
Undirected Connectivity in
Log Space - O. Reingold

CS 640 Course Presentation

Keerti Choudhary

Contents
• Background

• Main Idea

• Expander Graphs

• Powering

• Bounding the degree

• Rotation Map

• Replacement Product

• Zig-zag Product

• Main Transformation

• Implementation

Background

• SL is class of problems solvable by symmetric non-
deterministic TM in log space.

• USTCON (Undirected s-t connectivity) was shown
to be complete for class SL.

• L SL NL.

• This paper proves that USTCON can be solved in log
space, thus proving L=SL.

Background

• SL is class of problems solvable by symmetric non-
deterministic TM in log space.

• L SL NL.

Background

• SL is class of problems solvable by symmetric non-
deterministic TM in log space.

• L SL NL.

• USTCON (Undirected s-t connectivity) was proved
to be complete for class SL.

Background

• SL is class of problems solvable by symmetric non-
deterministic TM in log space.

• L SL NL.

• USTCON (Undirected s-t connectivity) was proved
to be complete for class SL.

• This paper proves that USTCON can be solved in log
space, thus shows L=SL.

Background

Main Idea

Main Idea
• Suppose a undirected graph G has max degree

bounded by ‘D’ and diameter bounded by ‘ ’.

Main Idea
• Suppose a undirected graph G has max degree

bounded by ‘D’ and diameter bounded by ‘ ’.

• Then s-t connectivity can be solved in
space.

Main Idea
• Suppose a undirected graph G has max degree

bounded by ‘D’ and diameter bounded by ‘ ’.

• Then s-t connectivity can be solved in
space.

• So, we will convert G to a new graph satisfying

• degree bounded by some constant c

• diameter is .

Expander Graphs

• A D-regular graph is -expander if any set S of size
less than n/2 has closed neighbourhood of size at
least (1+)|S|.

Expander Graphs

• A D-regular graph is -expander if any set S of size
less than n/2 has closed neighbourhood of size at
least (1+)|S|.

• Diameter of such graphs is bounded by .

Expander Graphs

• A D-regular graph is -expander if any set S of size
less than n/2 has closed neighbourhood of size at
least (1+)|S|.

• Diameter of such graphs is bounded by .

• Idea is to convert G to an expander graph whose
degree is also bounded.

Expander Graphs

Expander Graphs

• Regular graphs with small second largest eigen
value () of normalised adjacency matrix.

Expander Graphs

• Regular graphs with small second largest eigen
value () of normalised adjacency matrix.

• For every D, (<1), there exist >0 such that all
D-regular graphs with second largest eigen value
bounded by are -expander.

Expander Graphs

• Regular graphs with small second largest eigen
value () of normalised adjacency matrix.

• For every D, (<1), there exist >0 such that all
D-regular graphs with second largest eigen value
bounded by are -expander.

• To convert G to an expander graph we need to
bound its .

Expander Graphs

Powering

• Squaring of the graph reduces the second largest
eigen value to .

• As , so squaring the graph
times would bound .

• But the cost is that degree will also be squared.

• Note - squaring should not affect connectivity, so
before powering we add a loop on on all the vertices.

Powering

• Squaring of the graph reduces the second largest
eigen value to .

• As , so squaring the graph
times would bound .

Powering

• Squaring of the graph reduces the second largest
eigen value to .

• As , so squaring the graph
times would bound .

• But the cost is that degree will also be squared.

Powering

Bounding the degree

Bounding the degree

Two methods -

Bounding the degree

Two methods -

1. Replacement Product

Bounding the degree

Two methods -

1. Replacement Product

2. Zig-zag Product

In graph G,
iff,

• vertex in adjacency list
of u is v, and

• vertex in adjacency list
of v is u.

Rotation Map

u v

Replacement Product

• Given a D-regular graph G, and a d-regular (d<<D)
connected graph H on D vertices. Replace each
vertex of G by H.

Replacement Product

u
v

Replacement Product

u
v

Replacement Product

• Given a D-regular graph G, and a d-regular (d<<D)
connected graph H on D vertices. Replace each
vertex of G by H.

• New graph is a d+1 regular.

