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1 Complete matching

Let M be a matching in G = (X t Y,E) with |X| ≤ |Y |. If all vertices of X are included in M then it is
called a complete matching1. For the above example of tennis matches, if there is a complete matching, then
all participants (of country X) can play at the same time with someone of their own level.

Though it is not necessary that a graph has a complete matching. You might notice that if there is an
isolated vertex (degree zero vertex) then there is no such matching. The guess would be that if all vertices
have high enough degree then there should be a complete matching.

Exercise 1. Find a bipartite graph such that all degrees are higher than 3, which does not have a complete
matching. Show that 3 can be replaced by any constant.

ConsidertheunionoftwocompletebipartitegraphsG:=Kd,d+1tKd+1,d.Thisisabipartite
graphwith|X|=|Y|=2d+1,withdegreeatleastd,butwithnocompletematching.

Given a subset S of vertices X, define N(S) to be the set of vertices in Y adjacent to S.

N(S) := {v ∈ Y : ∃ u ∈ S : (u, v) ∈ E} .

The set N(S) is called the neighborhood of S. Suppose the cardinality of N(S) is smaller than |S| for a
graph G. Then we would not be able to match every vertex in S. In other words, if there exists a subset
S, s.t., |N(S)| < |S| then there is no complete matching. The condition that |N(S)| ≥ |S| is called Hall’s
condition.

We would like to show that the converse is also true. That means, if Hall’s condition is true for every
subset then there is a complete matching. The idea would be to grow the matching if it is not complete. We
will finally show that if Hall’s conditions are satisfied then we can always grow the matching.

To show that Hall’s condition is sufficient for a complete matching, we will show that if matching M is
not complete and Hall’s condition is satisfied, then an alternating path for M exists.

Theorem 1 (Hall’s marriage theorem, 1935). Let G = (X t Y,E) be a bipartite graph. There is a
complete matching in G iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof. Clearly, if there is a complete matching then the size of the neighborhood N(S) for any S ⊆ X has
to be larger than or equal to the size of S.

For the opposite direction, suppose that Hall’s conditions are satisfied and M is a maximum matching
which is not complete. We will show the existence of an alternating path in G wrt M .

Consider any vertex x0 in X which is not matched. N({x0}) will have at least one element, say y1. If y1
is not matched we are done else it is matched to x2. For the set {x0, x2}, again we can find a y3 (not equal
to y1) which is connected to either x0 or x2. Continuing this way, we should reach a vertex yr which is not
matched.

This path can now be traced back. yr is connected to some xi, xi to matching yi−1 and so on. This gives
the alternating path:

yr, xr−1, yr−2, xr−3, yr−4, · · · , x0 .

But there cannot be an alternating path for a maximum matching by the theorem (in last lecture). This
contradiction means that M is a complete matching.

? Edited from Rajat Mittal’s notes.
1 If |X| = |Y | then it is also called a perfect matching.



2 Planarity 2

A planar representation of a graph G is a drawing of the graph, say, on a piece of paper such that no two
edges intersect each other except at the end points. Take a look at two representations of the graph K4.

Fig. 1. Two different representations of K4. Second one is planar.

A graph G is called planar if it has a planar representation. Notice that a planar graph can also have
non-planar representations. To show that a graph is planar, we can just show a planar representation. But
showing that a graph is non-planar takes a lot of effort. Let us take an example.

Theorem 2. The graph K5 is non-planar.

Proof. Any planar drawing of a graph divides the plane into regions. Look at the following example of K4.

Fig. 2. Regions in a graph.

2 This section is taken from the book by Rosen [1].
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In any planar drawing of the graph K5, pick 4 vertices and call them v1, v2, v3, v4. Since (v1, v2), (v2, v3), (v3, v4)
and (v4, v1) are all connected. They will divide the plane into two regions. We can call them inside and out-
side.

Case 1: v5 falls in the region inside. Then both the edges (v1, v3) and (v2, v4) have to fall in the region
outside. But then they will have to cross each other.

Case 2: v5 falls in the region outside. The proof in this case is similar and left as an exercise.
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