CS 640 Course Presentation

Undirected Connectivity in
Log Space - O. Reingold

Keerti Choudhary

Contents

- Background

« Main Idea

- Expander Graphs
- Powering
- Bounding the degree

- Rotation Map

- Replacement Product
- Zig-zag Product
- Main Transformation

- Implementation

Background

Background

- SL1is class of problems solvable by symmetric non-
deterministic TM in log space.

Background

- SL1is class of problems solvable by symmetric non-
deterministic TM in log space.

- L.C SL C NL.

Background

- SL1is class of problems solvable by symmetric non-
deterministic TM in log space.

- L.C SL C NL.

- USTCON (Undirected s-t connectivity) was proved
to be complete for class SL.

Background

- SL1is class of problems solvable by symmetric non-
deterministic TM in log space.

- L.C SL C NL.

- USTCON (Undirected s-t connectivity) was proved
to be complete for class SL.

- This paper proves that USTCON can be solved in log
space, thus shows L=SL.

Main Idea

Main Idea

- Suppose a undirected graph G has max degree
bounded by ‘D’ and diameter bounded by ‘p’.

Main Idea

- Suppose a undirected graph G has max degree
bounded by ‘D’ and diameter bounded by ‘p’.

+ Then s-t connectivity can be solved in O(plog D)
space.

Main Idea

- Suppose a undirected graph G has max degree
bounded by ‘D’ and diameter bounded by ‘p’.

+ Then s-t connectivity can be solved in O(plog D)
space.

- So, we will convert G to a new graph satisfying
- degree bounded by some constant c

- diameter is O(logn).

Expander Graphs

Expander Graphs

- A D-regular graph is e-expander if any set S of size
less than n/2 has closed neighbourhood of size at
least (1+ €)|S].

Expander Graphs

- A D-regular graph is e-expander if any set S of size

less than n/2 has closed neighbourhood of size at
least (1+ €)|S].

- Diameter of such graphs is bounded by 2log;. . n .

Expander Graphs

- A D-regular graph is e-expander if any set S of size
less than n/2 has closed neighbourhood of size at
least (1+ €)|S].

- Diameter of such graphs is bounded by 2log;. . n .

- Idea is to convert G to an expander graph whose
degree is also bounded.

Expander Graphs

Expander Graphs

- Regular graphs with small second largest eigen
value (A) of normalised adjacency matrix.

Expander Graphs

- Regular graphs with small second largest eigen
value (A) of normalised adjacency matrix.

- For every D, A (\<1), there exist £€>0 such that all
D-regular graphs with second largest eigen value
bounded by A are e-expander.

Expander Graphs

- Regular graphs with small second largest eigen
value (A) of normalised adjacency matrix.

- For every D, A (\<1), there exist £€>0 such that all
D-regular graphs with second largest eigen value
bounded by A are e-expander.

- To convert G to an expander graph we need to
bound its A.

Powering

Powering

- Squaring of the graph reduces the second largest
eigen value to \2.

Powering

- Squaring of the graph reduces the second largest
eigen value to \2.

+ As \(G) < 1—-1/DN?, so squaring the graph O(log N)
times would bound .

Powering

- Squaring of the graph reduces the second largest
eigen value to \2.

+ As \(G) < 1—-1/DN?, so squaring the graph O(log N)
times would bound .

- But the cost is that degree will also be squared.

Bounding the degree

Bounding the degree

Two methods -

Bounding the degree

Two methods -

1. Replacement Product

Bounding the degree

Two methods -
1. Replacement Product

2. Zig-zag Product

Rotation Map

In graph G, Rotg(u,i) = (v,J)
iff, 3

. 4th vertex in adjacency list
of uis v, and

. jthvertex in adjacency list
of vis u. Rotg(u,3) = (v,2)

ROtG('U, 2) — (’U,, 3)

Replacement Product

Replacement Product

- Given a D-regular graph G, and a d-regular (d<<D)
connected graph H on D vertices. Replace each
vertex of G by H.

Replacement Product

Rotg(u,5) = (v, 3)

Replacement Product

Rotg(u,5) = (v, 3)

Replacement Product

- Given a D-regular graph G, and a d-regular (d<<D)
connected graph H on D vertices. Replace each
vertex of G by H.

