Comparing Human Faces using Edge Weighted Dissimilarity Measure

Aditya Nigam
ICARCV 2010, Singapore

Ph.D Student
Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

December 10, 2010

Table of contents

(1) Problem Definition

- Statement and Motivation
(2) Related Work
- HD and its Variants
(3) Proposed EWDM Measure
- Pre-Processing
- Defining EWDM Measure
(4) Experimental Results and Analysis
- Results
(5) Conclusion
(6) Efficient Computation of EWDM
- Algorithm
- Analysis

Problem Definition

- Face picture acquisition under the same physical conditions is not always possible.
- Different face recognition algorithms perform poorly in typical varying environments.
- Varying illumination, poses, lighting conditions, expressions, backgrounds, scales causes a lot of variation in pixels intensities, and hence different algorithms performance got severely affected.
- So we require an algorithm that is robust enough to small amount of such variations.

Motivation

- Edge images are less affected by illumination variations, but they don't carry overall facial appearance "they contains primarily the structure of the faces".
- Gray images can't be used directly as they are affected by this illumination variation.
- EWDM measure can compare the gray images and is found to be robust to slight variation in pose, expression and illumination.

Hausdorff Distance (HD)

- Conventional Hausdorff distance is dissimilarity between two set of points.
- Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4} . . a_{m}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4} . . b_{n}\right\}$ be two Set of points then, undirected Hausdorff distance [8] between A and B is defined as:

$$
H D(A, B)=H D(B, A)=\max (h d(A, B), h d(B, A))
$$

here $h d(A, B)$ is the directed Hausdorff distance defined by:

Directed hd

$$
h d(A, B)=\max _{a \in A} \min _{b \in B}\|a-b\|
$$

and, $\|$.$\| is the norm of the vector.$

HD Example

SET A			SET B
			a b
Pairs of Points	Distances	Min Value and Correspondance	Max Value
1-a	10	10(1-a)	
1-b	14	1 corresponds to a	12(3-a)
2-a	8	8(2-a)	This is the worst
2-b	10	2 corresponds to a	correspondance [Most Dissimilar Points]
3 -a	12	12(3-a)	
3-b	15	3 corresponds to a	

Figure: Example hd(A,B)

PHD

- HD measure does not work well when some part of the object is occluded or missing.
- For partial matching partial Hausdorff distance PHD was introduced.
- Undirected PHD is defined as:

$$
P H D(A, B)=P H D(B, A)=\max (\operatorname{phd}(A, B), \operatorname{phd}(B, A))
$$

here $\operatorname{phd}(A, B)$ is the directed $P H D$, which is defined by:

Directed phd

$$
\operatorname{phd}(A, B)=K^{t h} \max _{a \in A} \min _{b \in B}\|a-b\|
$$

- Both HD and PHD works on edge map and can tolerate small amount of local and non-rigid distortion.

$M H D$

- MHD [15] has been introduced that uses averaging which is a linear function which makes it less sensitive to noise.
- Undirected MHD is defined as:

$$
M H D(A, B)=M H D(B, A)=\max (\operatorname{mhd}(A, B), \operatorname{mhd}(B, A))
$$

here $\operatorname{mhd}(A, B)$ is the directed $M H D$, which is defined by:

Directed mhd

$$
\operatorname{mhd}(A, B)=\frac{1}{N_{a}} \sum_{a \in A} \min _{b \in B}\|a-b\|
$$

Where N_{a} is the number of points in set A .

M2HD

- $M H D$ is improved to $M 2 H D$ [10] by adding 3 more parameters:

Parameters

Neighborhood function (N_{B}^{a}) N'hood of the point a in set B Indicator variable (I) $I=1$ if a's corresponding point lie in N_{B}^{a} else $I=0$ Associated penalty (P) if $I=0$ penalize with this penalty
and directed $M 2 H D$ is defined as:

Directed m2hd

$$
m 2 h d(A, B)=\frac{1}{N_{a}} \sum_{a \in A} d(a, B)
$$

Where $d(a, B)$ is defined as:

$$
d(a, B)=\max \left[\left(I \cdot \min _{b \in N_{B}^{\mathrm{B}}}\|a-b\|\right),((1-I) \cdot P)\right]
$$

$S W H D$ and $S W 2 H D$

- For better discriminative power $H D$ and $M 2 H D$ measures were improved by assigning the weights to every point according to its spatial information.
- Crucial facial feature points like eyes and mouth are approximated by the rectangular windows and are given more importance than others.
- Directed SWHD and SW2HD [11] were defined as:

