Complexity Models for Incremental Computation

Shahbaz Khan, PhD CSE

Paper by Peter Bro Miltersen, Sairam Subramanian, Jeffery Scott Vitter and Roberto Tamassia

Outline

1 Problem Description

2 Preliminaries

3 Complete Problems

INRP Completeness

5 Space bounded Computations

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Computation Model

Motivation

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Ξ.

Computation Model

Motivation

• The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.

Computation Model

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.

Computation Model

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.

Computation Model

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.

Computation Model

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

• Given an instance I of a decision problem π .

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

- Given an instance I of a decision problem π .
- We allow an algorithm to preprocess *I* to build *D*.

Computation Model

Motivation

- The efficiency of an algorithm is judged by application Worst Case Time, Expected Time, Space, Updation Time etc.
- Given an instance of the problem that changes over time.
- Aim is to preprocess such that it can be updated easily.
- Trivial: Recompute from scratch after every update.
- Idea: Data structure that is queried and updated.

Replacement Model of Computation

- Given an instance I of a decision problem π .
- We allow an algorithm to preprocess *I* to build *D*.
- An update is in form of Δ bit flips of *I*.

Contents

Topics covered

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

イロト イポト イヨト イヨト

Ξ.

Contents

Topics covered

• Define incremental complexity classes and reductions.

< A

э

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.
- Problems hard to solve in small space are hard to dynamize.

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.
- Problems hard to solve in small space are hard to dynamize.
- Describe the complete problems for class P.

Contents

Topics covered

- Define incremental complexity classes and reductions.
- Problems hard to parallelize are hard to dynamize.
- Problems hard to solve in small space are hard to dynamize.
- Describe the complete problems for class P.
- Problems solvable is small space have better dynamic solutions.

Outline

Problem Description

2 Preliminaries

3 Complete Problems

INRP Completeness

5 Space bounded Computations

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

General Definitions

Basic Notation

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

・ロッ ・ マット

æ

< ∃⇒

General Definitions

Basic Notation

• Given decision problem π with initial instance I^o .

< 6 >

э

3 N

General Definitions

Basic Notation

- Given decision problem π with initial instance I^o .
- Positive Instance $(\pi(I) = 1)$ and Negative otherwise.

B N A B N

6

General Definitions

Basic Notation

- Given decision problem π with initial instance I^o .
- Positive Instance $(\pi(I) = 1)$ and Negative otherwise.
- Update Δ changes current instance I to I'.

글 🕨 🗦

General Definitions

Basic Notation

- Given decision problem π with initial instance I^o .
- Positive Instance $(\pi(I) = 1)$ and Negative otherwise.
- Update Δ changes current instance I to I'.
- Size of instance $|I| = |I'| = |I^o| = n$.

4 3 5 4 3 5

General Definitions

Basic Notation

- Given decision problem π with initial instance I^o .
- Positive Instance $(\pi(I) = 1)$ and Negative otherwise.
- Update Δ changes current instance I to I'.
- Size of instance $|I| = |I'| = |I^o| = n$.
- Any algorithm \mathcal{A} has two stages: preprocess and update.

4 3 5 4 3 5

General Definitions

Basic Notation

- Given decision problem π with initial instance I^o .
- Positive Instance $(\pi(I) = 1)$ and Negative otherwise.
- Update Δ changes current instance I to I'.
- Size of instance $|I| = |I'| = |I^o| = n$.
- Any algorithm \mathcal{A} has two stages: *preprocess and update*.
- We allow an algorithm to preprocess *I* to build *D*.

4 3 5 4 3 5

-

General Definitions

Basic Notation

- Given decision problem π with initial instance I^o .
- Positive Instance $(\pi(I) = 1)$ and Negative otherwise.
- Update Δ changes current instance I to I'.
- Size of instance $|I| = |I'| = |I^o| = n$.
- Any algorithm \mathcal{A} has two stages: *preprocess and update*.
- We allow an algorithm to preprocess *I* to build *D*.
- \mathcal{A} preprocesses I^{o} to form data structure $D_{I^{o}}$.

・吊り ・ラト ・ラト

-

General Definitions

Basic Notation

- Given decision problem π with initial instance I^o .
- Positive Instance $(\pi(I) = 1)$ and Negative otherwise.
- Update Δ changes current instance I to I'.
- Size of instance $|I| = |I'| = |I^o| = n$.
- Any algorithm \mathcal{A} has two stages: *preprocess and update*.
- We allow an algorithm to preprocess *I* to build *D*.
- \mathcal{A} preprocesses I^o to form data structure D_{I^o} .
- \mathcal{A} processes Δ by reporting $\pi(I')$ and updating D_I to $D_{I'}$.

イロト イポト イラト イラト

General Definitions

Definition

incr-**TIME**[f(n)]: (analogous to DTIME[f(n)]) Decision problem π belongs to *incr*-TIME[f(n)] if there exists RAM programs P_1 and P_2 such that $\forall n \in \mathbb{N}$

글 🕨 🗦

General Definitions

Definition

incr-**TIME**[f(n)]: (analogous to DTIME[f(n)]) Decision problem π belongs to *incr*-TIME[f(n)] if there exists RAM programs P_1 and P_2 such that $\forall n \in \mathbb{N}$

• P_1 efficiently processes I^o , where $|I^o| = n$ to compute D_{i^o} .

医下口 医下

General Definitions

Definition

 $\begin{array}{ll} \textit{incr-TIME}[f(n)]: & (\textit{analogous to } \mathsf{DTIME}[f(n)]) \\ \textit{Decision problem } \pi \textit{ belongs to } \textit{incr-TIME}[f(n)] \textit{ if there exists } \mathsf{RAM} \\ \textit{programs } P_1 \textit{ and } P_2 \textit{ such that } \forall n \in \mathbb{N} \end{array}$

- P_1 efficiently processes I^o , where $|I^o| = n$ to compute D_{i^o} .
- Given update Δ on I and current data structure D_I in RAM, P_2 computes $\pi(I')$ and updates data structure D_I to $D_{I'}$ in $O(|\Delta|f(n))$ time.

