Lecture 13: Basic number theory
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1 Inverse modulo n: or how to solve linear equations

We noticed before that ab = ac mod n need not imply b = ¢ mod n. This is because n | a(b — ¢) implies
n | b— c only when ged(a,n) = 1.

But if @ and n are coprime to each other then there exists an integer k, s.t., ka =1 mod n (ref. Bézout’s
identity). The number &k (more precisely the residue class of k modulo n) is called the inverse of a modulo
n and is denoted as a~! mod n.

If inverse of a exist, then,

ab=ac modn = a lab=a"tac modn = b=c modn.

When n is a prime, then any 0 < a < n has GCD 1 with n. In this case, inverse exist for all a not divisible
by n. Hence, while computing modulo a prime p, we can divide (or cancel) freely.

Ezercise 1. Find the following quantities,

1. 271 mod 11 .
2. 167! mod 13.
3. 9271 mod 23 .

Ezercise 2. Give an algorithm to find a=! mod n. What previous algorithm can you use?
Ezxercise 3. Give an algorithm to solve the linear equation aX = b mod n, to find the unknown X.

Let us look at one of the oldest theorems in number theory, whose proof inspires several other proofs in
mathematics.

Theorem 1 (Fermat’s little theorem, 1640). Given a prime number p and an integer a coprime to p,
a»'=1 modp.

Proof. We will look at the set S = {a,2a,3a,---,(p — 1)a}. Since a is coprime to p, no element ka = 0
mod pif k#0 mod p .

Ezercise 4. Show that fs #t€ S:s=1t mod p .

The previous exercise shows that S has p — 1 distinct entries all ranging from 1 to p — 1. So S is just a
permutation of the set T = {1,2,--- ,p — 1}. Taking product of all entries in S and T modulo p, we get,

a-2a---(p—1a=1-2---(p—1) modp.

Cancelling the (p — 1)! term from both sides,

a?” ' =1 modp.

* Edited from Rajat Mittal’s notes.



Ezxercise 5. Prove that a? = a mod p for any prime p and any integer a.
This shows that exponentiation in prime modulus is very special!

Ezxercise 6. For a composite n, and any a, what can you say about a mod n 7
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2 Euler’s totient function ¢

The case when n is not a prime is slightly more complicated. We can still do modular arithmetic with division
if we only consider numbers coprime to n.
For n > 2, let us define the set,

Zy ={k| 0<k<mn,ged(k,n)=1}.

The cardinality of this set is known as Euler’s totient function ¢(n), i.e., ¢(n) = |Z%|. Also, define
6(1) = 1.

Ezercise 7. What are ¢(5), ¢(10), ¢(19) ?

Clearly, for a prime p, ¢(p) = p — 1. What about a prime power n = p*? There are p*~! numbers less

than n which are NOT coprime to n (Why?). This implies ¢(p*) = p* — p*~!. How about a general number
n?

We can actually show that ¢(n) is an almost multiplicative function. In the context of number theory, it
means,

Theorem 2 (Multiplicative). If m and n are coprime to each other, then ¢(m -n) = ¢(m) - d(n) .
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