CS 640 Course Presentation

Undirected Connectivity in Log Space - O. Reingold

Keerti Choudhary

Contents

- Background
- Main Idea
- Expander Graphs
- Powering
- Replacement Product
- Zig-zag Product
- Main Transformation
- Implementation
- Bounding the degree
- Rotation Map

Background

Background

- SL is class of problems solvable by symmetric nondeterministic TM in log space.

Background

- SL is class of problems solvable by symmetric nondeterministic TM in log space.
- $\mathrm{L} \subseteq \mathrm{SL} \subseteq \mathrm{NL}$.

Background

- SL is class of problems solvable by symmetric nondeterministic TM in log space.
- $\mathrm{L} \subseteq \mathrm{SL} \subseteq \mathrm{NL}$.
- USTCON (Undirected s-t connectivity) was proved to be complete for class SL.

Background

- SL is class of problems solvable by symmetric nondeterministic TM in log space.
- $\mathrm{L} \subseteq \mathrm{SL} \subseteq \mathrm{NL}$.
- USTCON (Undirected s-t connectivity) was proved to be complete for class SL.
- This paper proves that USTCON can be solved in log space, thus shows L=SL.

Main Idea

Main Idea

- Suppose a undirected graph G has max degree bounded by ' D ' and diameter bounded by ' ρ '.

Main Idea

- Suppose a undirected graph G has max degree bounded by ' D ' and diameter bounded by ' ρ '.
- Then s-t connectivity can be solved in $O(\rho \log D)$ space.

Main Idea

- Suppose a undirected graph G has max degree bounded by ' D ' and diameter bounded by ' ρ '.
- Then s-t connectivity can be solved in $O(\rho \log D)$ space.
- So, we will convert G to a new graph satisfying
- degree bounded by some constant c
- diameter is $O(\log n)$.

Expander Graphs

Expander Graphs

- A D-regular graph is ε-expander if any set S of size less than $\mathrm{n} / 2$ has closed neighbourhood of size at least $(1+\varepsilon)|S|$.

Expander Graphs

- A D-regular graph is ε-expander if any set S of size less than $\mathrm{n} / 2$ has closed neighbourhood of size at least $(1+\varepsilon)|S|$.
- Diameter of such graphs is bounded by $2 \log _{1+\varepsilon} n$.

Expander Graphs

- A D-regular graph is ε-expander if any set S of size less than $\mathrm{n} / 2$ has closed neighbourhood of size at least $(1+\varepsilon)|S|$.
- Diameter of such graphs is bounded by $2 \log _{1+\varepsilon} n$.
- Idea is to convert G to an expander graph whose degree is also bounded.

Expander Graphs

Expander Graphs

- Regular graphs with small second largest eigen value (λ) of normalised adjacency matrix.

Expander Graphs

- Regular graphs with small second largest eigen value (λ) of normalised adjacency matrix.
- For every $\mathrm{D}, \lambda(\lambda<1)$, there exist $\varepsilon>0$ such that all D-regular graphs with second largest eigen value bounded by λ are ε-expander.

Expander Graphs

- Regular graphs with small second largest eigen value (λ) of normalised adjacency matrix.
- For every D, $\lambda(\lambda<1)$, there exist $\varepsilon>0$ such that all D-regular graphs with second largest eigen value bounded by λ are ε-expander.
- To convert G to an expander graph we need to bound its λ.

Powering

Powering

- Squaring of the graph reduces the second largest eigen value to λ^{2}.

Powering

- Squaring of the graph reduces the second largest eigen value to λ^{2}.
- As $\lambda(G)<1-1 / D N^{2}$, so squaring the graph $O(\log N)$ times would bound λ.

Powering

- Squaring of the graph reduces the second largest eigen value to λ^{2}.
- As $\lambda(G)<1-1 / D N^{2}$, so squaring the graph $O(\log N)$ times would bound λ.
- But the cost is that degree will also be squared.

Bounding the degree

Bounding the degree

Two methods -

Bounding the degree

Two methods -

1. Replacement Product

Bounding the degree

Two methods -

1. Replacement Product
2. Zig-zag Product

Rotation Map

In graph G, $\operatorname{Rot}_{G}(u, i)=(v, j)$ iff,

- $i^{\text {th }}$ vertex in adjacency list of u is v, and
- $j^{\text {th }}$ vertex in adjacency list of v is u.

$$
\operatorname{Rot}_{G}(u, 3)=(v, 2)
$$

$$
\operatorname{Rot}_{G}(v, 2)=(u, 3)
$$

Replacement Product

Replacement Product

- Given a D-regular graph G, and a d-regular (d<<D) connected graph H on D vertices. Replace each vertex of G by H .

Replacement Product

G
$\operatorname{Rot}_{G}(u, 5)=(v, 3)$

Replacement Product

$\operatorname{Rot}_{G}(u, 5)=(v, 3)$

Replacement Product

- Given a D-regular graph G, and a d-regular (d<<D) connected graph H on D vertices. Replace each vertex of G by H .
- New graph is a d+1 regular.