General Definitions

Definition

 $\begin{array}{ll} \textit{incr-TIME}[f(n)]: & (\textit{analogous to } \mathsf{DTIME}[f(n)]) \\ \textit{Decision problem } \pi \textit{ belongs to } \textit{incr-TIME}[f(n)] \textit{ if there exists } \mathsf{RAM} \\ \textit{programs } P_1 \textit{ and } P_2 \textit{ such that } \forall n \in \mathbb{N} \end{array}$

- P_1 efficiently processes I^o , where $|I^o| = n$ to compute D_{i^o} .
- Given update Δ on I and current data structure D_I in RAM, P_2 computes $\pi(I')$ and updates data structure D_I to $D_{I'}$ in $O(|\Delta|f(n))$ time.

Basic Classes

$$ncr-CONSTANT-TIME, incr-LOG-TIME$$
$$incr-POLYLOGTIME = \bigcup_{k \ge 0} incr-TIME[\log^{k} n]$$

< A

- E - N

General Definitions

Definition

incr-**SPACE**[f(n)]: (analogous to DSPACE[f(n)]) Decision problem π belongs to *incr*-SPACE[f(n)] if there exists RAM programs P_1 and P_2 such that $\forall n \in \mathbb{N}$

글 🕨 🗦

General Definitions

Definition

incr-**SPACE**[f(n)]: (analogous to DSPACE[f(n)]) Decision problem π belongs to *incr*-SPACE[f(n)] if there exists RAM programs P_1 and P_2 such that $\forall n \in \mathbb{N}$

• P_1 efficiently processes I^o , where $|I^o| = n$ to compute D_{i^o} .

医下口 医下

General Definitions

Definition

 $\begin{array}{ll} \textit{incr-SPACE}[f(n)]: & (\textit{analogous to } \text{DSPACE}[f(n)]) \\ \text{Decision problem } \pi \text{ belongs to } \textit{incr-SPACE}[f(n)] \text{ if there exists } \text{RAM} \\ \text{programs } P_1 \text{ and } P_2 \text{ such that } \forall n \in \mathbb{N} \end{array}$

- P_1 efficiently processes I^o , where $|I^o| = n$ to compute D_{i^o} .
- Given update Δ on I and current data structure D_I in read only RAM, P_2 computes $\pi(I')$ and constructs data structure $D_{I'}$ on write-only-memory using $O(|\Delta|f(n))$ work space.

General Definitions

Definition

 $\begin{array}{ll} \textit{incr-SPACE}[f(n)]: & (\textit{analogous to } \text{DSPACE}[f(n)]) \\ \text{Decision problem } \pi \text{ belongs to } \textit{incr-SPACE}[f(n)] \text{ if there exists } \text{RAM} \\ \text{programs } P_1 \text{ and } P_2 \text{ such that } \forall n \in \mathbb{N} \end{array}$

- P_1 efficiently processes I^o , where $|I^o| = n$ to compute D_{i^o} .
- Given update Δ on I and current data structure D_I in read only RAM, P_2 computes $\pi(I')$ and constructs data structure $D_{I'}$ on write-only-memory using $O(|\Delta|f(n))$ work space.

Basic Classes

incr-POLYLOGSPACE =
$$\bigcup_{k>0}$$
 incr-SPACE[log^k n]

< A
Incremental Reductions

Motivation

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

Ξ.

Incremental Reductions

Motivation

• To compare hardness of solving two problems dynamically.

3) J

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_1 is not significant, main focus on P_2 .

э

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_1 is not significant, main focus on P_2 .
- Relative size of updates i.e. Δ_1 and Δ_2 .

(f) (g)

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_1 is not significant, main focus on P_2 .
- Relative size of updates i.e. Δ_1 and Δ_2 .
- Relative size of mapping i.e. π_1 and π_2 .

(*f*)

(g)

(p)

Incremental Reductions

Motivation

- To compare hardness of solving two problems dynamically.
- The complexity of P_1 is not significant, main focus on P_2 .
- Relative size of updates i.e. Δ_1 and Δ_2 .
- Relative size of mapping i.e. π_1 and π_2 .
- Represented as $\pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi_2$

(*f*)

(g)

(p)

Incremental Reducibility

Definition $\pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi_2$

Decision problem π_1 is *incrementally reducible* to π_2 if there exist transformation T and RAM programs P and Q such that

3

Incremental Reducibility

Definition $\pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi_2$

Decision problem π_1 is *incrementally reducible* to π_2 if there exist transformation T and RAM programs P and Q such that

• $T : \pi_1 \to \pi_2$, where $|\pi_2| = p(n)$ and $\pi_2(T(I)) = \pi_1(I)$.

医下口 医下

Incremental Reducibility

Definition $\pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi_2$

Decision problem π_1 is *incrementally reducible* to π_2 if there exist transformation T and RAM programs P and Q such that

- $T: \pi_1 \to \pi_2$, where $|\pi_2| = p(n)$ and $\pi_2(T(I)) = \pi_1(I)$.
- Given $I^o \in \pi_1$, P efficiently computes $T(I^o)$ and S_{I^o} .

Incremental Reducibility

Definition $\pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi_2$

Decision problem π_1 is *incrementally reducible* to π_2 if there exist transformation T and RAM programs P and Q such that

- $T: \pi_1 \to \pi_2$, where $|\pi_2| = p(n)$ and $\pi_2(T(I)) = \pi_1(I)$.
- Given $I^o \in \pi_1$, P efficiently computes $T(I^o)$ and S_{I^o} .
- Given update Δ_1 on I with S_I in RAM, Q computes Δ_2 on T(I) such that $|\Delta_2| \leq g(n)|\Delta_1|$ and modifies data structure S_I to $S_{I'}$ using $O(|\Delta|f(n))$ time.