Replacement Product

Zig-zag Product

(a,d) is an edge in iff a—b—c—d is a path in
replacement product satisfying -

Zig-zag Product

(a,d) is an edge in iff a—b—c—d is a path in
replacement product satisfying -

• (a,b) and (c,d) are edges in different instances of H

Zig-zag Product

(a,d) is an edge in iff a—b—c—d is a path in
replacement product satisfying -

• (a,b) and (c,d) are edges in different instances of H

• (b,c) corresponds to edge of G.

Zig-zag Product

(a,d) is an edge in iff a—b—c—d is a path in
replacement product satisfying -

• (a,b) and (c,d) are edges in different instances of H

• (b,c) corresponds to edge of G.

Zig-zag Product

a b

c d

a

d

Zig-zag Product

Zig-zag Product
• So, if G is D-regular and H is d-regular than,

is -regular.

Zig-zag Product
• So, if G is D-regular and H is d-regular than,

is -regular.

• THEOREM - If G is an -graph and H is a
aaaa -graph, then

Zig-zag Product
• So, if G is D-regular and H is d-regular than,

is -regular.

• THEOREM - If G is an -graph and H is a
aaaa -graph, then

!

• Here of the new graph is bounded above.

Main Transformation

Main Transformation
• is non-bipartite -regular graph on N vertices,

H is D-regular graph on vertices. Also, .

Main Transformation
• is non-bipartite -regular graph on N vertices,

H is D-regular graph on vertices. Also, .

• Let . For i=1 to , define

-

-

Main Transformation
• is non-bipartite -regular graph on N vertices,

H is D-regular graph on vertices. Also, .

• Let . For i=1 to , define

• Then, .

• Proof Idea :

-

-

Main Transformation
• is non-bipartite -regular graph on N vertices,

H is D-regular graph on vertices. Also, .

• Let . For i=1 to , define

• Then, .

• Proof Idea :

-

-

Main Transformation
• is non-bipartite -regular graph on N vertices,

H is D-regular graph on vertices. Also, .

• Let . For i=1 to , define

• Then, .

• Proof Idea :

-

-

Main Transformation
• is non-bipartite -regular graph on N vertices,

H is D-regular graph on vertices. Also, .

• Let . For i=1 to , define

• Then, .

• Proof Idea :

Converting G to regular graph of size N= :

• Each vertex () is replaced by a n-cycle ().

• If , then is an edge in .

• Multiple loops are added to each vertex in until
its degree reaches .

H is of constant size and can be encoded in TM.

Main Transformation

Converting G to regular graph of size N= :

• Each vertex () is replaced by a n-cycle ().

• If , then is an edge in .

• Multiple loops are added to each vertex in until
its degree reaches .

H is of constant size and can be encoded in TM.

Main Transformation

Converting G to regular graph of size N= :

• Each vertex () is replaced by a n-cycle ().

• If , then is an edge in .

• Multiple loops are added to each vertex in until
its degree reaches .

H is of constant size and can be encoded in TM.

Main Transformation

Converting G to regular graph of size N= :

• Each vertex () is replaced by a n-cycle ().

• If , then is an edge in .

• Multiple loops are added to each vertex in until
its degree reaches .

H is of constant size and can be encoded in TM.

Main Transformation

Converting G to regular graph of size N= :

• Each vertex () is replaced by a n-cycle ().

• If , then is an edge in .

• Multiple loops are added to each vertex in until
its degree reaches .

H is of constant size and can be encoded in TM.

Main Transformation

Implementation

Simpler Case :

Implementation

Another copy of

Simpler Case :

Implementation

Replacement
product

Another copy of

Simpler Case :

Implementation

Replacement
product

Another copy of

Now, and,
we want to compute its
neighbour

Replacement
product

Another copy of

Now, and,
we want to compute its
neighbour

Replacement
product

Another copy of

Now, and,
we want to compute its
neighbour

Replacement
product

Another copy of

Now, and,
we want to compute its
neighbour

Replacement
product

Another copy of

Now, and,
we want to compute its
neighbour

Replacement
product

Another copy of

Now, and,
we want to compute its
neighbour

Replacement
product

Another copy of

Now, and,
we want to compute its
neighbour

Implementation

• will be of size , and any vertex

Implementation

• will be of size , and any vertex

!

• We need to compute the rotation map in log space.

Implementation

Implementation
Main Algorithm

THANK YOU