- New graph is a d+1 regular.

Z1g-zag Product

Z1g-zag Product

(a,d) is an edge in G@H 1if a—b—c—d isa pathin
replacement product satistying -

Z1g-zag Product

(a,d) is an edge in G@H 1if a—b—c—d isa pathin
replacement product satistying -

- (a,b) and (c,d) are edges in different instances of H

Z1g-zag Product

(a,d) is an edge in G@H 1if a—b—c—d isa pathin
replacement product satistying -

- (a,b) and (c,d) are edges in different instances of H

» (b,c) corresponds to edge of G.

Z1g-zag Product

(a,d) is an edge in G@H 1if a—b—c—d isa pathin

replacement product satistying -

- (a,b) and (c,d) are edges in different instances of H

» (b,c) corresponds to edge of G.

n| ¢ —p |
/

r

G@H

Z1g-zag Product

Z1g-zag Product

- So, if G is D-regular and H is d-regular than, G@H
is d*-regular.

Z1g-zag Product

- So, if G is D-regular and H is d-regular than, G@H
is d*-regular.

- THEOREM -If Gis an (N, D, \)-graph and H is a
(D, d, a)-graph, then

AMG@H)<1-Z(1-a*)(1-2A)

Z1g-zag Product

- So, if G is D-regular and H is d-regular than, G@H
is d*-regular.

- THEOREM -If Gis an (N, D, \)-graph and H is a
(D, d, a)-graph, then

AMG@H)<1-Z(1-a*)(1-2A)

- Here A of the new graph is bounded above.

Main Transformation

Main Transformation

. G is non-bipartite D'6-regular graph on N vertices,

H is D-regular graph on D' vertices. Also, \(H) = 1.

Main Transformation

. G is non-bipartite D'6-regular graph on N vertices,

H is D-regular graph on D' vertices. Also, \(H) = 1.

- Let | = 2[log(DN?)]. Fori=1tol, define
G; = (Gi-1®H)"

Main Transformation

. G is non-bipartite D'6-regular graph on N vertices,

H is D-regular graph on D' vertices. Also, \(H) = 1.

- Let | = 2[log(DN?)]. Fori=1tol, define
G; = (Gi-1®H)"

- Then, A\(G)) < 3.

Main Transformation

. G is non-bipartite D'6-regular graph on N vertices,

H is D-regular graph on D' vertices. Also, \(H) = 1.

- Let | = 2[log(DN?)]. Fori=1tol, define
G; = (Gi-1®H)"

- Then, A\(G)) < 3.

» Proof Idea:

Main Transformation

. G is non-bipartite D'6-regular graph on N vertices,

H is D-regular graph on D' vertices. Also, \(H) = 1.

- Let | = 2[log(DN?)]. Fori=1tol, define
G; = (Gi-1®H)"

- Then, A\(G)) < 3.

+ ProotIdea: - X\(Go)<1-—1/D'N?

Main Transformation

- Gy is non-bipartite D%-regular graph on N vertices,

H is D-regular graph on D' vertices. Also, \(H) = 1.

- Let | = 2[log(DN?)]. Fori=1tol, define
G; = (Gi-1®H)"

- Then, A\(G)) < 3.
+ ProofIdea: - X\(Gg)<1-1/D'N?

-)\(Gz) < m&${)\(Gi_1)2, 1/2}

Main Transformation

Converting G to regular graph G of size N=n" :

Main Transformation

Converting G to regular graph G of size N=n" :

- Each vertex (u) is replaced by a n-cycle (u1, ug, ..., uy).

Main Transformation

Converting G to regular graph G of size N=n" :
- Each vertex (u) 1s replaced by a n-cycle (u1, ug, ..., un).

- It Rotg(u,i) = (v,5), then (ui,v;) is an edge in Gy.

Main Transformation

Converting G to regular graph G of size N=n" :
- Each vertex (u) 1s replaced by a n-cycle (u1, ug, ..., un).
- If Rotg(u,i) = (v,7), then (u;,v;)is an edge in Gy,.

- Multiple loops are added to each vertex in G until
its degree reaches D1°.

Main Transformation

Converting G to regular graph G of size N=n" :
- Each vertex (u) is replaced by a n-cycle (u1, ug, ..., uy).
- If Rotg(u,i) = (v,7), then (u;,v;)is an edge in Gy,.