・吊り くまり くまり

Incremental Reducibility

Definition $\pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi_2$

Decision problem π_1 is *incrementally reducible* to π_2 if there exist transformation T and RAM programs P and Q such that

- $T: \pi_1 \to \pi_2$, where $|\pi_2| = p(n)$ and $\pi_2(T(I)) = \pi_1(I)$.
- Given $I^o \in \pi_1$, P efficiently computes $T(I^o)$ and S_{I^o} .
- Given update Δ_1 on I with S_I in RAM, Q computes Δ_2 on T(I) such that $|\Delta_2| \leq g(n)|\Delta_1|$ and modifies data structure S_I to $S_{I'}$ using $O(|\Delta|f(n))$ time.

Theorem

If $\pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi_2$ and $\pi_2 \in incr-TIME[h(n)]$ then $\pi_1 \in incr-TIME[f(n) + g(n).h(p(n))]$.

イロト イポト イヨト イヨト

Outline

2 Preliminaries

3 Complete Problems

INRP Completeness

5 Space bounded Computations

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Some Definitions and Theorems

Definition

Decision problem π is incr[f(n), g(n), p(n)]-Complete for class C if

3) J

Some Definitions and Theorems

Definition

Decision problem π is incr[f(n), g(n), p(n)]-Complete for class C if

 $\ \, \mathbf{0} \ \, \pi \in \mathcal{C}.$

э

医下口 医下

< A

Some Definitions and Theorems

Definition

Decision problem π is incr[f(n), g(n), p(n)]-Complete for class C if

- $\ \, \mathbf{0} \ \, \pi \in \mathcal{C}.$

э

4 B N 4 B N

< 67 >

Some Definitions and Theorems

Definition

Decision problem π is incr[f(n), g(n), p(n)]-Complete for class C if

- $\ \, \mathbf{0} \ \, \pi \in \mathcal{C}.$

Definition (*incr*-PLTC)

incr-POLYLOGTIME-Complete =*incr*[$\log^{k_1} n, \log^{k_2}, n^{k_3}$]-Complete

4 B N 4 B N

3

Some Definitions and Theorems

Definition

Decision problem π is incr[f(n), g(n), p(n)]-Complete for class C if

- $\ \, \mathbf{0} \ \, \pi \in \mathcal{C}.$

Definition (*incr*-PLTC)

incr-POLYLOGTIME-Complete =*incr*[$\log^{k_1} n, \log^{k_2}, n^{k_3}$]-Complete

Theorem

A 3 b

э

Some Definitions and Theorems

Definition

Decision problem π is incr[f(n), g(n), p(n)]-Complete for class C if

- $\ \, \mathbf{0} \ \, \pi \in \mathcal{C}.$
- $\forall \pi_1 \in C, \ \pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi.$

Definition (*incr*-PLTC)

incr-POLYLOGTIME-Complete =*incr*[$\log^{k_1} n, \log^{k_2}, n^{k_3}$]-Complete

Theorem

• General *P*-Complete problems are *incr*-PLTC for *P*.

э

Some Definitions and Theorems

Definition

Decision problem π is incr[f(n), g(n), p(n)]-Complete for class C if

- $\ \, \mathbf{0} \ \, \pi \in \mathcal{C}.$
- $\forall \pi_1 \in C, \ \pi_1 \leq_{incr[f(n),g(n),p(n)]} \pi.$

Definition (*incr*-PLTC)

incr-POLYLOGTIME-Complete =*incr*[$\log^{k_1} n$, \log^{k_2} , n^{k_3}]-Complete

Theorem

- General *P*-Complete problems are *incr*-PLTC for *P*.
- There exist *P*-Complete problems in *incr*-POLYLOGTIME.

P-Completeness

Definition

P-Complete is a class complete for the class P, under two reductions

э

P-Completeness

Definition

P-Complete is a class complete for the class P, under two reductions

• Problems difficult to parallelize.

P-Hard problems in P under NC reductions. P=NC?

3

P-Completeness

Definition

P-Complete is a class complete for the class P, under two reductions

- Problems difficult to parallelize. P-Hard problems in P under NC reductions. P=NC?
- Problems difficult to solve in small space.
 P-Hard problems in P under L reductions. P=L?

3

P-Completeness

Definition

P-Complete is a class complete for the class P, under two reductions

- Problems difficult to parallelize. P-Hard problems in P under NC reductions. P=NC?
- Problems difficult to solve in small space.
 P-Hard problems in P under L reductions. P=L?

Comments

э

P-Completeness

Definition

P-Complete is a class complete for the class P, under two reductions

- Problems difficult to parallelize. P-Hard problems in P under NC reductions. P=NC?
- Problems difficult to solve in small space.
 P-Hard problems in P under L reductions. P=L?

Comments

• L reduction are weaker than NC reductions.

P-Completeness

Definition

P-Complete is a class complete for the class P, under two reductions

- Problems difficult to parallelize. P-Hard problems in P under NC reductions. P=NC?
- Problems difficult to solve in small space.
 P-Hard problems in P under L reductions. P=L?

- L reduction are weaker than NC reductions.
- P-Complete under $L \subseteq$ P-Complete under NC.

P-Completeness

Definition

P-Complete is a class complete for the class P, under two reductions

- Problems difficult to parallelize. P-Hard problems in P under NC reductions. P=NC?
- Problems difficult to solve in small space.
 P-Hard problems in P under L reductions. P=L?

Comments

- L reduction are weaker than NC reductions.
- P-Complete under $L \subseteq$ P-Complete under NC.
- We consider L reduction variant.

