TRI-MODAL BIOMETRIC FUSION FOR HUMAN AUTHENTICATION BY TRACKING DIFFERENTIAL CODE PATTERN

Aditya Nigam School of Computing and Electrical Engineering (SCEE) Indian Institute of Technology, Mandi (IIT-Mandi)

NCVPRIPG-2015 Presentation at IIT Patna

December 19, 2015

1 Introduction

- Problem Definition
- Modes of Operation
- Trait, Motivation, Challenges and Issues

2 Proposed System

- ROI Extraction
 - Iris ROI Extraction
 - Knuckleprint ROI Extraction
 - Palmprint ROI Extraction
- Preprocessing
- Feature Extraction
- Matching: Lukas Kanade Tracking
- 3 Database Specifications
- 4 Comparative Performance Analysis
- 5 Multimodal Fusion

- Biometric based Personal authentication systems are in demand.
- Several biometric traits are studied such as face, iris, palmprint, ear, fingerprint etc.
- Biometrics based PAS:

Enrollment Problem Features extracted are saved in database to enroll any Subject.

- Authentication Problem One to One matching and decide using thresholding (Verification).
- Identification Problem One to Many matching and best matching scores and corresponding subjects are reported (Recognition problem)

Enrollment

Flow diagram of Enrollment Process

Authentication - (EER)

Flow diagram of Authentication Process

Identification - (CRR)

Flow diagram of Identification Process

Aditya Nigam (SCEE, IIT-Mandi)

NCVPRIPG-15 at IIT Patna, Biha

Genuine Vs Imposter Graph

Several Biometric Traits Available

(a) Face

(b) Fingerprint

(c) 4-Slap

(d) Ear

(g) Iris Aditya Nigam (SCEE, IIT-Mandi)

(e) Vein Pattern

(h) Knuckleprint NCVPRIPG-15 at IIT Patna, Biha

(f) Footprint

(i) Palmprint December 1<u>9, 2015</u>

Biometric Trait's Properties

- 1. **Uniqueness:** The features associated with the biometric trait should be different for everyone.
- 2. Universality: The biometric trait should be owned by everyone and should not be lost easily.
- 3. Circumvention: The biometric trait should not be spoofed or forged easily.
- 4. **Collectability:** The biometric trait should be able to acquire by some digital sensor.
- 5. **Permanence:** The features associated with the biometric trait should be time invariant (*i.e.* temporally stable).
- 6. Acceptability: The biometric trait should be accepted by the society without any objection.

Trait-wise Challenges and Issues

Modality	Motivation	Challenges	Issues
Face [58]	Most obvious, Non intru-	Pose, Expres-	Too many Chal-
	sive, Acceptance, Universal-	sion, Illumi-	lenges
	ity, Cheap Sensors	nation, Aging,	
		Rotation, Trans-	
		lation, Occlusion	
		and Background	
Fingerprint	Unique, Easier to acquire,	Rotation and	Acceptance
[16]	Less cooperative, Cheap	Translation	
	Sensor		
Iris [72]	Unique, Well Protected,	Segmentation,	Acquisition,
	Highly Discriminative	Occlusion and	Cooperation,
		Illumination,	Acceptance
		Rotation, Off-	
		angle, Motion	
		Blur	
Palmprint	Touch-less, Lesser Intrusive,	Illumination,	Acquisition,
[11]	Bigger ROI, Faster	Rotation and	Cooperation,
		Translation	Acceptance
Knuckleprint	Unique, Well Protected,	Illumination,	Acquisition,
[84]	Highly Discriminative, Ro-	Rotation and	Cooperation,
	bust Features, Cheap Sen-	Translation	Acceptance
	sor		
Ear [42]	Non-Intrusive, Acceptance,	Illumination,	Acquisition,
	Universal, Cheap Sensor,	Rotation in/out	Cooperation,
	Robust Shape	plane, Scale,	Acceptance
		Pose and Trans-	
		lation	

Why do we require several biometric traits

Because none of them can be considered as perfect.

- The performance of any unimodal biometric system is often got restricted by varying environmental and uncontrolled conditions.
- Also the performance got restricted by sensor precision and reliability as well as several trait specific challenges such as pose, expression, aging etc for face recognition.
- Hence fusing more than one biometric samples, traits or algorithms in pursuit of superior performance can be very useful idea.

