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Introduction

Definition
Combinatorial games are two-player games with no hidden
information and no chance elements. We will denote two players by L
and R.

We will implicitly assume that all games are Short.

Definition
For any game position G we denote left options of game by ðl and
right options of game by ðr.
Thus any game position can be written as

G =
{
ðl|ðr

}
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Tic-Tac-Toe

Tic-Tac-Toe is a game for two players, X and O, who take turns
marking the spaces in a 3x3 grid. The player who succeeds in placing
three of their marks in a horizontal, vertical, or diagonal row wins the
game.

Strategy in this game is to block the opponent’s move try to create a
double attack position. For the first player the best opening move
would be center position as it gives max. opportunities.

It is very easy to show that if both players play optimally the game
always ends in a draw.

Result can be predicted after two initial moves only(one each player),
given both play optimally thereafter.
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Tic-tac-toe is one of the many games that rely on minmax/maxmin
question. The idea is to minimize the loss in the worst case scenario
or equivalently maximize the score in minimum benefit case.

Definition
v̄ = minai maxa−i

vi(ai , a−i)

Tic-Tac-toe is a zero sum game.

There is also a misere version in which one forces the opponent to
place three cuts. And there are many variations of the game.
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Hex

Hex is a strategy board game played on a hexagonal nxn grid.
One player tries to make a path from top to bottom and other from
left to right.

Figure: hex board.
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Theorem
Hex can never end in draw.

Definition
A (class of) game(s) is determined if for all instances of the game
there is a winning strategy for one of the players (not necessarily the
same player for each instance).

CLAIM : HEX is a determined game.

Proof.
If the second player has a winning strategy, the first player could
”steal” it by making an irrelevant move, and then follow the second
player’s strategy. If the strategy ever called for moving on the square
already chosen, the first player can then make another arbitrary
move. This ensures a first player win. Clearly such a strategy cannot
exist.
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There are many important points one should keep in mind while
playing HEX :

Prefer two-bridge instead of one.

Don’t block too close to opponent’s chain.

Your chain is as strong as its weakest link.

Control the center of the board.

Since first player has advantage, few versions allow second player
to swap with first player after first move.

So choosing first move becomes tricky !

Abhishek Kumar Manish Kumar Bera (IITK) Introduction to Combinatorial Game Theory November 6, 2016 8 / 21



There are many important points one should keep in mind while
playing HEX :

Prefer two-bridge instead of one.

Don’t block too close to opponent’s chain.

Your chain is as strong as its weakest link.

Control the center of the board.

Since first player has advantage, few versions allow second player
to swap with first player after first move.

So choosing first move becomes tricky !

Abhishek Kumar Manish Kumar Bera (IITK) Introduction to Combinatorial Game Theory November 6, 2016 8 / 21



There are many important points one should keep in mind while
playing HEX :

Prefer two-bridge instead of one.

Don’t block too close to opponent’s chain.

Your chain is as strong as its weakest link.

Control the center of the board.

Since first player has advantage, few versions allow second player
to swap with first player after first move.

So choosing first move becomes tricky !

Abhishek Kumar Manish Kumar Bera (IITK) Introduction to Combinatorial Game Theory November 6, 2016 8 / 21



There are many important points one should keep in mind while
playing HEX :

Prefer two-bridge instead of one.

Don’t block too close to opponent’s chain.

Your chain is as strong as its weakest link.

Control the center of the board.

Since first player has advantage, few versions allow second player
to swap with first player after first move.

So choosing first move becomes tricky !

Abhishek Kumar Manish Kumar Bera (IITK) Introduction to Combinatorial Game Theory November 6, 2016 8 / 21



There are many important points one should keep in mind while
playing HEX :

Prefer two-bridge instead of one.

Don’t block too close to opponent’s chain.

Your chain is as strong as its weakest link.

Control the center of the board.

Since first player has advantage, few versions allow second player
to swap with first player after first move.

So choosing first move becomes tricky !

Abhishek Kumar Manish Kumar Bera (IITK) Introduction to Combinatorial Game Theory November 6, 2016 8 / 21



There are many important points one should keep in mind while
playing HEX :

Prefer two-bridge instead of one.

Don’t block too close to opponent’s chain.

Your chain is as strong as its weakest link.

Control the center of the board.

Since first player has advantage, few versions allow second player
to swap with first player after first move.

So choosing first move becomes tricky !

Abhishek Kumar Manish Kumar Bera (IITK) Introduction to Combinatorial Game Theory November 6, 2016 8 / 21



There are many important points one should keep in mind while
playing HEX :

Prefer two-bridge instead of one.

Don’t block too close to opponent’s chain.

Your chain is as strong as its weakest link.

Control the center of the board.

Since first player has advantage, few versions allow second player
to swap with first player after first move.

So choosing first move becomes tricky !