A 3 b

P-Completeness and *incr*-POLYLOGTIME-Completeness

Circuit Value Problem

Given a circuit in form of a DAG, where each node is either input, output or gate(AND,OR,NOT). Given an assignment of 0 and 1 for each input node, aim is to find value of an output node.

P-Completeness and *incr*-POLYLOGTIME-Completeness

Circuit Value Problem

Given a circuit in form of a DAG, where each node is either input, output or gate(AND,OR,NOT). Given an assignment of 0 and 1 for each input node, aim is to find value of an output node.

Theorem

CVP is P-Complete under logspace reduction for P. [Lardner 1975] For any problem $\pi \in P$, a circuit whose inputs are the bits of input instance of π and simulates turing machine use to solve problem π .

P-Completeness and *incr*-POLYLOGTIME-Completeness

Circuit Value Problem

Given a circuit in form of a DAG, where each node is either input, output or gate(AND,OR,NOT). Given an assignment of 0 and 1 for each input node, aim is to find value of an output node.

Theorem

CVP is P-Complete under logspace reduction for P. [Lardner 1975] For any problem $\pi \in P$, a circuit whose inputs are the bits of input instance of π and simulates turing machine use to solve problem π .

Reduction

One bit change in instance of π refers to exactly one bit change in instance of CV, i.e. the corresponding input bit. Done in constant time, so CV is incr-POLYLOGTIME-Compelete for P.

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

э

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

Comments

• All mentions here are for some given P-Complete problems.

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in *incr*-POLYLOGTIME.

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in *incr*-POLYLOGTIME.
- However those are not *incr*-POLYLOGTIME-Complete.

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in *incr*-POLYLOGTIME.
- However those are not *incr*-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in *incr*-POLYLOGTIME.
- However those are not *incr*-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that
 - It remains P-Complete.
P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in *incr*-POLYLOGTIME.
- However those are not *incr*-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that
 - It remains P-Complete.
 - It becomes incr-POLYLOGTIME.

P-Completeness and *incr*-POLYLOGTIME-Completeness

Corollary

If the P-Complete problems as CVP are in *incr*-POLYLOGTIME then all of P are in *incr*-POLYLOGTIME.

- All mentions here are for some given P-Complete problems.
- Some P-Complete problems are in incr-POLYLOGTIME.
- However those are not *incr*-POLYLOGTIME-Complete.
- Infact any P-Complete problem can be converted such that
 - It remains P-Complete.
 - It becomes incr-POLYLOGTIME.
 - It is no longer incr-POLYLOGTIME-Complete.

P-Complete problems in *incr*-POLYLOGTIME

Construction

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

a

э

∃ >

P-Complete problems in *incr*-POLYLOGTIME

Construction

• Consider a given P-Complete language L over $\sigma = \{0, 1\}$.

3

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.
- We construct a language $L' = \{w^{|w|} | w \in L\}.$

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.
- We construct a language $L' = \{w^{|w|} | w \in L\}.$

Comments

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.
- We construct a language $L' = \{w^{|w|} | w \in L\}.$

Comments

• By construction if |w| = n, $w^{|w|} = n^2$.

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.
- We construct a language $L' = \{w^{|w|} | w \in L\}.$

- By construction if |w| = n, $w^{|w|} = n^2$.
- L is reducible to L' under L and NC reduction.

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.
- We construct a language $L' = \{w^{|w|} | w \in L\}.$

- By construction if |w| = n, $w^{|w|} = n^2$.
- L is reducible to L' under L and NC reduction.
- L' is solvable in $O(n^c) = O(n'^{c/2})$ and hence is in P.

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.
- We construct a language $L' = \{w^{|w|} | w \in L\}.$

- By construction if |w| = n, $w^{|w|} = n^2$.
- L is reducible to L' under L and NC reduction.
- L' is solvable in $O(n^c) = O(n'^{c/2})$ and hence is in P.
- Divide Update work in O(n) parts to get *incr*-TIME $\{n^{c-1}\}$.

P-Complete problems in *incr*-POLYLOGTIME

Construction

- Consider a given P-Complete language L over $\sigma = \{0, 1\}$.
- Let it be in DTIME $\{n^c\}$ and hence *incr*-TIME $\{n^c\}$.
- We construct a language $L' = \{w^{|w|} | w \in L\}.$

- By construction if |w| = n, $w^{|w|} = n^2$.
- L is reducible to L' under L and NC reduction.
- L' is solvable in $O(n^c) = O(n'^{c/2})$ and hence is in P.
- Divide Update work in O(n) parts to get *incr*-TIME{ n^{c-1} }.
- Repeated to get P-Complete Problem in *incr*-POLYLOGTIME.

P-Complete problems in *incr*-POLYLOGTIME

Summary of Algorithm

э

-

P-Complete problems in *incr*-POLYLOGTIME

Summary of Algorithm

• Let S_L be a subroutine that checks for membership in L.

3

P-Complete problems in *incr*-POLYLOGTIME

- Let S_L be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_1, a_2, a_3, ..., a_n$.

P-Complete problems in *incr*-POLYLOGTIME

- Let S_L be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_1, a_2, a_3, ..., a_n$.
- Return 0 untill n/2 of a_i 's are same.

P-Complete problems in *incr*-POLYLOGTIME

- Let S_L be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_1, a_2, a_3, ..., a_n$.
- Return 0 untill n/2 of a_i 's are same.
- Then start process S_L part wise in each update.

P-Complete problems in *incr*-POLYLOGTIME

- Let S_L be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_1, a_2, a_3, ..., a_n$.
- Return 0 untill n/2 of a_i 's are same.
- Then start process S_L part wise in each update.
- Which will take atlaest n/2 steps to form $w^{|w|}$.