Motivation (Traits)

• Out of the all the traits listed in previous slide fingerprint is used and accepted widely worldwide. But stills cons are Fail to acquire specially for cultivators and workers, low public acceptance as connected to criminals and Dirty.

Motivation (Traits)

 Out of the all the traits listed in previous slide fingerprint is used and accepted widely worldwide. But stills cons are Fail to acquire specially for cultivators and workers, low public acceptance as connected to criminals and Dirty.

Pros of Iris, Knuckle and Palmprint

- Iris have the most unique and discriminative texture (Considered as the best biometric trait).
- No expression and pose (All three).
- No occlusion, less cooperation an inexpensive sensors (Knuckle and Palmprint).
- Larger ROI ensures abundance of structural features including principle lines, wrinkles, creases and texture pattern even in low resolution palmprint images (Knuckle and Palmprint).

Fingerprint Vs Knuckleprint

Fingerprint Vs Knuckleprint (Row 1 shows fingerprints while second row shows the corresponding knuckleprints)

Discriminative Features

(a) Iris Anatomy

(b) Knuckle Anatomy

(c) Palmprint Anatomy

Sample Acquisition : Initially the raw data is captured using the data sensor. It may require a setup and its own software routine. This is very critical and important stage as what ever is acquired in this stage will be used as the input to all the subsequent stages.

- Sample Acquisition : Initially the raw data is captured using the data sensor. It may require a setup and its own software routine. This is very critical and important stage as what ever is acquired in this stage will be used as the input to all the subsequent stages.
- **ROI Extraction :** From the raw data the actual region of interest (ROI) is extracted in this stage.

- Sample Acquisition : Initially the raw data is captured using the data sensor. It may require a setup and its own software routine. This is very critical and important stage as what ever is acquired in this stage will be used as the input to all the subsequent stages.
- **ROI Extraction :** From the raw data the actual region of interest (ROI) is extracted in this stage.
- Quality Estimation : The quality assessment of the sample ROI extracted is done in this stage. If the quality of the obtained ROI is poor then re-acquisition of the sample is done.

- Sample Acquisition : Initially the raw data is captured using the data sensor. It may require a setup and its own software routine. This is very critical and important stage as what ever is acquired in this stage will be used as the input to all the subsequent stages.
- **ROI Extraction :** From the raw data the actual region of interest (ROI) is extracted in this stage.
- Quality Estimation : The quality assessment of the sample ROI extracted is done in this stage. If the quality of the obtained ROI is poor then re-acquisition of the sample is done.
- Sample Preprocessing : In this stage the obtained ROI is preprocessed using several enhancement techniques. Also some transformations can be performed over it to get robust sample image representation.

- Sample Acquisition : Initially the raw data is captured using the data sensor. It may require a setup and its own software routine. This is very critical and important stage as what ever is acquired in this stage will be used as the input to all the subsequent stages.
- **ROI Extraction :** From the raw data the actual region of interest (ROI) is extracted in this stage.
- Quality Estimation : The quality assessment of the sample ROI extracted is done in this stage. If the quality of the obtained ROI is poor then re-acquisition of the sample is done.
- Sample Preprocessing : In this stage the obtained ROI is preprocessed using several enhancement techniques. Also some transformations can be performed over it to get robust sample image representation.
- Feature Extraction and Matching : In this stage robust feature vectors are computed and stored. Then they are used to compute a score for any given matching which can decide whether a it is genuine or imposter.

Sample Database Images

(a) Casia Interval Iris Database

(b) Casia Lamp Iris Database

(c) PolyU Knuckleprint Database

(d) Casia Palmprint Database

(e) I bly e I amprin

Iris ROI Extraction

▶ Seg

(a) Original

(b) Thresholded

(c) Segmented Pupil

Segmented Iris

Knuckleprint ROI Extraction - FKP Area

Seg

Raw knuckleprint

Annotated Knuckleprint

Knuckleprint ROI

Knuckleprint ROI Extraction - Gabor Filter

 $G(x, y; \gamma, \theta, \psi, \lambda, \sigma) = \underbrace{e^{-(\frac{X^2 + Y^2 \cdot \gamma^2}{2 \cdot \sigma^2})}}_{\text{Gaussian Envelope}} \times \underbrace{e^{i(\frac{2\pi X}{\lambda} + \psi)}}_{\text{Complex Sinusoid}}$

$$X = x * \cos(\theta) + y * \sin(\theta)$$
$$Y = -x * \sin(\theta) + y * \cos(\theta)$$

