CS 640 Course Presentation

Undirected Connectivity in Log Space - O. Reingold

Keerti Choudhary

Contents

- Background
- Main Idea
- Expander Graphs
- Powering
- Bounding the degree
- Rotation Map

- Replacement Product
- Zig-zag Product
- Main Transformation
- Implementation

• SL is class of problems solvable by symmetric nondeterministic TM in log space.

- SL is class of problems solvable by symmetric nondeterministic TM in log space.
- $L \subseteq SL \subseteq NL$.

- SL is class of problems solvable by symmetric nondeterministic TM in log space.
- $L \subseteq SL \subseteq NL$.
- USTCON (Undirected s-t connectivity) was proved to be complete for class SL.

- SL is class of problems solvable by symmetric nondeterministic TM in log space.
- $L \subseteq SL \subseteq NL$.
- USTCON (Undirected s-t connectivity) was proved to be complete for class SL.
- This paper proves that USTCON can be solved in log space, thus shows L=SL.

• Suppose a undirected graph G has max degree bounded by 'D' and diameter bounded by 'ρ'.

- Suppose a undirected graph G has max degree bounded by 'D' and diameter bounded by 'ρ'.
- Then s-t connectivity can be solved in $O(\rho \log D)$ space.

- Suppose a undirected graph G has max degree bounded by 'D' and diameter bounded by 'ρ'.
- Then s-t connectivity can be solved in $O(\rho \log D)$ space.
- So, we will convert G to a new graph satisfying
 - degree bounded by some constant c
 - diameter is $O(\log n)$.

• A D-regular graph is ε -expander if any set S of size less than n/2 has closed neighbourhood of size at least $(1+\varepsilon)|S|$.

- A D-regular graph is ε -expander if any set S of size less than n/2 has closed neighbourhood of size at least $(1+\varepsilon)|S|$.
- Diameter of such graphs is bounded by $2\log_{1+\epsilon} n$.

- A D-regular graph is ε -expander if any set S of size less than n/2 has closed neighbourhood of size at least $(1+\varepsilon)|S|$.
- Diameter of such graphs is bounded by $2\log_{1+\varepsilon} n$.
- Idea is to convert G to an expander graph whose degree is also bounded.

• Regular graphs with small second largest eigen value (λ) of normalised adjacency matrix.

- Regular graphs with small second largest eigen value (λ) of normalised adjacency matrix.
- For every D, λ (λ <1), there exist ε >0 such that all D-regular graphs with second largest eigen value bounded by λ are ε -expander.

- Regular graphs with small second largest eigen value (λ) of normalised adjacency matrix.
- For every D, λ (λ <1), there exist ε >0 such that all D-regular graphs with second largest eigen value bounded by λ are ε -expander.
- To convert G to an expander graph we need to bound its λ .

• Squaring of the graph reduces the second largest eigen value to λ^2 .

- Squaring of the graph reduces the second largest eigen value to λ^2 .
- As $\lambda(G) < 1 1/DN^2$, so squaring the graph $O(\log N)$ times would bound λ .

- Squaring of the graph reduces the second largest eigen value to λ^2 .
- As $\lambda(G) < 1 1/DN^2$, so squaring the graph $O(\log N)$ times would bound λ .
- But the cost is that degree will also be squared.

Two methods -

Two methods -

1. Replacement Product

Two methods -

- 1. Replacement Product
- 2. Zig-zag Product

Rotation Map

In graph G, $Rot_G(u, i) = (v, j)$ iff,

- *i*th vertex in adjacency list of u is v, and
- *jth* vertex in adjacency list of v is u.

 $Rot_G(u,3) = (v,2)$

$$Rot_G(v,2) = (u,3)$$

• Given a D-regular graph G, and a d-regular (d<<D) connected graph H on D vertices. Replace each vertex of G by H.

G

$$Rot_G(u,5) = (v,3)$$

- Given a D-regular graph G, and a d-regular (d<<D) connected graph H on D vertices. Replace each vertex of G by H.
- New graph is a d+1 regular.

(a,d) is an edge in G > H iff a—b—c—d is a path in replacement product satisfying -

(a,d) is an edge in $G \boxtimes H$ iff a—b—c—d is a path in replacement product satisfying -

• (a,b) and (c,d) are edges in different instances of H

(a,d) is an edge in $G \boxtimes H$ iff a—b—c—d is a path in replacement product satisfying -

- (a,b) and (c,d) are edges in different instances of H
- (b,c) corresponds to edge of G.

(a,d) is an edge in $G \boxtimes H$ iff a—b—c—d is a path in replacement product satisfying -

- (a,b) and (c,d) are edges in different instances of H
- (b,c) corresponds to edge of G.

• So, if G is D-regular and H is d-regular than, $G \boxtimes H$ is d^2 -regular.