P-Complete problems in *incr*-POLYLOGTIME

- Let S_L be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_1, a_2, a_3, ..., a_n$.
- Return 0 untill n/2 of a_i 's are same.
- Then start process S_L part wise in each update.
- Which will take atlaest n/2 steps to form $w^{|w|}$.
- Each update takes $O(n^c/n)$ times.

P-Complete problems in *incr*-POLYLOGTIME

- Let S_L be a subroutine that checks for membership in L.
- Let the string be divided into equal sized $a_1, a_2, a_3, ..., a_n$.
- Return 0 untill n/2 of a_i 's are same.
- Then start process S_L part wise in each update.
- Which will take atlaest n/2 steps to form $w^{|w|}$.
- Each update takes $O(n^c/n)$ times.
- Only problem is figuring out that n/2 of a_i 's are same.

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

3 x 3

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

• Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .
- Each set S_j stores two flags f_j and g_j denoting half and full.

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .
- Each set S_j stores two flags f_j and g_j denoting half and full.
- Each set stores majority word w_j for set that is alteast half.

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .
- Each set S_j stores two flags f_j and g_j denoting half and full.
- Each set stores majority word w_j for set that is alteast half.

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .
- Each set S_j stores two flags f_j and g_j denoting half and full.
- Each set stores majority word w_j for set that is alteast half.

Algorithm

• If atleast one g_i is 0 answer 0.

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .
- Each set S_j stores two flags f_j and g_j denoting half and full.
- Each set stores majority word w_j for set that is alteast half.

- If atleast one g_i is 0 answer 0.
- If and all f_j are 1 and S_L not started, start S_L on $w_1...w_k$.

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .
- Each set S_j stores two flags f_j and g_j denoting half and full.
- Each set stores majority word w_j for set that is alteast half.

- If atleast one g_i is 0 answer 0.
- If and all f_j are 1 and S_L not started, start S_L on $w_1...w_k$.
- If atleast one f_j is 0 stop S_L .

P-Complete problems in *incr*-POLYLOGTIME

Data Structure

- Divide each a_i into k words of size log n, $a_i^1, ..., a_i^k$.
- Construct k sets, where S_j has jth word of each a_i .
- Each set S_j stores two flags f_j and g_j denoting half and full.
- Each set stores majority word w_j for set that is alteast half.

- If atleast one g_i is 0 answer 0.
- If and all f_j are 1 and S_L not started, start S_L on $w_1...w_k$.
- If atleast one f_j is 0 stop S_L .
- If all g_j equal to 1 return answer of S_L .

P-Complete problems in *incr*-POLYLOGTIME

Correctness

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

< A

31.5

э

3 N

P-Complete problems in *incr*-POLYLOGTIME

Correctness

• To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.

P-Complete problems in *incr*-POLYLOGTIME

Correctness

- To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.

P-Complete problems in *incr*-POLYLOGTIME

Correctness

- To prove that S_L is completed on $w_1 w_2 \dots w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

P-Complete problems in *incr*-POLYLOGTIME

Correctness

- To prove that S_L is completed on $w_1 w_2 \dots w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

Maintaining S_j

< A >

医下口 医下

P-Complete problems in *incr*-POLYLOGTIME

Correctness

- To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

Maintaining S_j

• Each update acts on only one S_j .

< A >

4 注入
Correctness

- To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

Maintaining S_j

- Each update acts on only one S_j .
- Each word in S_j ie. $a_j^1, ..., a_j^n$ are stored at leaves.

4 注入

Correctness

- To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

Maintaining S_j

- Each update acts on only one S_j .
- Each word in S_j ie. $a_j^1, ..., a_j^n$ are stored at leaves.
- They are lexicographically sorted.

< 6 >

A 3 b

Correctness

- To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

Maintaining S_j

- Each update acts on only one S_j .
- Each word in S_j ie. $a_j^1, ..., a_j^n$ are stored at leaves.
- They are lexicographically sorted.
- An update is performed as deletion followed by insertion of a_i^i .

・吊り ・ラト ・ラト

Correctness

- To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

Maintaining S_j

- Each update acts on only one S_j .
- Each word in S_j ie. $a_j^1, ..., a_j^n$ are stored at leaves.
- They are lexicographically sorted.
- An update is performed as deletion followed by insertion of a_i^i .
- Internal node store *max*, *left*,*right* and corresponding words.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Correctness

- To prove that S_L is completed on $w_1w_2...w_k$ when all $g_j = 1$.
- Starts with all $f_j = 1$, take atleast n/2 steps till all $g_j = 1$.
- Each S_j maintained dynamically using augmented balanced BST T_j .

Maintaining S_j

- Each update acts on only one S_j .
- Each word in S_j ie. $a_j^1, ..., a_j^n$ are stored at leaves.
- They are lexicographically sorted.
- An update is performed as deletion followed by insertion of a_i^i .
- Internal node store max, left, right and corresponding words.
- Root visited to check for f_i or g_i after an update.

イロト イポト イヨト イヨト

э

P-Complete problems in *incr*-POLYLOGTIME

Comments

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

< A

< ∃→

э

12 N

P-Complete problems in *incr*-POLYLOGTIME

Comments

• Some P-Complete problems are not *incr*-PLTC.

글 🕨 🗦

P-Complete problems in *incr*-POLYLOGTIME

Comments

- Some P-Complete problems are not *incr*-PLTC.
- NC and L reductions do not capture this extensions.

P-Complete problems in *incr*-POLYLOGTIME

- Some P-Complete problems are not *incr*-PLTC.
- NC and L reductions do not capture this extensions.
- Hence some new more restrictive reduction required.

P-Complete problems in *incr*-POLYLOGTIME

- Some P-Complete problems are not *incr*-PLTC.
- NC and L reductions do not capture this extensions.
- Hence some new more restrictive reduction required.
- Important to address the redundancy issue.

