CS345- ALGORITHMS-II

NITIN SAXENA

ASSIGNMENT 4

POINTS: 50

DATE GIVEN: 23-OCT-2019
DUE: 11-NOV-2019

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your specific TA. The dynamic student-to-TA mapping would be announced by Pranav.
Pranav Bisht pbisht@cse
Ashish Dwivedi ashish@cse
Abhibhav Garg abhibhav@cse
Nikhil Shagrithaya nshagri@cse
Abhimanyu abhimanu@iitk.
Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.
- There will be a penalty if you write unnecessary or unrelated details in your solution. (Remember that in the exams you'll get limited space.)
- Clearly express the fundamental idea of your algorithm; sketch the main steps of the pseudocode; give a proof of correctness and that of the claimed time complexity. This decides the distribution of partial marks.
- Problems marked ' 0 points' are for practice.

Question 1: [5 points] Give a quadratic-time algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers.

Question 2: [8 points] You are given a convex polygon, having n points P, in the Euclidean plane. A weight function w is also provided such that each triple (i, j, k) of points have an associated weight $w(i, j, k)$.

Page 1 of 3

We want to find a triangulation of the polygon so that the sum of the weight of the $(n-2)$ triangles is minimized.

Give a cubic-time algorithm to find the optimal triangulation.
Question 3: [10 points] Let $G=(V, E, w)$ be a weighted directed graph given via adjacency lists in the input. Give an efficient algorithm to find the length of a negative-weight cycle, in G, that uses the minimum number of edges.

Question 4: [11 points] An undirected graph $G=(V, E)$ is called k -edge-connected if k is the minimum number of edges that need to be deleted to make G disconnected. Eg. a tree is 1-edge-connected, while a cycle is 2-edge-connected.

Give an $O\left(|E| \cdot|V|^{2}\right)$-time algorithm to compute k.
[Hint: Use multiple instances of max-flow.]
Question 5: [16 points] Let $G=(L, R, E)$ be an undirected bipartite graph with vertex V partitioned as $L \sqcup R$ (i.e. edges E connect vertices in L to those in R). For every subset $A \subseteq L$, the neighborhood $N(A)$ is defined as the set of vertices in R adjacent to those in A.

Show that G has a perfect matching iff $\forall A,|N(A)| \geq|A|$.
Question 6: [0 points] Implement longest common subsequence algorithm so that it requires only linear space.

Question 7: [0 points] Give an $O(n \log n)$ time algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers.

Question 8: [0 points] Show that the longest-path problem in an undirected unweighted graph reduces to finding a shortest-path in a directed weighted graph (with possibly a negative cycle).

Show that the Hamiltonian path problem reduces to finding a longestpath in an undirected unweighted graph.

Thus, finding shortest-paths in general graphs is NP-hard.
Question 9: [0 points] Show that network flow maximization problem for multiple-source multiple-sink reduces to the one on single-source single-sink.

Question 10: [0 points] Consider another variant of network flow problem where each edge has associated flow lower bound and flow upper bound. How do you find max-flow satisfying these constraints?