Knuckleprint ROI Extraction - Gabor Filter

$$G(x, y; \gamma, \theta, \psi, \lambda, \sigma) = \underbrace{e^{-(\frac{X^2 + Y^2 \cdot \gamma^2}{2 \cdot \sigma^2})}}_{\text{Gaussian Envelope}} \times \underbrace{e^{i(\frac{2\pi X}{\lambda} + \psi)}}_{\text{Complex Sinusoid}}$$
$$= x * \cos(\theta) + y * \sin(\theta) \quad X = x * \cos(\theta) + y * \sin(\theta) + c * (-x * \sin(\theta) + y * \cos(\theta))^2$$

 $Y = -x * sin(\theta) + y * cos(\theta)$ $Y = -x * sin(\theta) + y * cos(\theta)$ c is Curvature Parameter

X

Knuckleprint ROI Extraction - Knuckle Filter

Knuckleprint ROI Extraction

Curvature Knuckle Filter

Knuckle Filter Response

Knuckle ROI

Correctly Segmented Knuckleprint ROI

Palmprint ROI Extraction

► Seg

(a) Original (b) Contour (c) Key Points (d) Palmprint ROI

Sample Biometric ROI Images

- The sample ROI is divided into blocks and the mean of each block is considered as the coarse illumination of that block which is expanded to the original block size.
- The estimated illumination of each block is subtracted from the corresponding block of the original image to obtain the uniformly illuminated *ROI*.
- The contrast of the resultant *ROI* is enhanced using Contrast Limited Adaptive Histogram Equalization (*CLAHE*).
- Finally, Wiener filter is applied to reduce noise to obtain the enhanced texture.

Biometric Sample ROI Enhancement

NCVPRIPG-15 at IIT Patna, Bihar

Differential Code Pattern (DCP) based Transformation

X/Y- direction, scharr kernel is applied to obtain DCP^v and DCP^h.
 For any pixel (x, y) with Neigh[k], k = 1, 2, ...8 as gradients of 8 neighborhood, the kth bit for its 8-bit code is given by

$$dcp^{xy}[k] = \begin{cases} 1 & \text{if } Neigh[k] > 0\\ 0 & \text{otherwise} \end{cases}$$
(1)
$$DCP^{v}(x, y) = \sum_{i=0}^{7} dcp^{xy}[i] * 2^{i}$$
(2)

• In *DCP^v* and *DCP^h*, every pixel is represented by its *dcp^{xy}* value, which is an encoding of edge pattern in its 8-neighborhood

Differential Code Pattern (DCP) based Transformation

Differential Code Pattern (DCP) - Illumination Invariance

Iris Based Recognition System: Steps Involved

Knuckleprint Based Recognition System: Steps Involved

Palmprint Based Recognition System: Steps Involved

Feature Extraction [2]

- Eigen values of autocorrelation matrix *M* is used to calculate good corner features.
- Matrix *M* can be defined for any pixel at *i*th row and *j*th column of *edgecode* as:

$$M(i,j) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
(3)

such that

$$\begin{split} A &= \sum_{-K \leq a, b \leq K} w(a, b). I_{x}^{2}(i + a, j + b) \\ B &= \sum_{-K \leq a, b \leq K} w(a, b). I_{x}(i + a, j + b). I_{y}(i + a, j + b) \\ C &= \sum_{-K \leq a, b \leq K} w(a, b). I_{y}(i + a, j + b). I_{x}(i + a, j + b) \\ D &= \sum_{-K \leq a, b \leq K} w(a, b). I_{y}^{2}(i + a, j + b) \end{split}$$

where w(a, b) is the weight given to the neighborhood, $I_x(i + a, j + b)$ and $I_y(i + a, j + b)$ are the partial derivatives sampled within the $(2K + 1) \times (2K + 1)$ window centered at each selected pixel.