P-Complete problems in *incr*-POLYLOGTIME

- Some P-Complete problems are not *incr*-PLTC.
- NC and L reductions do not capture this extensions.
- Hence some new more restrictive reduction required.
- Important to address the redundancy issue.
- Stricter definition of P-Completeness in terms of projections.

Outline

Problem Description

2 Preliminaries

3 Complete Problems

A NRP Completeness

5 Space bounded Computations

< A >

< 3 > < 3 >

э

Projection of a function

Definition

A function $f(x_1, x_2, ..., x_n)$ is called a projection of a function $g(y_1, y_2, ..., y_m)$ if

3) J

Projection of a function

Definition

A function $f(x_1, x_2, ..., x_n)$ is called a projection of a function $g(y_1, y_2, ..., y_m)$ if

• There is a mapping $\sigma: \{y_1, ..., y_m\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$

Projection of a function

Definition

A function $f(x_1, x_2, ..., x_n)$ is called a projection of a function $g(y_1, y_2, ..., y_m)$ if

- There is a mapping $\sigma : \{y_1, ..., y_m\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$
- Where $f(x_1, x_2, ..., x_n) = g(\sigma(y_1), \sigma(y_2), ..., \sigma(y_m))$

きょう きょ

Projection of a function

Definition

A function $f(x_1, x_2, ..., x_n)$ is called a projection of a function $g(y_1, y_2, ..., y_m)$ if

- There is a mapping $\sigma : \{y_1, ..., y_m\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$
- Where $f(x_1, x_2, ..., x_n) = g(\sigma(y_1), \sigma(y_2), ..., \sigma(y_m))$

Comments

Projection of a function

Definition

A function $f(x_1, x_2, ..., x_n)$ is called a projection of a function $g(y_1, y_2, ..., y_m)$ if

- There is a mapping $\sigma : \{y_1, ..., y_m\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$
- Where $f(x_1, x_2, ..., x_n) = g(\sigma(y_1), \sigma(y_2), ..., \sigma(y_m))$

Comments

• Used by [Skyum and Valiant 1981] to define reduction.

-

Projection of a function

Definition

A function $f(x_1, x_2, ..., x_n)$ is called a projection of a function $g(y_1, y_2, ..., y_m)$ if

- There is a mapping $\sigma : \{y_1, ..., y_m\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$
- Where $f(x_1, x_2, ..., x_n) = g(\sigma(y_1), \sigma(y_2), ..., \sigma(y_m))$

Comments

- Used by [Skyum and Valiant 1981] to define reduction.
- Even though g is derived from f we get exactly how many bits affected.

化压力 化压力

-

Reduction based on Projection

Definition

 $\pi_1 \leq_{proj} \pi_2$

 π_1 is projection reducible to π_2 if there is a polynomial p(n) and a polynomially computable family of mappings $\sigma = {\sigma_n}_{n \ge 1}$

$$\sigma_n: \{y_1, ..., y_{p(n)}\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$$

э

Reduction based on Projection

Definition

 $\pi_1 \leq_{proj} \pi_2$

 π_1 is projection reducible to π_2 if there is a polynomial p(n) and a polynomially computable family of mappings $\sigma = {\sigma_n}_{n \ge 1}$

$$\sigma_n: \{y_1, ..., y_{p(n)}\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$$

• *n* bit instance of π_1 is $x_1, x_2, ..., x_n$.

э

Reduction based on Projection

Definition

 $\pi_1 \leq_{proj} \pi_2$

 π_1 is projection reducible to π_2 if there is a polynomial p(n) and a polynomially computable family of mappings $\sigma = {\sigma_n}_{n \ge 1}$

$$\sigma_n: \{y_1, ..., y_{p(n)}\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$$

• *n* bit instance of π_1 is $x_1, x_2, ..., x_n$.

• p(n) bit instance of π_2 is $\sigma_n(y_1), \sigma_n(y_2), ..., \sigma_n(y_{p(n)})$.

Reduction based on Projection

Definition

 $\pi_1 \leq_{proj} \pi_2$

 π_1 is projection reducible to π_2 if there is a polynomial p(n) and a polynomially computable family of mappings $\sigma = {\sigma_n}_{n \ge 1}$

$$\sigma_n: \{y_1, ..., y_{p(n)}\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$$

- *n* bit instance of π_1 is $x_1, x_2, ..., x_n$.
- p(n) bit instance of π_2 is $\sigma_n(y_1), \sigma_n(y_2), ..., \sigma_n(y_{p(n)})$.
- $\pi_1(X) = 1$ iff $pi_2(\sigma(Y)) = 1$

Reduction based on Projection

Definition

 $\pi_1 \leq_{proj} \pi_2$

 π_1 is projection reducible to π_2 if there is a polynomial p(n) and a polynomially computable family of mappings $\sigma = {\sigma_n}_{n \ge 1}$

$$\sigma_n: \{y_1, ..., y_{p(n)}\} \rightarrow \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}, 0, 1\}$$

• *n* bit instance of π_1 is $x_1, x_2, ..., x_n$.

• p(n) bit instance of π_2 is $\sigma_n(y_1), \sigma_n(y_2), ..., \sigma_n(y_{p(n)})$.

•
$$\pi_1(X) = 1$$
 iff $pi_2(\sigma(Y)) = 1$

 For each y_i the corresponding bit on instance of π₂ is either some constant or one of x_i or x_i

Reduction based on Projection

Comments

Shahbaz Khan, PhD CSE Complexity Models for Incremental Computation

э

-

Reduction based on Projection

Comments

• Intuitively π_1 is a projection of π_2 .

э

Reduction based on Projection

Comments

- Intuitively π_1 is a projection of π_2 .
- Almost same as Karp-Reduction except gives a notion of bits of *I*' being directly influenced by bits of *I*.

