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1 Inverse modulo n: or how to solve linear equations

We noticed before that ab = ac mod n need not imply b = c mod n. This is because n | a(b − c) implies
n | b− c only when gcd(a, n) = 1.

But if a and n are coprime to each other then there exists an integer k, s.t., ka = 1 mod n (ref. Bézout’s
identity). The number k (more precisely the residue class of k modulo n) is called the inverse of a modulo
n and is denoted as a−1 mod n.

If inverse of a exist, then,

ab = ac mod n ⇒ a−1ab = a−1ac mod n ⇒ b = c mod n .

When n is a prime, then any 0 < a < n has GCD 1 with n. In this case, inverse exist for all a not divisible
by n. Hence, while computing modulo a prime p, we can divide (or cancel) freely.

Exercise 1. Find the following quantities,

1. 2−1 mod 11 .
2. 16−1 mod 13 .
3. 92−1 mod 23 .

Exercise 2. Give an algorithm to find a−1 mod n. What previous algorithm can you use?

Exercise 3. Give an algorithm to solve the linear equation aX = b mod n, to find the unknown X.

Let us look at one of the oldest theorems in number theory, whose proof inspires several other proofs in
mathematics.

Theorem 1 (Fermat’s little theorem, 1640). Given a prime number p and an integer a coprime to p,

ap−1 = 1 mod p .

Proof. We will look at the set S = {a, 2a, 3a, · · · , (p − 1)a}. Since a is coprime to p, no element ka = 0
mod p if k 6= 0 mod p .

Exercise 4. Show that @s 6= t ∈ S : s = t mod p .

The previous exercise shows that S has p − 1 distinct entries all ranging from 1 to p − 1. So S is just a
permutation of the set T = {1, 2, · · · , p− 1}. Taking product of all entries in S and T modulo p, we get,

a · 2a · · · (p− 1)a = 1 · 2 · · · (p− 1) mod p .

Cancelling the (p− 1)! term from both sides,

ap−1 = 1 mod p .
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Exercise 5. Prove that ap = a mod p for any prime p and any integer a.
This shows that exponentiation in prime modulus is very special!

Exercise 6. For a composite n, and any a, what can you say about an mod n ?

Nothingspecial.However,wecanproveanalternatestatement.Forcoprimea,nmodifytheabove
prooftodeducethata

φ(n)
=1modn,whereφ(n)isthenumberofelementsin[n−1]thatare

coprimeton.Whena,nshareafactorthenthereisnogoodproperty.

2 Euler’s totient function φ

The case when n is not a prime is slightly more complicated. We can still do modular arithmetic with division
if we only consider numbers coprime to n.

For n ≥ 2, let us define the set,

Z∗
n := {k | 0 ≤ k < n, gcd(k, n) = 1} .

The cardinality of this set is known as Euler’s totient function φ(n), i.e., φ(n) = |Z∗
n|. Also, define

φ(1) = 1.

Exercise 7. What are φ(5), φ(10), φ(19) ?

Clearly, for a prime p, φ(p) = p − 1. What about a prime power n = pk? There are pk−1 numbers less
than n which are NOT coprime to n (Why?). This implies φ(pk) = pk − pk−1. How about a general number
n?

We can actually show that φ(n) is an almost multiplicative function. In the context of number theory, it
means,

Theorem 2 (Multiplicative). If m and n are coprime to each other, then φ(m · n) = φ(m) · φ(n) .
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