CS345- ALGORITHMS-II
 NITIN SAXENA

ASSIGNMENT 1

POINTS: 50

DATE GIVEN: 02-AUG-2019
DUE: 17-AUG-2019 (11PM)

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your specific TA:

13000 to 160620 - Pranav Bisht pbisht@cse
160624 to 170195 - Ashish Dwivedi ashish@cse
170201 to 170409 - Abhibhav Garg abhibhav@cse
170412 to 170646 - Nikhil Shagrithaya nshagri@cse
170648 to 170830 - Abhimanyu abhimanu@iitk.
Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.

- There will be a penalty if you write unnecessary or unrelated details in your solution. (Remember that in the exams you'll get limited space.)
- Clearly express the fundamental idea of your algorithm; sketch the main steps of the pseudocode; give a proof of correctness and that of the claimed time complexity. This decides the distribution of partial marks.
- Problems marked ' 0 points' are for practice.

Question 1: [3 points] Consider a subset S of the planar square of unit sides. Suppose no two points in S are closer than distance 0.71 . How large is S ? Give a formal proof.

Question 2: [5 points] Show that if one can compute the convex hull of n points in the plane in $o(n \log n)$ time then one can also sort n numbers in $o(n \log n)$ time.

Question 3: [10 points] Show the following properties of the convex hull $\mathrm{CH}(S)$ of points $S \subset \mathbb{R}^{2}$:

- $\mathrm{CH}(S)$ is unique,
- the vertices of $\mathrm{CH}(S)$ are in S.

Question 4: [15 points] You saw a divide-conquer algorithm to compute the non-dominated points for a given set $S \subset \mathbb{R}^{2}$. It has complexity $O(n \log n)$, where $n:=|S|$. Suppose the number of non-dominated points is h.

Modify the algorithm, or the analysis, so that the time complexity becomes $O(n \log h)$ time.

Question 5: [17 points] You are given two sets A and B of integers. Each has size n and the integers are in the range 0 to $10 n$. Let $A+B$ denote the cartesian-sum multiset

$$
\{a+b \mid a \in A, b \in B\}
$$

We want to compute this multiset $A+B$. Give an algorithm to do this in $O(n \log n)$ time.

Question 6: [0 points] Given an array $A[0 \ldots n-1]$ of integers, a pair (i, j) is an inversion if $i<j$ and $A[i]>A[j]$. Design an $O(n \log n)$ time algorithm to count the number of inversions in A.

Question 7: [0 points] In a set of points S, is it true that in the closest pair either the x-distance or the y-distance is minimized?

Question 8: [0 points] In closest pair algorithm done in the class- could we avoid median-finding by x-sorting S only once in the beginning?

Question 9: [0 points] Could 1-dim closest pair be solved faster than $O(n \log n)$ time?

Question 10: [0 points] For positive real numbers α, β, consider the recurrence

$$
T(n)=T(\alpha \cdot n)+T(\beta \cdot n)+O(n)
$$

Characterize the possible function T that you can get.