Aditya Nigam (SCEE, IIT-Mandi)

NCVPRIPG-15 at IIT Patna, Biha

Matching (Lukas Kanade Tracking) [1]

Brightness Consistency: Features do not change much for small Lagert

$$I(x, y, t) \approx I(x + \Delta x, y + \Delta y, t + \Delta t)$$
(4)

Temporal Persistence: Features moves only within a small neighborhood for small \(\triangle t\).

$$I_X V_X + I_Y V_Y = -I_t \tag{5}$$

where V_x , V_y are the respective components of the optical flow velocity for pixel I(x, y, t) and I_x , I_y and I_t are the derivatives in the corresponding directions.

Spatial Coherency: Spatial coherency assumes that a local patch of of size 5 × 5 neighborhood (*i.e* 25 neighboring pixels, P₁, P₂...P₂₅) moves coherently.

$$\underbrace{\begin{pmatrix} l_x(P_1) & l_y(P_1) \\ \vdots & \vdots \\ l_x(P_{25}) & l_y(P_{25}) \end{pmatrix}}_{\mathsf{C}} \times \underbrace{\begin{pmatrix} \mathsf{V}_x \\ \mathsf{V}_y \end{pmatrix}}_{\mathsf{V}} = -\underbrace{\begin{pmatrix} l_t(P_1) \\ \vdots \\ l_t(P_{25}) \end{pmatrix}}_{\mathsf{D}} \tag{6}$$

where rows of the matrix C represent the derivatives of image I in x, y directions and those of D are the temporal derivative at 25 neighboring pixels. The 2 \times 1 matrix $\hat{\mathbf{V}}$ is the estimated flow of the current feature point determined as

$$\widehat{\mathbf{V}} = (C^T C)^{-1} C^T (-D) \tag{7}$$

Proposed Geometric and Statistical Constraints

► Algo

- Vicinity Bound: The euclidean distance between a(i, j) and its estimated tracked location should be less than or equal to a pre-assigned threshold **Th**_d.
- Patch-wise Error Bound: The tracking error T_{error} defined as pixel-wise sum of absolute difference between a local patch centered at a(i,j) and that of its estimated tracked location patch should be less than or equal to a pre-assigned threshold \mathbf{Th}_{e} .
- **Correlation Bound**: The phase only correlation *POC* between a local patch centered at a(i,j) and that of its estimated tracked location patch should be more than or equal to a pre-assigned threshold **Th**_p.

However all tracked corners may not be the true matches, because of noise, local non-rigid distortions and less difference in inter class matching as compared with intra class matching. Hence a notion of consistent optical flow is introduced. The fraction of matchings FAILED to satisfy the above mentioned bounds is considered as the dissimilarity score.

Database Specifications

Subject	Pose	Total	Training	Testing	Genuine Match- ing	Imposter Match- ing			
Casia V4 Interval (Iris)									
249 (395 Iris)	7	2,639	First 3	Rest	3,657	1,272,636			
Casia V4 Lamp (Iris)									
411 (819 Iris)	20	16,212	First 10	Last 10	78,300	61,230,600			

Subject	ibject Pose Total Training		Testing	Genuine Matching	Imposter Matching				
PolyU (Knuckleprint)									
165 (660 Knuckles)	12	7920	First 6	Last 6	23,760	$15,\!657,\!840$			

Subject	Pose	Total	Training Testing		Genuine	Imposter				
					Matching	Matching				
Casia (Palmprint Left hand)										
290 Palms	8	2,320	First 4	Last 4	4,640	1,340,960				
Casia (Palmprint Right hand)										
276 Palms	8	2,208	First 4	Last 4	4,416	1,214,400				
Casia (Palmprint Left $+$ Right hand)										
566 Palms	8	4,528	First 4	Last 4	9,056	$5,\!116,\!640$				
		PolyU) (Palmpri	nt Left ha	nd)					
193 Palms	20	3,860	First 10	Last 10	19,300	3,705,600				
		PolyU	(Palmprin	t Right h	and)					
193 Palms	20	3,860	First 10	Last 10	19,300	3,705,600				
PolyU (Palmprint Left + Right hand)										
386 Palms	20	7,720	First 10	Last 10	38,600	$14,\!861,\!000$				