Abhishek Kumar Manish Kumar Bera (IITK) Introduction to Combinatorial Game Theory November 6, 2016 8 / 21



NIM

Definition
Nim is strategical game in which there are heaps of coins. Players
can take away any number of coins from a particular heap. Player
with no legal move looses.

There is also a misere version in which player to take last coin looses.

Both versions are ”determined”.

Definition
Nim Sum : a ⊕ b = first write a and b in binary then add without
carrying.

If nim sum of no. of coins in all the heaps is zero then G is called
zero position.
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Theorem
Bouton’s theorem:If G is a zero position, then every move from G
leads to a nonzero position. If G is not a zero position, then there
exists a move from G to a zero position.

Courtesy this theorem we have well defined outcome for every nim
position. Also this theorem provides a winning strategy.

We know that finally we’ll have 0 coins left which is a zero nim
sum position.

Hence if we start from a zero nim sum position second player
will loose and vice-versa.
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Fundamental theorem of combinatorial Games

Theorem
Let G be a short combinatorial game, and assume normal play.
Either Left can force a win playing first on G or else Right can force
a win playing second, but not both.

The theorem has an obvious dual, in which ”Left” and ”Right”
are interchanged.

No explicit base case.

The Fundamental Theorem shows that every short game belongs
to one of the four normal-play outcome classes N ,P ,L,R.

We denote by o(G) the outcome class of G.
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The outcome class of a game, G, can be determined from the
outcome classes of its options as shown in the following table:

some GR ∈ R ∪ P all GR ∈ L ∪ N
some GL ∈ L ∪ P N L
all GL ∈ R ∪N R P

Definition
A game is impartial if both players have the same options from any
position. Else it is called Partisan game.

Theorem
If G is an impartial game then G is in either N or P .
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Theorem
Suppose the positions of a finite impartial game can be parti-tioned
into mutually exclusive sets A and B with the properties:

every option of a position in A is in B

every position in B has at least one option in A.

Then A is the set of P positions and B is the set of N positions.
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Definition
G + H := {G + hL,H + gL|G + hR,H + gR}
The comma is intended to mean set union.

Definition
G = H if (∀X)G + X has the same outcome class as H + X
In essence, G acts as H in any sum of games.

Theorem
1 G + 0 = G
2 G + H = H + G
3 (G + H) + J = G + (H + J)

Definition
−G ::= {−ðR|−ðL}
The definition of negative corresponds exactly to reversing the roles
of the two players.
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Definition
G−H ::= G + (−H)

Lemma
1 −(−G) = G
2 −(G + H) = (−G) + (−H)

Lemma
= is an equivalence relation.
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Theorem
G = 0 iff G is a P-position.(i.e., G is win for second player)

Corollary
G−G = 0

Theorem
Fix games G,H, J

G = H iff G + J = H + J

Corollary
G = Hiff G−H = 0
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Definition
G ≥ H if (∀X) Left wins G + X whenever Left wins H + X
G ≤ H if (∀X) Right wins G + X whenever Right wins H + X

Lemma
1 G ≥ H iff H ≤ G
2 G ≥ H and G ≤ H iff G = H

Theorem
Let G be any game and let Z ∈ P be any game that is a second
player win. Then outcome classes of G and G + Z are the same.
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Theorem
The following are equivalent:

G ≥ 0.

Left wins moving second in G.

∀ games X if left wins moving second/first in X then left wins
moving second/first on G + X.

Theorem
G ≥ H iff G + J ≥ H + J

Theorem
G ≥ H iff left wins moving second on G−H

These results give us an insight on how to actually compare games G
and H

G > H when L wins G−H
G = H when P wins G−H
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G < H when R wins G−H
G||H when N wins G−H

|| means that both games are incomparable.

Theorem
The relation ≥ is a partial order on games.

Transitive : G ≥ H and H ≥ J then G ≥ J
Reflexive : G ≥ G
AntiSymmetry : G ≥ H and H ≥ G then G = H

Theorem
The group containing all games form a partially ordered abelian
group under +
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Definition
Every game G has a unique ”smallest” game which is equal to it.
This game is called G’s canonical form.

Theorem
If

G = {A,B,C, ...|H, I, J, ...}

and B ≥ A then G = G′ where

G′ ={B,C, ...|H, I, J, ...}

Here option A is said to be dominated by option B for Left.

Definition
A Left option A of G can be considered to be reversible if A has a
right option AR such that AR ≤ G
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Theorem
Fix a game

G = {A,B,C, ....|H, I, J, ....}

and suppose for some Right option of A, call it AR, G ≥ AR. If we
denote Left options of AR by {W,X,Y, ...}:

AR = {W,X,Y, ...|...}

and define the new game

G′ ={W ,X ,Y , ...,B ,C , ...|H , I , J , ...}

then G = G′

,,,,Finally we have our result. ,,,,

Theorem
If G and H are in canonical form and G = H , then
G ∼= H(Isomorphic Games).
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