Directed swhd and sw2hd

$$
\begin{aligned}
\operatorname{swhd}(A, B) & =\max _{a \in A}\left[w(a) \cdot \min _{b \in B}\|a-b\|\right] \\
\operatorname{sw2hd}(A, B) & =\frac{1}{N_{a}} \sum_{a \in N_{a}}\left[w(a) \cdot \min _{b \in B}\|a-b\|\right]
\end{aligned}
$$

Spatial Weighing Function

Where $w(x)$ is defined as:

Weighing Function

$$
w(x)= \begin{cases}1 & x \in \text { Important facial region } \\ W & x \in \text { Unimportant facial region } \\ 0 & x \in \text { Background region }\end{cases}
$$

SEWHD and SEW2HD

- Rough estimation of facial features cannot fully reflect the exact structure of human face.
- Regions where the difference among the training images is large, the corresponding regions at the eigenfaces will have large magnitude.
- Eigenfaces appears as light and dark areas arranged in a specific pattern. Regions where the difference among the training images is large, the corresponding regions in the eigenfaces will have large magnitude.

Eigen Weighing

Eigen faces can be used as weighing function because they represents the most significant variations in the set of training face images.

Eigen Faces

Figure: Eigenfaces

Defining SEWHD and SEW2HD

- Proposed SEWHD and SEW2HD [12] are defined as:

Directed sewhd and sew2hd

$$
\begin{aligned}
\operatorname{sewhd}(A, B) & =\max _{a \in A}\left[w_{e}(a) \cdot \min _{b \in B}\|a-b\|\right] \\
\operatorname{sew} 2 h d(A, B) & =\frac{1}{N_{a}} \sum_{a \in N_{a}}\left[w_{e}(a) \cdot \min _{b \in B}\|a-b\|\right]
\end{aligned}
$$

where $w_{e}(x)$ is defined as:
$w_{e}(x)=$ Eigen weight function generated by the first eigen vector

EWDM Measure

EWDM

- EWDM measure can be applied on gt-transformed images obtained from gray-scale facial images.
- EWDM measure is similar to the $H D$ based measures but is computationally less expensive and more accurate.
- EWDM also shows robustness against slight variation in pose, expression and illumination.

Transformation

- A pixel's relative gray value in its neighborhood can be more stable than its own gray value.
- SK-transformation [14] provides some robustness against illumination variation and local non-rigid distortions by converting gray scale images into transformed images that preserve intensity distribution.
- Every pixel is represented by an 8-element vector which in itself can store the sign of first-order derivative with respect to its 8 -neighborhood.

Property of SK-transformed images

Gray value of pixels are being changed in different poses of the same subject but their corresponding vector do not change by a great extent.

Example

Gray values Sign of first-order derivative

Transformed vector

Problem

- The above property holds when gray values of neighborhood pixels are not too close to each other.
- Usually, we have small variations in the gray values (e.g. in background, facial features etc.), where the above property fails to hold.

Observation

Figure: Gray-value spectrum.

Gray levels are hardly distinguishable (Similar) within a range of ± 5 units.

Improvement

- Basic Comparator
$X\left\{\begin{array}{l}=X \\ <\alpha \in(X, 255] \\ >\alpha \in[0, X)\end{array}\right.$

Improvement

- Basic Comparator

$$
X\left\{\begin{array}{l}
=X \\
<\alpha \in(X, 255] \\
>\alpha \in[0, X)
\end{array}\right.
$$

$$
X\left\{\begin{array}{l}
=\alpha \in[(X-g t),(X+g t)] \\
<\alpha \in(X+g t, 255] \\
>\alpha \in[0, X-g t)
\end{array}\right.
$$

Improvement

- Basic Comparator

$$
X\left\{\begin{array}{l}
=X \\
<\alpha \in(X, 255] \\
>\alpha \in[0, X)
\end{array}\right.
$$

- gt-Comparator
$X\left\{\begin{array}{l}=\alpha \in[(X-g t),(X+g t)] \\ <\alpha \in(X+g t, 255] \\ >\alpha \in[0, X-g t)\end{array}\right.$

Where

- $g t$ is gray value tolerance, $g t \geq 0$.
- X is a gray level not merely a number.
- Gray level X is neither greater than gray level $(X-1)$ nor less than gray level $(X+1)$; ideally they should be considered as similar.

Diagrammatically

Figure: Basic Comparator

Figure: gt-Comparator

$g t$-Transformation

- Any pixel ' a ' is represented by an 8 -element vector $V(a)$ whose elements are drawn from the set $\{0,1,2\}$.
- The decimal equivalent of the $V(a)$ is called the transformed value of the pixel a, ranging from 0 to $6560\left(=3^{8}-1\right)$.