▶ ROC

Systems		Interval					
	DI	CRR%	$\mathrm{EER\%}$				
Daugman [24]	1.96	99.46	1.88				
Li Ma [67]	-	95.54	2.07				
Masek $[50]$	1.99	99.58	1.09				
K. Roy [67]	-	97.21	0.71				
Proposed	2.02	100	0.109				
Daugman [24]	1.2420	98.90	5.59				
Proposed	1.50	99.87	1.300				

Performance Analysis - Unimodal Knuckleprint

Algorithm	Equal Error Rate
Compcode [39]	1.386
BOCV [3]	1.833
ImCompcode and MagCode [78]	1.210
MoriCode [32]	1.201
MtexCode [32]	1.816
MoriCode and MtexCode [32]	1.0481
vcode	1.5151
hcode	4.2929
vcode + hcode	0.934343

Performance Analysis - Unimodal Palmprint

Approach	Database	CRR $\%$	EER $\%$
PalmCode [82]	Palm (CASIA)	99.62	3.67
PalmCode [82]	Palm (PolyU)	99.92	0.53
CompCode [39]	Palm (CASIA)	99.72	2.01
CompCode [39]	Palm (PolyU)	99.96	0.31
OrdinalCode [72]	Palm (CASIA)	99.84	1.75
OrdinalCode [72]	Palm (PolyU)	100.00	0.08
Palm-Zernike [11]	Palm (CASIA)	99.75	2.00
Palm-Zernike [11]	Palm (PolyU)	100.00	0.2939
Proposed	Palm (CASIA)	100.00	0.1551
Proposed	Palm (PolyU)	99.95	0.4145

Biometric Traits \Rightarrow			Iris (I)		Knuckle (K)		Palmprint (P)		Fusion			
Dh Nama	Testing	Total	Total	FA	FR	FA	FR	FA	FR	FA	FR	
Stra	Strategy	Genuine	Imposter	EER (%)	CRR (%)	EER (%)	CRR (%)	EER (%)	CRR (%)	EER (%)	CRR (%)	
db1[I=Interval;	1Tr-1Test	349	121452	240	0.66	1849	5	235.33	0.66	0	0	
K=PolyU; P=Casia]	111-11Cat	547	121452	0.19	99.80	1.47	97.80	0.19	99.90	0	100	
db1 [I=Interval;	3Tr-/Test	3657	1276203	1392	4	21923	63	3007	9	0	0	
K=PolyU; P=Casia]	511-41650	5057	12/0295	0.10	100	1.72	99.67	0.24	99.91	0	100	
db2 [I=Interval;	1Tr-1Test	3/10	121452	240	0.66	1849	5	617.66	1.66	0	0	
K=PolyU; P=PolyU	111-11est	1 349	121452	0.19	99.80	1.47	97.80	0.49	99.33	0	100	
db2 [I=Interval;	3Tr-/Test	3657	1276203	1392	4	21923	63	4872	14	0	0	
K=PolyU; P=PolyU	511-41651	3037	12/0295	0.10	100	1.72	99.67	0.38	99.91	0	100	
db3 [I=Lamp;	1Tr-1Test	566	566	319790	4970.33	8.66	6027.66	10.66	385.33	0.66	0	0
K=PolyU; P=Casia]	111-11est	500	519790	1.54	97.29	1.88	97.17	0.11	99.94	0	100	
db3 [I=Lamp;	ATh ATest	0054	5116640	66217	117	99902	177	7912	14	0	0	
K=PolyU; P=Casia]	411-41est	9056	5110040	1.29	99.77	1.95	99.55	0.15	100	0	100	
db4 [I=Lamp;	1Tr 1Test	286	148610	2435	6.33	2181	5.66	1026.6	2.66	0	0	
K=PolyU; P=PolyU	111-11est	500	148010	1.64	97.23	1.46	98.01	0.69	99.13	0	100	
db4 [I=Lamp;	6Tr-6Test	12806	5340060	70833	184	87401	227	43504	113	385	1	
K=PolyU; P=PolyU	011-01est	16st 13896	5549900	1.32	99.87	1.63	99.87	0.81	99.91	0.0071	100	

TABLE I. PERFORMANCE PARAMETERS FOR UNI-MODEL AND CHIMERIC MULTIMODAL DATABASES (db1,db2,db3 & db4).

