded Computations

Reduction based on Projection

Definition
π1 ≤proj π2
π1 is projection reducible to π2 if there is a polynomial p(n) and a
polynomially computable family of mappings σ = {σn}n≥1

σn : {y1, ..., yp(n)} → {x1, x1, ..., xn, xn, 0, 1}

n bit instance of π1 is x1, x2, ..., xn.
p(n) bit instance of π2 is σn(y1), σn(y2), ..., σn(yp(n)).
π1(X ) = 1 iff pi2(σ(Y )) = 1
For each yi the corresponding bit on instance of π2 is either some
constant or one of xi or xi
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p(n) bit instance of π2 is σn(y1), σn(y2), ..., σn(yp(n)).
π1(X ) = 1 iff pi2(σ(Y )) = 1
For each yi the corresponding bit on instance of π2 is either some
constant or one of xi or xi
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Reduction based on Projection

Comments

Intuitively π1 is a projection of π2.
Almost same as Karp-Reduction except gives a notion of bits of I ′

being directly influenced by bits of I .

Definition
A problem π is <proj complete for a class C, if

π is in C.
There is a function p(n) bounded above by a polynomial in n.
∀π1 ∈ C, π1 <proj π by a projection σ = {σn}n≥1 bounded by
polynomial p.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

Non-Redundant Projection Completeness

Definition
Let π1 and π be two decision problems where π1 ≤proj π
We say π is non-redundant w.r.t. π1 if there is poly time computable
family σ = {σn}n≥1 of mappings and a number k ∈ N
such that ∀xi , |σ−1n (xi , xi )| = O(logk n)

Comments

Intuitively how many bits of Y are affected by single bit xi .
Non-Redundant if bounded by poly logarithmic in n.
All NRP-Complete are incr -POLYLOGTIME-Complete.

1 In preprocessing we calculate this projection map.
2 Hence one bit change can easily be updated using the map.
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Problem Description
Preliminaries

Complete Problems
NRP Completeness

Space bounded Computations

For Computation from Scratch

Theorem

NSPACE[s(n)] ⊆ DTIME[k log(n)+s(n)] =DTIME[n.2s(n)]

Proof
Given a k string NDTM M with input and output that decides L in space
s(n).

Configuration depends on <State,I/O Head, Work Tapes, Work
Tape Head>
Number of configurations States ∗ (n + 1) ∗ Σk∗s(n) = O(n.cs(n)).
Create a configuration graph, x ∈ L if there is a path to accepting
configuration.
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Problem Description
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Space bounded Computations

For Incremental Computation

Theorem

Given s(n) is computible in O(nO(1)) time such that s(n) = O(log n)
NSPACE[s(n)] ⊆ incr-TIME[log n.2s(n)]

Construction
Consider an NDTM M with read only input tape
x0 = #, x1, ..., xn, xn+1 = #, such that

M accepts X only if input head leaves the input tape part and
rejects otherwise.
Semi-Configuration S of M is description excluding input head.
Current configuration thus depends on (S ,xi ).
Consider binary relation of form Ri,j : S × {l , r} → S × {L,R}
< u, l > Rij < v ,R >: If M enters input tape region xi ...xj from left
with state u it leaves the region for first time from right with state v .
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For Incremental Computation

Proof
Clearly Rij can be recursively defined in terms of Rik and Rk+1j by
transitive closure

We maintain R in form of binary tree with root R0n+1.
Ri,j has two children Rik and Rk+1j where k = b i+j

2 c.
Thus we have a binary tree of height O(log n)

Query can be made at root R0n+1.
An update updates exactly O(log n) nodes.
Each update done by transitive closure on set of size O(2O(s(n))).
Hence total time is O(log n2O(s(n))).
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