Stability

In typical varying environment transformed value of a pixel remains more stable than its corresponding gray value.

gt-Transformed Images

Encoding

Less Than $<$ RED i.e.[0], Equal To $=$ BLUE i.e [1], Greater Than $>$ GREEN i.e. [2].

Figure: gt-Transformed images

Weighing Function

```
Algorithm 1 Weighing(database)
Require: Binary Image \(W\) serving as weighing function given database.
Ensure: Important facial feature point have value 1 in Binary image \(W\)
    1: Initialize a 2d-array \(\mathrm{A}[r][c]\) to 0 ;
    for all \(I \in\) database do
        for all \(i, j\) do
    4: \(\quad\) if \(\mathrm{I}[i][j]\) is a strong edge point then
    5: \(\quad A[i][j] \leftarrow A[i][j]+1\);
            end if
        end for
    end for
    for all \(i, j\) do
10: \(\quad A[i][j] \leftarrow \frac{A[i][j] * 255}{N}\);
11: end for
12: for all \(i, j\) do
13: if \(A[i][j]>\) threshold then
14: \(\quad A[i][j] \leftarrow 1\);
15: else
16: \(\quad A[i][j] \leftarrow 0\);
17: end if
18: end for
19: Write this matrix \(A\) to a Binary image \(W\);
```


Weighing Function

(g) IITK thres $=30$

(b) ORL thres $=20$

(h) IITK thres $=40$

(c) ORL thres $=30$

(i) Bern thres $=10$

(d) ORL thres $=40$

(j) Bern thres $=20$

(e) IITK thres $=10$

(k) Bern thres $=30$

(f) IITK thres $=20$

(1) Bern thres $=40$

Figure: Weighing Function for different databases using threshold values such as 10,20,30,40

Notations

Parameter Description

Parameter	Description
$\boldsymbol{A} \mid \boldsymbol{B}$	The corresponding gt-transformed images $(r-2) \times(c-2)$, boundary pixels are ignored;
$N_{B}^{\text {a }}$	Neighborhood of pixel a in image B;
$V(a)$	The 8-element vector at pixel a;
tval_a	The decimal equivalent of $V(a)$, i.e. the transformed value of pixel a;
$\operatorname{EWDM}(A, B)$	Edge Weighted Distance measure between A and B;
p	Order of the norm ;
N	Total number of important pixels for that database;
$N_{A B}^{U}$	Total number of unmatched important pixels of A, when A is compared with B;
$\operatorname{Match}(a, B)$	Matches a pixel a with B, and returns 1 if Matched or 0 if Unmatched;

Defining N_{B}^{a}

- Neighborhood of pixel a in image B
- Pixel's within a distance of $d \sqrt{2}$ from pixel a is considered to be in its neighborhood.

Neighborhood

$$
N_{B}^{a}=\{b \in B \mid\|a-b\| \leq d \sqrt{2}\}
$$

Defining $\operatorname{EWDM}(A, B)$

- Match (a, B) is defined as:

Matching

$$
\operatorname{Match}(a, B)= \begin{cases}1 & \text { If } \exists_{b \in N_{B}^{a}} V(a)=V(b) \text { [i.e. Matched] } \\ 0 & \text { else }\end{cases}
$$

- $N_{A B}^{U}$ is defined as:

Important Unmatched Points

$$
N_{A B}^{U}=\sum_{a \in A}(1-\operatorname{Match}(a, B))
$$

- $\operatorname{EWDM}(A, B)$ is defined as:

EWDM

$$
E W D M(A, B)=\left\|\left\langle\frac{N_{A B}^{U}}{N}, \frac{N_{B A}^{U}}{N}\right\rangle\right\|_{p}
$$

Parameterized Analysis

Parameters

- EWDM measure is parameterized primarily by two parameters gt and d, the third parameter p (order of norm) is set to 20 for this work.
- Gray value Tolerance gt can vary within range [0,5].
- Neighborhood parameter d can vary within range [1,15].