Thank You

B. D. Lucas and T. Kanade.

An Iterative Image Registration Technique with an Application to Stereo Vision.

In IJCAI, pages 674-679, 1981.

J Shi and Tomasi.

Good features to track.

In Computer Vision and Pattern Recognition, pages 593-600, 1994.

Iris ROI Extraction - (I)

▶ Back

(a) Modified Hough

(b) Integro-Differential

Iris ROI Extraction - 1

Algorithm 4.1 Pupil Segmentation

Require:

Iris image I of dimension $m \times n$, $p_{r_{min}}$: minimum pupil radius, $p_{r_{max}}$: maximum pupil radius, t: binary threshold.

Ensure:

Pupil center c_p with co-ordinates as (c_p^x, c_p^y) , Pupil radius p_r .

- 1: $I_t \leftarrow threshold(I, t)$; // generate binary image after thresholding
- 2: $I_{tf} \leftarrow remove_specular_reflection(I_t);$ // flood filling
- 3: $I_g, I_{gh}, I_{gv} \leftarrow Sobel(I_{tf}); // Sobel edge detection$
- 4: $I_{gb} \leftarrow Threshold_Gradient(I_g); // choosing the best edge points$
- 5: $\vec{E} \leftarrow$ white pixels in I_{gb} ; // collect the edge points in I_{gb}
- 6: for all Edge pixels (x, y) ε E do

7: $\theta(x,y) \leftarrow tan^{-1} \left(\frac{I_{gv}(x,y)}{I_{gh}(x,y)} \right); // \text{ edge orientation at a point}$

8: end for

9: $A(m, n, p_{r_{max}}) \leftarrow 0; //$ 3-D array initialization for voting

- 10: for all Edge pixels $(x, y) \in E$ do
- 11: for $r = p_{r_{min}}$ to $p_{r_{max}}$ do
- 12: Compute (c_1^x, c_1^y) , (c_2^x, c_2^y) by putting (x, y) and $\theta(x, y)$ in eqs. (4.3)-(4.6);
- 13: **if** Point (c_1^x, c_1^y) lies within I_{gb} image **then**
- 14: $A(c_1^x, c_1^y, r) \leftarrow A(c_1^x, c_1^y, r) + 1; // \text{Vote Casting}$
- 15: end if
- 16: **if** Point (c_2^x, c_2^y) lies within I_{gb} image **then**
- 17: $A(c_2^x, c_2^y, r) \leftarrow A(c_2^x, c_2^y, r) + 1; //$ Vote Casting
- 18: end if
- 19: end for
- 20: end for
- 21: $c_p^x \leftarrow argmax_{(i)} A(i, j, k);$
- 22: $c_p^y \leftarrow argmax_{(j)} A(i, j, k);$
- 23: $\vec{p_r} \leftarrow argmax_{(k)} A(i, j, k);$

Algorithm 4.2 Iris Segmentation

Require:

Iris image I of dimension $m \times n$, $i_{r_{min}}$: minimum iris radius, $i_{r_{max}}$: maximum iris radius, (c_p^x, c_p^y) : Pupil center, p_r : pupil radius, W: search window, a_{range} : angular range defining the occlusion free sectors.

Ensure:

Iris center $c_i(c_i^x, c_i^y)$, iris radius i_r .

1: $I_s \leftarrow GaussSmooth(I, \sigma = 0.5, k = 3); // k$: kernel size, Gaussian noise removal 2: $max_{diff} \leftarrow 0; //$ the maximum change in contour summation

3: for all points $(c^x, c^y) \in [W \times W]$ window around (c^x_p, c^y_p) do

4: $prev_{sum} \leftarrow 0$; // previous circular summation of intensity values

5: $start_{flag} \leftarrow True; //$ no circle has yet been summed up

6: for
$$r = i_{r_{min}}$$
 to $i_{r_{max}}$ do

7:
$$c_{sum} \leftarrow 0;$$

8: for all $\alpha \in \alpha_{range}$ do

9: $c_{sum} \leftarrow c_{sum} + I(c^x - r\sin(\alpha), c^y + r\cos(\alpha)); // \text{sector-wise summation}$