Zig-zag Product

Zig-zag Product

(a, d) is an edge in $G(2) H$ iff $\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$ is a path in replacement product satisfying -

Zig-zag Product

(a, d) is an edge in $G(\mathbb{Z}) H$ iff $\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$ is a path in replacement product satisfying -

- (a, b) and (c, d) are edges in different instances of H

Zig-zag Product

(a, d) is an edge in $G(\mathbb{Z}) H$ iff $\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$ is a path in replacement product satisfying -

- (a, b) and (c, d) are edges in different instances of H
- (b,c) corresponds to edge of G.

Zig-zag Product

(a, d) is an edge in $G(\mathrm{Z}) H$ iff $\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$ is a path in replacement product satisfying -

- (a, b) and (c, d) are edges in different instances of H
- (b,c) corresponds to edge of G.

Zig-zag Product

Zig-zag Product

- So, if G is D-regular and H is d-regular than, $G(2) H$ is d^{2}-regular.

Zig-zag Product

- So, if G is D-regular and H is d-regular than, $G(2) H$ is d^{2}-regular.
- THEOREM - If G is an (N, D, λ)-graph and H is a (D, d, α)-graph, then

$$
\lambda(G(2) H) \leq 1-\frac{1}{2}\left(1-\alpha^{2}\right)(1-\lambda)
$$

Zig-zag Product

- So, if G is D-regular and H is d-regular than, $G(2) H$ is d^{2}-regular.
- THEOREM - If G is an (N, D, λ)-graph and H is a (D, d, α)-graph, then

$$
\lambda(G(2) H) \leq 1-\frac{1}{2}\left(1-\alpha^{2}\right)(1-\lambda)
$$

- Here λ of the new graph is bounded above.

Main Transformation

Main Transformation

- G_{0} is non-bipartite D^{16}-regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H)=\frac{1}{2}$.

Main Transformation

- G_{0} is non-bipartite D^{16}-regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H)=\frac{1}{2}$.
- Let $l=2\left\lceil\log \left(D N^{2}\right)\right\rceil$. For $\mathrm{i}=1$ to l, define

$$
G_{i}=\left(G_{i-1}(2) H\right)^{8}
$$

Main Transformation

- G_{0} is non-bipartite D^{16}-regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H)=\frac{1}{2}$.
- Let $l=2\left\lceil\log \left(D N^{2}\right)\right\rceil$. For $\mathrm{i}=1$ to l, define

$$
G_{i}=\left(G_{i-1}(2) H\right)^{8}
$$

- Then, $\lambda\left(G_{l}\right)<\frac{1}{2}$.

Main Transformation

- G_{0} is non-bipartite D^{16}-regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H)=\frac{1}{2}$.
- Let $l=2\left\lceil\log \left(D N^{2}\right)\right\rceil$. For $\mathrm{i}=1$ to l, define

$$
G_{i}=\left(G_{i-1}(2) H\right)^{8}
$$

- Then, $\lambda\left(G_{l}\right)<\frac{1}{2}$.
- Proof Idea :

Main Transformation

- G_{0} is non-bipartite D^{16}-regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H)=\frac{1}{2}$.
- Let $l=2\left\lceil\log \left(D N^{2}\right)\right\rceil$. For $\mathrm{i}=1$ to l, define

$$
G_{i}=\left(G_{i-1}(2) H\right)^{8}
$$

- Then, $\lambda\left(G_{l}\right)<\frac{1}{2}$.
- Proof Idea: - $\lambda\left(G_{0}\right)<1-1 / D^{16} N^{2}$

Main Transformation

- G_{0} is non-bipartite D^{16}-regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H)=\frac{1}{2}$.
- Let $l=2\left\lceil\log \left(D N^{2}\right)\right\rceil$. For $\mathrm{i}=1$ to l, define

$$
G_{i}=\left(G_{i-1}(2) H\right)^{8}
$$

- Then, $\lambda\left(G_{l}\right)<\frac{1}{2}$.
- Proof Idea: - $\lambda\left(G_{0}\right)<1-1 / D^{16} N^{2}$

$$
-\lambda\left(G_{i}\right)<\max \left\{\lambda\left(G_{i-1}\right)^{2}, 1 / 2\right\}
$$

Main Transformation

Converting G to regular graph G_{0} of size $\mathrm{N}=n^{2}$:

Main Transformation

Converting G to regular graph G_{0} of size $\mathrm{N}=n^{2}$:

- Each vertex (u) is replaced by a n-cycle $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$.

Main Transformation

Converting G to regular graph G_{0} of size $\mathrm{N}=n^{2}$:

- Each vertex (u) is replaced by a n-cycle ($u_{1}, u_{2}, \ldots, u_{n}$).
- If $\operatorname{Rot}_{G}(u, i)=(v, j)$, then $\left(u_{i}, v_{j}\right)$ is an edge in G_{0}.