э

Reduction based on Projection

Comments

- Intuitively π_1 is a projection of π_2 .
- Almost same as Karp-Reduction except gives a notion of bits of *I*' being directly influenced by bits of *I*.

Definition

A problem π is $<_{proj}$ complete for a class C, if

Reduction based on Projection

Comments

- Intuitively π_1 is a projection of π_2 .
- Almost same as Karp-Reduction except gives a notion of bits of *I*' being directly influenced by bits of *I*.

Definition

- A problem π is $<_{\textit{proj}}$ complete for a class C, if
 - π is in C.

Reduction based on Projection

Comments

- Intuitively π_1 is a projection of π_2 .
- Almost same as Karp-Reduction except gives a notion of bits of *I*' being directly influenced by bits of *I*.

Definition

A problem π is $<_{proj}$ complete for a class C, if

- π is in C.
- There is a function p(n) bounded above by a polynomial in n.

Reduction based on Projection

Comments

- Intuitively π_1 is a projection of π_2 .
- Almost same as Karp-Reduction except gives a notion of bits of *I*' being directly influenced by bits of *I*.

Definition

- A problem π is $<_{proj}$ complete for a class C, if
 - π is in C.
 - There is a function p(n) bounded above by a polynomial in n.
 - ∀π₁ ∈ C, π₁ <_{proj} π by a projection σ = {σ_n}_{n≥1} bounded by polynomial p.

Non-Redundant Projection Completeness

Definition

Let π_1 and π be two decision problems where $\pi_1 \leq_{proj} \pi$ We say π is non-redundant w.r.t. π_1 if there is poly time computable family $\sigma = \{\sigma_n\}_{n\geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_i, |\sigma_n^{-1}(x_i, \overline{x_i})| = O(\log^k n)$

Non-Redundant Projection Completeness

Definition

Let π_1 and π be two decision problems where $\pi_1 \leq_{proj} \pi$ We say π is non-redundant w.r.t. π_1 if there is poly time computable family $\sigma = \{\sigma_n\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_i, |\sigma_n^{-1}(x_i, \overline{x_i})| = O(\log^k n)$

Non-Redundant Projection Completeness

Definition

Let π_1 and π be two decision problems where $\pi_1 \leq_{proj} \pi$ We say π is non-redundant w.r.t. π_1 if there is poly time computable family $\sigma = \{\sigma_n\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_i, |\sigma_n^{-1}(x_i, \overline{x_i})| = O(\log^k n)$

Comments

• Intuitively how many bits of Y are affected by single bit x_i .

Non-Redundant Projection Completeness

Definition

Let π_1 and π be two decision problems where $\pi_1 \leq_{proj} \pi$ We say π is non-redundant w.r.t. π_1 if there is poly time computable family $\sigma = \{\sigma_n\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_i, |\sigma_n^{-1}(x_i, \overline{x_i})| = O(\log^k n)$

- Intuitively how many bits of Y are affected by single bit x_i .
- Non-Redundant if bounded by poly logarithmic in *n*.

Non-Redundant Projection Completeness

Definition

Let π_1 and π be two decision problems where $\pi_1 \leq_{proj} \pi$ We say π is non-redundant w.r.t. π_1 if there is poly time computable family $\sigma = \{\sigma_n\}_{n\geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_i, |\sigma_n^{-1}(x_i, \overline{x_i})| = O(\log^k n)$

- Intuitively how many bits of Y are affected by single bit x_i .
- Non-Redundant if bounded by poly logarithmic in *n*.
- All NRP-Complete are incr-POLYLOGTIME-Complete.

Non-Redundant Projection Completeness

Definition

Let π_1 and π be two decision problems where $\pi_1 \leq_{proj} \pi$ We say π is non-redundant w.r.t. π_1 if there is poly time computable family $\sigma = \{\sigma_n\}_{n\geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_i, |\sigma_n^{-1}(x_i, \overline{x_i})| = O(\log^k n)$

Comments

- Intuitively how many bits of Y are affected by single bit x_i .
- Non-Redundant if bounded by poly logarithmic in n.
- All NRP-Complete are *incr*-POLYLOGTIME-Complete.

In preprocessing we calculate this projection map.
Non-Redundant Projection Completeness

Definition

Let π_1 and π be two decision problems where $\pi_1 \leq_{proj} \pi$ We say π is non-redundant w.r.t. π_1 if there is poly time computable family $\sigma = \{\sigma_n\}_{n \geq 1}$ of mappings and a number $k \in \mathbb{N}$ such that $\forall x_i, |\sigma_n^{-1}(x_i, \overline{x_i})| = O(\log^k n)$

Comments

- Intuitively how many bits of Y are affected by single bit x_i .
- Non-Redundant if bounded by poly logarithmic in *n*.
- All NRP-Complete are *incr*-POLYLOGTIME-Complete.
 - In preprocessing we calculate this projection map.
 - e Hence one bit change can easily be updated using the map.

Outline

Problem Description

2 Preliminaries

3 Complete Problems

INRP Completeness

< 🗇 🕨

< ∃> < ∃>

э

For Computation from Scratch

Theorem

$$NSPACE[s(n)] \subseteq DTIME[k^{log(n)+s(n)}] = DTIME[n.2^{s(n)}]$$

문 > 문

For Computation from Scratch

Theorem

$$\mathsf{NSPACE}[s(n)] \subseteq \mathsf{DTIME}[k^{\log(n)+s(n)}] = \mathsf{DTIME}[n.2^{s(n)}]$$

Proof

Given a k string NDTM M with input and output that decides L in space s(n).

-

э

For Computation from Scratch

Theorem

NSPACE[
$$s(n)$$
] \subseteq **DTIME**[$k^{\log(n)+s(n)}$] =**DTIME**[$n.2^{s(n)}$]

Proof

Given a k string NDTM M with input and output that decides L in space s(n).