- 10: end for
- 11: $diff_{sum} \leftarrow c_{sum} prev_{sum};$ // calculation of difference of sum
- 12: $prev_{sum} \leftarrow c_{sum};$
- 13: **if** $diff_{sum} > max_{diff}$ and $start_{flag} \neq True$ **then**

14:
$$max_{diff} \leftarrow diff_{sum}$$
;

15:
$$c_i^x \leftarrow c^x, \ c_i^y \leftarrow c^y, \ i_r \leftarrow r; // \text{ update the parameters}$$

16: end if

17:
$$start_{flag} \leftarrow False; // a circle has been summed up$$

▶ Back

Algorithm 6.1 Palmprint ROI Extraction

Require:

Full acquired palmprint image I of dimension $m \times n$ as shown in Fig. 6.2(a). **Ensure:**

The cropped palmprint ROI as shown in Fig. 6.2(d).

- 1: Threshold the palmprint image I_p to extract the hand contour C.
- 2: Over the hand contour C find the coordinates of four key points X_1, X_2, V_1, V_2 as shown in Fig.6.2(b).
- 3: Compute C_1 as the intersection point of hand contour and line passing from V_1 with a slope of 45° .
- 4: Compute C_2 as the intersection point of hand contour and line passing from V_2 with a slope of 60° .
- 5: Midpoints of the line segments V_1C_1 and V_2C_2 are considered as one side of the required square palmprint ROI.
- 6: Extract the required square palmprint ROI as shown in Fig. 6.2(d).

Algorithm 5.1 Knuckleprint ROI Detection

Require:

Raw Knuckleprint image I of size $m \times n$.

Ensure:

The knuckleprint ROI FKP_{ROI} , of size $(2 * w + 1) \times (2 * h + 1)$.

- 1: Enhance the FKP image I to I_e using CLAHE;
- 2: Binarize I_e to I_b using Otsu thresholding;
- 3: Apply Canny edge detection over I_b to get I_{cedges} ;
- 4: Extract the largest connected component in I_{cedaes} as FKP raw boundary, $(FKP_{Bound}^{raw});$
- 5: Erode the detected boundary FKP^{raw}_{Bound} to obtain continuous and smooth FKP boundary, FKP_{Bound}^{smooth} ;
- 6: Extract the knuckle area $K_a = \text{All pixels in image } I \in$ the
- ConvexHull(FKP^{mooth}_{Bound}); 7: Apply the knuckle filter $F^{0.01,30}_{kp}$ over all pixels $\in K_a$;
- 8: Binarize the filter response using f * max as the threshold;
- 9: The central knuckle line (c_{kl}) , is assigned as that column which is having the maximum knuckle filter response;
- 10: The mid-point of top and bottom boundary points over $c_{kl} \in K_a$, is defined as the central knuckle point (c_{kp}) .
- 11: The knuckle ROI (FKP_{ROI}) is extracted as the region of size $(2*w+1)\times(2*h+1)$ from raw knuckleprint image I, considering c_{kp} as its center point.

Iris Quality - 1

Back

Algorithm 4.3 Eyelid Detection

Require: Normalized Iris image NI of dimension $m \times n$, $s : (s_x, s_y)$: initial seed point in NI, t: region-growing threshold

Ensure: Eyelid region LID, Eyelid Mask Mask_{eyelid}

- 1: $S \leftarrow s$ // Seed point is added to eyelid set S
- 2: $M = NI(s_x, s_y)$ // Mean of set S
- 3: while True do
- 4: $min \leftarrow Infinity, minPoint \leftarrow \phi$
- 5: for all unallocated neighboring pixels (x, y) of S do
- 6: **if** |NI(x, y) M| < min **then**
- 7: $\min \leftarrow |NI(x,y) M| //$ absolute difference with region's mean
- 8: $minPoint \leftarrow (x, y) // \text{ keep track of the best point}$
- 9: end if
- 10: end for
- 11: **if** min > t or size(S) = = size(NI) **then**
- 12: **break** // stop region-growing
- 13: end if
- 14: $S \leftarrow S \cup minPoint // add$ the best point to the set
- 15: $M \leftarrow mean(S) //$ update the mean value
- 16: end while
- 17: $LID \leftarrow S$
- 18: $Mask_{eyelid} \leftarrow NI(LID) //$ eyelid mask

