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Background



• SL is class of problems solvable by symmetric non-
deterministic TM in log space. 

• USTCON (Undirected s-t connectivity) was shown 
to be complete for class SL. 

• L      SL      NL. 

• This paper proves that USTCON can be solved in log 
space, thus proving L=SL.

Background



• SL is class of problems solvable by symmetric non-
deterministic TM in log space. 

• L      SL      NL.

Background



• SL is class of problems solvable by symmetric non-
deterministic TM in log space. 

• L      SL      NL. 

• USTCON (Undirected s-t connectivity) was proved 
to be complete for class SL.

Background



• SL is class of problems solvable by symmetric non-
deterministic TM in log space. 

• L      SL      NL. 

• USTCON (Undirected s-t connectivity) was proved 
to be complete for class SL. 

• This paper proves that USTCON can be solved in log 
space, thus shows L=SL.

Background



Main Idea



Main Idea
• Suppose a undirected graph G has max degree 

bounded by ‘D’ and diameter bounded by ‘  ’.



Main Idea
• Suppose a undirected graph G has max degree 

bounded by ‘D’ and diameter bounded by ‘  ’. 

• Then s-t connectivity can be solved in                
space.



Main Idea
• Suppose a undirected graph G has max degree 

bounded by ‘D’ and diameter bounded by ‘  ’. 

• Then s-t connectivity can be solved in                
space.

• So, we will convert G to a new graph satisfying 

• degree bounded by some constant c 

• diameter is                 .
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• Regular graphs with small second largest eigen  
value (  ) of normalised adjacency matrix. 

• For every D,    (  <1), there exist    >0 such that all  
D-regular graphs with second largest eigen value 
bounded by    are   -expander. 

• To convert G to an expander graph we need to 
bound its    .    
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Powering



• Squaring of the graph reduces the second largest 
eigen value to      .  

• As                                , so squaring the graph            
times would bound    . 

• But the cost is that degree will also be squared. 

• Note - squaring should not affect connectivity, so 
before powering we add a loop on on all the vertices.
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In graph G,                                    
iff, 

•       vertex in adjacency list 
of u is v, and  

•       vertex in adjacency list 
of v is u.

Rotation Map

u v
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• Given a D-regular graph G, and a d-regular  (d<<D) 
connected graph H on D vertices. Replace each 
vertex of G by H.
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• Given a D-regular graph G, and a d-regular  (d<<D) 
connected graph H on D vertices. Replace each 
vertex of G by H. 

• New graph is a d+1 regular.
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(a,d) is an edge in             iff  a—b—c—d  is a path in 
replacement product satisfying - 

• (a,b) and (c,d) are edges in different instances of H 
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Zig-zag Product

a b

c d

a

d
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• So, if G is D-regular and H is d-regular than,              

is     -regular. 

• THEOREM  - If G is an                -graph and H is a                           
aaaa      -graph, then   

!

• Here     of the new graph is bounded above.
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• Multiple loops are added to each vertex  in       until 
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!

• We need to compute the rotation map in log space.
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Implementation
Main Algorithm  
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