ORL:Pose and Expression Variations

ORL:top $1[g t=5, d=8, R R=99.75 \%]$

YALE:Illumination and Expression Variations

YALE:top $1[g t=1, d=1, R R=92.75 \%]$

BERN:Big Pose and Expression Variations

BERN:top $1[g t=5, d=5, R R=98.66 \%]$

CALTECH:Small Pose, Expression, Illumination and Background Variation

CALTECH:top $1[g t=1, d=2, R R=98.23 \%]$

IITK:Very Small Expression and Pose Variations

The best result for IITK database are with parameters $[g t=5, d=5$] and recognition rate is $R R=99.73 \%$

Comparative Analysis

ORL and YALE

Distance Measure	ORL Recognition rate (\%)	
PCA	63	YALE
HD	46	50
PHD	$72.08(f=0.85)$	66
M2HD	75	$84(f=0.7)$
SWHD	82	80
SW2HD	88	82
SEWHD	88	83
SEW2HD	91	85
$H_{p g}$	91.25	89
EWDM	$\mathbf{9 9 . 7 5}(g t=5, d=11)$	$\mathbf{9 2 . 7 3}(g t=0, d=1)$

Table: Comparative study on ORL and YALE when considering top 1 best match

Comparative Analysis

BERN

Test	Recognition rate (\%)			
Faces	PHD	LEM	$H_{p g}$	EWDM
	$(\mathrm{f}=0.85)=5, d=5)$			

Table: Comparative study on BERN database when considering top 1 best match

Summarized Performance of EWDM

Databases Vs Parameters

Db,Nor	S,P,T	Time	gt,d,RR\% [top1]	gt,d,RR\% [top5]	Varying
ORL,N	$40,10,400$	1.8	$5,8,99.75$	$5,8,100$	Poses and Expressions
YALE,Y	$15,11,165$	1.2	$1,1,92.75$	$1,2,98.84$	Illumination and Expressions
BERN,N	$30,10,300$	1.6	$5,5,98.66$	$5,5,99.4$	Poses and Expressions
CALTECH,Y	$17,20,340$	1.6	$1,2,98.23$	$1,3,99.75$	Poses and Illumination
IITK,N	$149,10,1490$	4.6	$5,5,99.73$	$4,5,100$	Poses and Scale

Table: Databases vs Parameters

Conclusion

- Edge Weighted Dissimilarity Measure (EWDM) measure proposed is different from existing Hausdorff distance based methods as it works on $g t$-transformed images.
- It is computationally inexpensive and provides good performance.
- Parameters $g t, d, p$ are set taking into account the illumination variation and the nature of the images.

Discriminative Power

It has shown tolerance to varying poses, expressions and illumination conditions and can achieve a higher recognition rate than HD, PHD, MHD, M2HD, SWHD, SW2HD, SEWHD, SEW2HD, H_{g} and $H_{p g}$.
A.Samal and P.A.lyengar,

Automatic recognition and analysis of human faces and facial expressions; a survey,
Pattern recognition 25 (1) (1992) 65-77.
R.Chellappa, C.L.Wilson and S.Sircohey,

Human and machine recognition of faces: a survey,
Proc. IEEE 83 (5) (1995) 705-740.
目 M. Turk and A.Pentland, Eigenfaces for recognition, Journal of cognitive Neuroscience, March 1991.
(L.Wiskott, J.-M.Fellous, N.Kuiger and C.Von der Malsburg, Face recognition by elastic bunch graph matching, IEEE Tran. on Pattern Anal.Mach.Intell., 19: 775-779.
S. Sawrence, C.L.Giles, A.C.Tsoi, and A. D. Back,

Face recognition: A convolutional neural network approach, IEEE Trans. Neural Networks, 8:98-113, 1997.

Guodong Guo, Stan Z. Li, and Kapluk Chan, Face Recognition by Support Vector Machines, Automatic Face and Gesture Recognition, 2000.Proc. Fourth IEEE Inter.Conf. on Volume,Issue,2000 Page(s):196-201

國 F.S.Samaria,
Face recognition using Hidden Markov Models. PhD thesis, Trinity College, University of Cambridge, Cambridge,1994.

E D.P.Huttenlocher, G.A.Klanderman and W.A.Rucklidge, Comparing images using the Hausdorff distance, IEEE Trans.Pattern Anal.Mach.Intell,vol.15, no.9,pp.850-863, sep. 1993.