- So, if G is D-regular and H is d-regular than, $G \boxtimes H$ is d^2 -regular.
- **THEOREM** If G is an (N, D, λ) -graph and H is a (D, d, α) -graph, then

$$\lambda(G \boxtimes H) \le 1 - \frac{1}{2}(1 - \alpha^2)(1 - \lambda)$$

- So, if G is D-regular and H is d-regular than, $G \boxtimes H$ is d^2 -regular.
- **THEOREM** If G is an (N, D, λ) -graph and H is a (D, d, α) -graph, then

$$\lambda(G \boxtimes H) \le 1 - \frac{1}{2}(1 - \alpha^2)(1 - \lambda)$$

• Here λ of the new graph is bounded above.

• G_0 is non-bipartite D^{16} -regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H) = \frac{1}{2}$.

- G_0 is non-bipartite D^{16} -regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H) = \frac{1}{2}$.
- Let $l = 2\lceil log(DN^2) \rceil$. For i=1 to l, define $G_i = (G_{i-1} \textcircled{2} H)^8$

- G_0 is non-bipartite D^{16} -regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H) = \frac{1}{2}$.
- Let $l = 2\lceil log(DN^2) \rceil$. For i=1 to l, define $G_i = (G_{i-1} \boxtimes H)^8$
- Then, $\lambda(G_l) < \frac{1}{2}$.

- G_0 is non-bipartite D^{16} -regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H) = \frac{1}{2}$.
- Let $l = 2\lceil log(DN^2) \rceil$. For i=1 to l, define $G_i = (G_{i-1} \boxtimes H)^8$
- Then, $\lambda(G_l) < \frac{1}{2}$.
- Proof Idea :

- G_0 is non-bipartite D^{16} -regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H) = \frac{1}{2}$.
- Let $l = 2\lceil log(DN^2) \rceil$. For i=1 to l, define $G_i = (G_{i-1} \boxtimes H)^8$
- Then, $\lambda(G_l) < \frac{1}{2}$.
- Proof Idea : $\lambda(G_0) < 1 1/D^{16}N^2$

- G_0 is non-bipartite D^{16} -regular graph on N vertices, H is D-regular graph on D^{16} vertices. Also, $\lambda(H) = \frac{1}{2}$.
- Let $l = 2\lceil log(DN^2) \rceil$. For i=1 to l, define $G_i = (G_{i-1} \boxtimes H)^8$
- Then, $\lambda(G_l) < \frac{1}{2}$.
- Proof Idea : $\lambda(G_0) < 1 1/D^{16}N^2$
 - $\lambda(G_i) < max\{\lambda(G_{i-1})^2, 1/2\}$

Converting G to regular graph G_0 of size N = n^2 :

Converting G to regular graph G_0 of size N = n^2 :

• Each vertex (u) is replaced by a n-cycle $(u_1, u_2, ..., u_n)$.

Converting G to regular graph G_0 of size N = n^2 :

- Each vertex (*u*) is replaced by a n-cycle $(u_1, u_2, ..., u_n)$.
- If $Rot_G(u,i) = (v,j)$, then (u_i, v_j) is an edge in G_0 .

Converting G to regular graph G_0 of size N = n^2 :

- Each vertex (u) is replaced by a n-cycle $(u_1, u_2, ..., u_n)$.
- If $Rot_G(u,i) = (v,j)$, then (u_i, v_j) is an edge in G_0 .
- Multiple loops are added to each vertex in G_0 until its degree reaches D^{16} .

Converting G to regular graph G_0 of size N = n^2 :

- Each vertex (u) is replaced by a n-cycle $(u_1, u_2, ..., u_n)$.
- If $Rot_G(u,i) = (v,j)$, then (u_i, v_j) is an edge in G_0 .
- Multiple loops are added to each vertex in G_0 until its degree reaches D^{16} .

H is of constant size and can be encoded in TM.

Simpler Case : $G_0 \boxtimes H$

Simpler Case : $G_0 \boxtimes H$

Simpler Case : $G_0 \boxtimes H$

$$\left((v,a),(p,q)\right)$$

$$\left((v,a),(p,q)\right)$$

$$((v,a^\prime),(p^\prime,q))$$

 $((w,b^\prime),(p^\prime,q))$

 $((w,b),(p^\prime,q^\prime))$

 $\left((w,b),(q',p')\right)$

- G_l will be of size $N \times (D^{16})^l$, and any vertex $\overline{v} \in [N] \times ([D^{16}])^l$

- G_l will be of size $N \times (D^{16})^l$, and any vertex $\overline{v} \in [N] \times ([D^{16}])^l$
- We need to compute the rotation map in log space.

Main Algorithm

 $Rot_{G_i}(v, a_0, ..., a_i)$:

1.
$$(p_1, q_1, p_2, ..., p_8, q_8) \leftarrow a_i$$

2. For j=1 to 8
 $-a_{i-1}, p_j \leftarrow Rot_H(a_{i-1}, p_j)$
 $-v, a_0, ..., a_{i-1} \leftarrow Rot_{G_{i-1}}((v, a_0, ..., a_{i-2}), a_{i-1})$
 $-a_{i-1}, q_j \leftarrow Rot_H(a_{i-1}, q_j)$
3. $a_i \leftarrow (q_8, p_8, ..., p_2, q_1, p_1)$

THANK YOU