 Configuration depends on <State,I/O Head, Work Tapes, Work Tape Head>

For Computation from Scratch

Theorem

$$\mathsf{NSPACE}[s(n)] \subseteq \mathsf{DTIME}[k^{\log(n)+s(n)}] = \mathsf{DTIME}[n.2^{s(n)}]$$

Proof

Given a k string NDTM M with input and output that decides L in space s(n).

- Configuration depends on <State,I/O Head, Work Tapes, Work Tape Head>
- Number of configurations $States * (n + 1) * \Sigma^{k*s(n)} = O(n.c^{s(n)}).$

For Computation from Scratch

Theorem

$$\mathsf{NSPACE}[s(n)] \subseteq \mathsf{DTIME}[k^{\log(n)+s(n)}] = \mathsf{DTIME}[n.2^{s(n)}]$$

Proof

Given a k string NDTM M with input and output that decides L in space s(n).

- Configuration depends on <State,I/O Head, Work Tapes, Work Tape Head>
- Number of configurations $States * (n + 1) * \Sigma^{k*s(n)} = O(n.c^{s(n)}).$
- Create a configuration graph, $x \in L$ if there is a path to accepting configuration.

For Incremental Computation

Theorem

Given s(n) is computible in $O(n^{O(1)})$ time such that $s(n) = O(\log n)$ **NSPACE** $[s(n)] \subseteq incr-TIME[\log n.2^{s(n)}]$

3

For Incremental Computation

Theorem

Given s(n) is computible in $O(n^{O(1)})$ time such that $s(n) = O(\log n)$ NSPACE $[s(n)] \subseteq incr$ -TIME $[\log n.2^{s(n)}]$

Construction

For Incremental Computation

Theorem

Given s(n) is computible in $O(n^{O(1)})$ time such that $s(n) = O(\log n)$ **NSPACE** $[s(n)] \subseteq incr-TIME[\log n.2^{s(n)}]$

Construction

Consider an NDTM M with read only input tape $x_0 = \#, x_1, ..., x_n, x_{n+1} = \#$, such that

• M accepts X only if input head leaves the input tape part and rejects otherwise.

For Incremental Computation

Theorem

Given s(n) is computible in $O(n^{O(1)})$ time such that $s(n) = O(\log n)$ NSPACE $[s(n)] \subseteq incr-TIME[\log n.2^{s(n)}]$

Construction

- M accepts X only if input head leaves the input tape part and rejects otherwise.
- Semi-Configuration S of M is description excluding input head.

For Incremental Computation

Theorem

Given s(n) is computible in $O(n^{O(1)})$ time such that $s(n) = O(\log n)$ NSPACE $[s(n)] \subseteq incr-TIME[\log n.2^{s(n)}]$

Construction

- M accepts X only if input head leaves the input tape part and rejects otherwise.
- Semi-Configuration S of M is description excluding input head.
- Current configuration thus depends on (S, x_i) .

For Incremental Computation

Theorem

Given s(n) is computible in $O(n^{O(1)})$ time such that $s(n) = O(\log n)$ NSPACE $[s(n)] \subseteq incr-TIME[\log n.2^{s(n)}]$

Construction

- M accepts X only if input head leaves the input tape part and rejects otherwise.
- Semi-Configuration S of M is description excluding input head.
- Current configuration thus depends on (S, x_i) .
- Consider binary relation of form R_{i,j}: S × {I, r} → S × {L, R}
 < u, I > R_{ij} < v, R >: If M enters input tape region x_i...x_j from left with state u it leaves the region for first time from right with state v.

For Incremental Computation

Proof

For Incremental Computation

Proof

Clearly R_{ij} can be recursively defined in terms of R_{ik} and R_{k+1j} by transitive closure

• We maintain R in form of binary tree with root R_{0n+1} .

For Incremental Computation

Proof

- We maintain R in form of binary tree with root R_{0n+1} .
- $R_{i,j}$ has two children R_{ik} and R_{k+1j} where $k = \lfloor \frac{i+j}{2} \rfloor$.

For Incremental Computation

Proof

- We maintain R in form of binary tree with root R_{0n+1} .
- $R_{i,j}$ has two children R_{ik} and R_{k+1j} where $k = \lfloor \frac{i+j}{2} \rfloor$.
- Thus we have a binary tree of height $O(\log n)$

For Incremental Computation

Proof

- We maintain R in form of binary tree with root R_{0n+1} .
- $R_{i,j}$ has two children R_{ik} and R_{k+1j} where $k = \lfloor \frac{i+j}{2} \rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root R_{0n+1} .

For Incremental Computation

Proof

- We maintain R in form of binary tree with root R_{0n+1} .
- $R_{i,j}$ has two children R_{ik} and R_{k+1j} where $k = \lfloor \frac{i+j}{2} \rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root R_{0n+1} .
- An update updates exactly $O(\log n)$ nodes.

For Incremental Computation

Proof

- We maintain R in form of binary tree with root R_{0n+1} .
- $R_{i,j}$ has two children R_{ik} and R_{k+1j} where $k = \lfloor \frac{i+j}{2} \rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root R_{0n+1} .
- An update updates exactly $O(\log n)$ nodes.
- Each update done by transitive closure on set of size $O(2^{O(s(n))})$.

For Incremental Computation

Proof

- We maintain R in form of binary tree with root R_{0n+1} .
- $R_{i,j}$ has two children R_{ik} and R_{k+1j} where $k = \lfloor \frac{i+j}{2} \rfloor$.
- Thus we have a binary tree of height $O(\log n)$
- Query can be made at root R_{0n+1} .
- An update updates exactly $O(\log n)$ nodes.
- Each update done by transitive closure on set of size $O(2^{O(s(n))})$.
- Hence total time is $O(\log n2^{O(s(n))})$.