- Multiple loops are added to each vertex in G until
its degree reaches D1°.

H 1s of constant size and can be encoded in TM.

Implementation

Implementation

Simpler Case : Go@H

Implementation

Simpler Case : Go@H

o oo |

H

© | oo

Go Another copy of H

Implementation

Simpler Case : Go@H

® | oo | {(""”' /'(”’“’)J H,
a o /
b ;
‘ [.q g .] [(w, b')‘ @ (w, b) } H,
Go Another copy of H Replacement

product

b’ 7
g
e [oo {(’w’b’)'/ '(w,b)}H‘”
Go Another copy of H Replacement
product

Now, (v,a) € [N] X D16 and,
we want to compute its (p, q)*"
neighbour

® [oo | [(v,a)' f(v,a')} H,
e

b’ 7
g
e [oo {(’w’b’)'/ '(w,b)}H‘”
Go Another copy of H Replacement
product

Now, (v,a) € [N] X D16 and,
we want to compute its (p, q)
neighbour

((v,a), (p,q))

th

© | oo

[(v,a)® f(v,a')} H,
g/

{(w,b')‘/ '(w,b)} Hy

Go Another copy of H Replacement
product
NOW) (’U, a’) € [N] X D16 anda ROtGg@H((Ua G,), (pa Q)) :

we want to compute its (p, q

neighbour

((v,a), (p,q))

)th
(a,p) < Roty(a,p)

(v,a) < Rotg,(v,a)
(a'a Q) < Roty (a'a Q)
Swap (p, q)

® [oo | [(v,a)' f(v,a')} H,
L

b’ 7
‘ [.q q.] [(w,b’)./ .(w,b)} H,
Go Another copy of H Replacement
product
NOW) (’U, a’) € [N] X D16 anda ROtGg@H((Ua G,), (pa Q)) :
we want to compute its (p, q)*"

(a’ap) — ROtH(aap)
(v,a) < Rotg,(v,a)

(('Ua a',)a (p,a Q)) (a, q) — Roty (a, Q)
Swap (p, q)

neighbour

© | oo

{(w,b')‘/ '(w,b)} H,

Go Another copy of H Replacement
product
NOW) (’U, a’) € [N] X D16 anda ROtGg@H((Ua G,), (pa Q)) :

we want to compute its (p, q

neighbour

((w,b'), (P, q))

)th
(a’ap) — ROtH(aap)

(v,a) < Rotg,(v,a)
(a'a Q) < Roty (a'a Q)
Swap (p, q)

© | oo

{(w,b')‘/ '(w,b)} H,

Go Another copy of H Replacement
product
NOW) (’U, a’) € [N] X D16 anda ROtGg@H((Ua G,), (pa Q)) :

we want to compute its (p, q

neighbour

((w,0),(?",q'))

)th
(a’ap) — ROtH(aap)

(v,a) < Rotg,(v,a)
(a'a Q) < Roty (a'a Q)
Swap (p, q)

© | oo

{(w,b')‘/ '(w,b)} H,

Go Another copy of H Replacement
product
NOW) (’U, a’) € [N] X D16 anda ROtGg@H((Ua G,), (pa Q)) :

we want to compute its (p, q

neighbour

((w,b),(q",p'))

)th
(a’ap) — ROtH(aap)

(v,a) < Rotg,(v,a)
(a'a Q) < Roty (a'a Q)
Swap (p, q)

Implementation

Implementation

- G will be of size N x (D1%)!, and any vertex

v € [N] x ([D'])

Implementation

- G will be of size N x (D1%)!, and any vertex

v € [N] x ([D'])

- We need to compute the rotation map in log space.

Implementation

Main Algorithm

Rotg, (v, aq, ..., a;) :

1. (plaQIap2a "'aPBaQB) — a;
2. For j=1 to &

— Q;—1,Pj ROtH(ai—lapj)
—V,AQ, 0.y Qj—1 < ROtGi_l((’U, AQy +eey 0,7;_2), 0,7;_1)
— Q5—1, Q_y < Roty (a"i—la QJ)

3. Qi < (QSaPSa '"ap2aQI7pl)

THANK YOUL