Main Transformation

Converting G to regular graph G_{0} of size $\mathrm{N}=n^{2}$:

- Each vertex (u) is replaced by a n-cycle $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$.
- If $\operatorname{Rot}_{G}(u, i)=(v, j)$, then $\left(u_{i}, v_{j}\right)$ is an edge in G_{0}.
- Multiple loops are added to each vertex in G_{0} until its degree reaches D^{16}.

Main Transformation

Converting G to regular graph G_{0} of size $\mathrm{N}=n^{2}$:

- Each vertex (u) is replaced by a n-cycle $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$.
- If $\operatorname{Rot}_{G}(u, i)=(v, j)$, then $\left(u_{i}, v_{j}\right)$ is an edge in G_{0}.
- Multiple loops are added to each vertex in G_{0} until its degree reaches D^{16}.

H is of constant size and can be encoded in TM.

Implementation

Implementation

Simpler Case : $G_{0}(2) H$

Implementation

Simpler Case : $G_{0}(2) H$

Implementation

Simpler Case : $G_{0}(2) H$

Now, $(v, a) \in[N] \times D^{16}$ and, we want to compute its $(p, q)^{\text {th }}$ neighbour

Now, $(v, a) \in[N] \times D^{16}$ and, we want to compute its $(p, q)^{\text {th }}$ neighbour

$$
((v, a),(p, q))
$$

Now, $(v, a) \in[N] \times D^{16}$ and, we want to compute its $(p, q)^{\text {th }}$ neighbour

$$
((v, a),(p, q))
$$

$$
(a, p) \leftarrow \operatorname{Rot}_{H}(a, p)
$$

$$
(v, a) \leftarrow \operatorname{Rot}_{G_{0}}(v, a)
$$

$$
(a, q) \leftarrow \operatorname{Rot}_{H}(a, q)
$$

Swap (p, q)

Now, $(v, a) \in[N] \times D^{16}$ and, we want to compute its $(p, q)^{t h}$ neighbour

$$
\left(\left(v, a^{\prime}\right),\left(p^{\prime}, q\right)\right)
$$

$$
(a, p) \leftarrow \operatorname{Rot}_{H}(a, p)
$$

$$
(v, a) \leftarrow \operatorname{Rot}_{G_{0}}(v, a)
$$

$$
(a, q) \leftarrow \operatorname{Rot}_{H}(a, q)
$$

Swap (p, q)

Now, $(v, a) \in[N] \times D^{16}$ and, we want to compute its $(p, q)^{t h}$ neighbour

$$
\left(\left(w, b^{\prime}\right),\left(p^{\prime}, q\right)\right)
$$

$$
(a, p) \leftarrow \operatorname{Rot}_{H}(a, p)
$$

$$
(v, a) \leftarrow \operatorname{Rot}_{G_{0}}(v, a)
$$

$$
(a, q) \leftarrow \operatorname{Rot}_{H}(a, q)
$$

Swap (p, q)

Now, $(v, a) \in[N] \times D^{16}$ and, we want to compute its $(p, q)^{t h}$ neighbour

$$
\left((w, b),\left(p^{\prime}, q^{\prime}\right)\right)
$$

Now, $(v, a) \in[N] \times D^{16}$ and, we want to compute its $(p, q)^{\text {th }}$ neighbour

$$
\left((w, b),\left(q^{\prime}, p^{\prime}\right)\right)
$$

Implementation

Implementation

- G_{l} will be of size $N \times\left(D^{16}\right)^{l}$, and any vertex

$$
\bar{v} \in[N] \times\left(\left[D^{16}\right]\right)^{l}
$$

Implementation

- G_{l} will be of size $N \times\left(D^{16}\right)^{l}$, and any vertex

$$
\bar{v} \in[N] \times\left(\left[D^{16}\right]\right)^{l}
$$

- We need to compute the rotation map in log space.

Implementation

Main Algorithm

$\operatorname{Rot}_{G_{i}}\left(v, a_{0}, \ldots, a_{i}\right):$

1. $\left(p_{1}, q_{1}, p_{2}, \ldots, p_{8}, q_{8}\right) \leftarrow a_{i}$
2. For $\mathrm{j}=1$ to 8

$$
\begin{aligned}
& -a_{i-1}, p_{j} \leftarrow \operatorname{Rot}_{H}\left(a_{i-1}, p_{j}\right) \\
& -v, a_{0}, \ldots, a_{i-1} \leftarrow \operatorname{Rot}_{G_{i-1}}\left(\left(v, a_{0}, \ldots, a_{i-2}\right), a_{i-1}\right) \\
& -a_{i-1}, q_{j} \leftarrow \operatorname{Rot}_{H}\left(a_{i-1}, q_{j}\right)
\end{aligned}
$$

3. $a_{i} \leftarrow\left(q_{8}, p_{8}, \ldots, p_{2}, q_{1}, p_{1}\right)$

THEANK VOU

