## CS345- ALGORITHMS-II <br> NITIN SAXENA

## ASSIGNMENT 3

POINTS: 50

DATE GIVEN: 26-SEP-2019
DUE: 19-OCT-2019

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your specific TA. The dynamic student-to-TA mapping would be announced by Pranav.
Pranav Bisht pbisht@cse
Ashish Dwivedi ashish@cse
Abhibhav Garg abhibhav@cse
Nikhil Shagrithaya nshagri@cse
Abhimanyu abhimanu@iitk.
Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.
- There will be a penalty if you write unnecessary or unrelated details in your solution. (Remember that in the exams you'll get limited space.)
- Clearly express the fundamental idea of your algorithm; sketch the main steps of the pseudocode; give a proof of correctness and that of the claimed time complexity. This decides the distribution of partial marks.
- Problems marked ' 0 points' are for practice.

Question 1: [7 points] You are given $k$ sorted lists containing overall $n$ numbers. Design an $O(n \log k)$ time algorithm to merge them into a single sorted list.
[Hint: Use a tree.]

Question 2: [6 points] Suppose you are given a set of $n$ processes $P_{1}, \ldots, P_{n}$, requiring processing times $p_{1}, \ldots, p_{n}$ respectively. You want to schedule them so that the average completion time gets minimized. Eg. the schedule $\left(P_{2}, P_{1}\right)$ has the average completion time $\left(p_{2}+\left(p_{2}+\right.\right.$ $\left.p_{1}\right)$ )/2.

Solve this problem in $O(n \log n)$ time.
Question 3: $[5+5+5+5$ points] Let $G=(V, E)$ be an undirected connected graph with weight function $w: E \rightarrow \mathbb{R}$, and suppose that the edge weights are distinct.

- Show that, in $G$, the minimum spanning tree (mst) is unique, but that the second-best mst need not be unique.
- Let $T$ be the mst of $G$. Prove that there exist edges $(u, v),(x, y) \in$ $T$ such that $T-\{(u, v)\} \cup\{(x, y)\}$ is a second-best mst of $G$.
- Let $T^{\prime}$ be a spanning tree of $G$ and, for any two vertices $u, v \in V$, let $\max [u, v]$ be an edge of maximum weight on the unique path between $u$ and $v$ in $T^{\prime}$. Describe an $O\left(|V|^{2}\right)$-time algorithm that, given $T^{\prime}$, computes $\max [u, v]$ for all $u, v \in V$.
- Give an efficient algorithm to compute the second-best mst of $G$.

Question 4: [3+3 points] For a directed graph $G=(V, E)$ define the reverse graph as $G^{\mathrm{T}}:=\left(V, E^{\mathrm{T}}\right)$, where $E^{\mathrm{T}}:=\{(u, v) \mid(v, u) \in E\}$. Define the component graph $G^{\mathrm{SCC}}=\left(V^{\prime}, E^{\prime}\right)$ as the graph where each vertex in $V^{\prime}$ corresponds to a strongly connected component of $G$; there is an edge $(u, v) \in E^{\prime}$ iff in $G$ there is an edge from the strongly connected component $u$ to the strongly connected component $v$. Show that $G^{\mathrm{SCC}}$ is a dag.

Further, show $\left(\left(G^{\mathrm{T}}\right)^{\mathrm{SCC}}\right)^{\mathrm{T}}=G^{\mathrm{SCC}}$.
Question 5: [6+5 points] An Euler tour of a directed graph $G=(V, E)$ is a cycle that traverses each edge of $G$ exactly once (it may revisit a vertex). Show that $G$ has an Euler tour iff indeg $(v)=\operatorname{outdeg}(v)$ for each $v \in V$.

Give a linear-time algorithm to find an Euler tour (or say that it does not exist).

Question 6: [ 0 points] Give a simple example of a directed graph with negative-weight edges for which Dijkstra's algorithm produces incorrect answers. Where does the proof fail?

Question 7: [0 points] Suppose that we are given a weighted directed graph $G=(V, E)$ in which edges that leave the source vertex $s$ may have negative weights, all other edge weights are nonnegative, and there are no negative-weight cycles. Argue that Dijkstra's algorithm correctly finds shortest paths from $s$ in this graph.

Question 8: [0 points] Let $G=(V, E)$ be a weighted directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex $s$. Then, for all edges $(u, v) \in E$, prove the triangle inequality: $\delta(s, v) \leq \delta(s, u)+$ $w(u, v)$.

For a given $v$, does the equality hold?
Question 9: [0 points] In a dag we can count the number of paths in linear-time. How fast could you count simple-paths in a general graph?

Question 10: [0 points] Given a directed graph, are strongly connected components unique?