圊 W.J.Rucklidge, Locating objects using the Hausdorff distance, ICCV 95: Proc. 5th Int. Conf. Computer Vision, Washington, D.C, June 1995, pp. 457-464.
B.Takacs,

Comparing face images using the modified Hausdorff distance,

Pattern Recognit,vol.31, no.12,pp.1873-1881, 1998.
围 B.Guo, K.-M.Lam, K.-H.Lin and W.-C.Siu, Human face recognition based on spatially weighted Hausdorff distance,
Pattern Recognit. Lett., vol. 24,pp.499-507, Jan. 2003.
國 K.-H.Lin, K.-M.Lam and W.-C.Siu,
Spatially eigen-weighted Hausdorff distances for human face recognition,
Pattern Recognit.,vol.36,pp.1827-1834, Aug. 2003.
E.P.Vivek and N.Sudha, Gray Hausdorff distance measure for comparing face images, IEEE Trans. Inf. Forensics and Security, vol.1, no. 3, Sep. 2006.
N.Sudha and Y.Wong,

Hausdorff distance for iris recognition, Proc. of 22nd IEEE Int. Symp. on Intelligent Control ISIC 2007, pages 614-619,Singapore, October 2007.

R M.Dubuisson and A.K. Jain,

A modified Hausdorff distance for object Matching,

Proc. 12th Int. conf. on Pattern Recognition (ICPR), Jerusalem, Israel, (1994).
© Y.Gao and M.K.Leung,
Face recognition using line edgemap,
IEEE Trans. Pattern Anal. Machine Intell.,vol.24, pp.764-779, Jun. 2002.

The ORL Database of Faces[Online], Available:http: //www.uk.research.att.com/facedatabase.html.

囲 The Yale University Face Database[Online], Available:http: //cvc.yale.edu/projects/yalefaces/yalefaces.html.

囦 The Bern University Face Database[Online], Available:ftp://ftp.iam.unibe.ch/pub/images/faceimages/.

- The Caltech University Face Database[Online], Available:http: //www.vision.caltech.edu/html-files/archive.html.

David A. Forsyth and Jean Ponce, Computer Vision - A Modern Approach, Pearson Education, 2003.
嗇 Yang,M.H.;Kriegman,D.J. and Ahuja, N, Detecting Faces in Images: A Survey, IEEE Transaction (PAMI), Vol.24, No. 1, (2002),(34-58).
Li,S.Z and Jain, A.K
Handbook of Face Recognition, Springer-Verlag, (2005)

Yuankui Hu and Zengfu Wang,
A Similarity Measure Based on Hausdorff Distance for Human Face Recognition,
$18^{\text {th }}$ International Conference on Pattern Recognition (ICPR06), IEEE (2006).

Gary Bradski, Adrian Kaehler
Learning OpenCV: Computer Vision with the OpenCV Library, [ONLINE], Available at http://www.amazon.com/
Learning-OpenCV-Computer-Vision-Library/dp/0596516134

Big Illumination Variation [use $g t=0$]

Effect of High $g t$ values under heavy illumination variation

- With higher $g t$ values more and more elements of $V(a)$ start acquiring value 1 .
- This will boost the blue value of pixels in the gt-transformed images.
- Directional lights and heavy illumination condition variations may further lift up the blue value upto an extent that blue color starts dominating in gt-transformed image.

Some Properties of EWDM and ewdm

Properties

(1) $\operatorname{EWDM}(A, B)=\operatorname{EWDM}(B, A)$.
(2) If $\operatorname{ewdm}(A, B)=K$, then $K \cdot N_{a}$ pixels of A do not have any pixel with same transformed value within its neighborhood in B.
(3) $\operatorname{EWDM}(A, B)$ and $\operatorname{ewdm}(A, B)$ are always positive and normalized between 0 and 1 .
(9) $\operatorname{EWDM}(A, B)$ and $\operatorname{ewdm}(A, B)$ are parameterized by $g t, d$ and p.

Efficient Match (a, B)

- Computing $\operatorname{EWDM}(A, B)$ using naive method requires $O\left(r^{2} c^{2}\right)$ time, which is prohibitively computationally intensive.
- Performing Match (a, B) operation efficiently an array of pointers to linked list BLIST is created.

BLIST

It has 3^{8} elements such that $\forall i \in\left[0,3^{8}-1\right]$ the $i^{\text {th }}$ element points to a linked list of pixels having the transformed value i [14].

Date-Structure BLIST

T-Value

Figure: Data Structure: BLIST

Time Complexity

Preprocessing

- Gray scale images sized $r \times c$ transformed into $g t$-Transformed images. It is done once and single scan of the whole image is sufficient.
- Time complexity is $O(r c)$.

Processing

- Constructing data structure BLIST require $O(r c)$ time.
- Match function involves linear search of a linked list of pixels.
- Time taken by Match depends on the length of the list. Assuming that k is the length of the largest linked list.
- Computing $\operatorname{EWDM}(A, B), \operatorname{Match}(a, B)$ function has to be called $2 r c$ times, therefore time required to compute EWDM will be $O(k r c)$.