Back

Algorithm 4.4 Eyelid Detection

Require: Normalized Iris image NI of dimension $r \times c$

Ensure: Eyelash MaskMaskeyelash

SD ← filter2D(NI, std(3,3))// 2D filtering with 3x3 standard deviation filter
 SD ← SD // normalize w.r.t. maximum value
 N = NI // standard intensity values(0-1) of NI
 F = 0.5 × SD + 0.5 × (1 - N) // fusion of std. deviation and intensity values.
 F_H ← imhist(F) // image histogram
 Thresh ← Otsu(F_H) // determine Otsu threshold
 Mask_{eyelash} ← threshold(F_H, Thresh) // Otsu thresholding: Mask_{eyelash}(x, y) is set only if (x, y) is an eyelash pixel

Iris Quality - 3 (I)

▶ Back

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

Image	Focus	Blur	Occlusion	Contrast	Dilation	Reflection	Quality
Image 1	0.2034	0.6783	0.8834	0.8873	0.8348	0.9865	5
Image 2	0.1985	0.6138	0.7289	0.8915	0.8517	0.9937	4
Image 3	0.1536	0.4974	0.7049	0.7760	0.7739	0.9103	3
Image 4	0.1648	0.5088	0.6790	0.7954	0.7856	1.0000	2
Image 5	0.1156	0.4067	0.2819	0.6659	0.7840	0.9589	1

Aditya Nigam (SCEE, IIT-Mandi)

NCVPRIPG-15 at IIT Patna, Biha

Back

Algorithm 5.2 Uniformity based Quality Attribute (S)

Require: The *vle* and *wf* pixel set for the input image (I) of size $m \times n$.

Ensure: Return the value S for the input image (I).

1. $F_{map} = and(wf, vle); [focus mask]$

2. M_1, M_2 =Mid-point of Left half $(\frac{n}{2}, \frac{n}{2})$ and Right half $(\frac{m+n}{2}, \frac{n}{2})$ of the input image (I);

3. Apply 2-Mean Clustering over pixel set F_{map} ;

4. $C_1, C_2, nc_1, nc_2, std_1, std_2$ =Mean loc., Number of pixels and Standard dev. of Left and Right cluster respectively;

5. d_1, d_2 = Euclidean Distance between point C_1 and M_1 and that of between C_2 and M_2 respectively;

$$\begin{array}{l} 6. \ d=0.7*max(d_1,d_2)+0.3*min(d_1,d_2);\\ 7.p_r=\frac{max(nc_1,nc_2)}{min(nc_1,nc_2)}; [\text{Cluster Point Ratio}]\\ 8.std_r=\frac{max(std_1,std_2)}{min(std_1,std_2)}; [\text{Cluster Standard Dev. Ratio}]\\ 9.comb_r=0.8*p_r+0.2*std_r;\\ 10.D_{std}=1-\frac{d}{\sqrt{std_1^2+std_2^2}};\\ 11.D_{nc}=1-\frac{d}{\sqrt{nc_1^2+nc_2^2}};\\ 12.S=0.5*d+0.2*comb_r+0.15*D_{std}+0.15*D_{nc} \end{array}$$

Back

Algorithm 5.3 $CIOF(knuckle_a, knuckle_b)$

Require:

- (a) The vcode I_A^v, I_B^v of two knuckleprint images $knuckle_a, knuckle_b$ respectively.
- (b) The *hcode* I_{A}^{h}, I_{B}^{h} of two knuckleprint images $knuckle_{a}, knuckle_{b}$ respectively.
- (c) N_a^v , N_b^v , N_a^h and N_b^h are the number of corners in I_A^v , I_B^v , I_A^h and I_B^h respectively. **Ensure:** Return $CIOF(knuckle_a, knuckle_b)$.
 - 1: Track all the corners of vcode I_A^v in vcode I_B^v and that of hcode I_A^h in hcode I_B^h .
 - 2: Obtain the set of corners successfully tracked in vcode tracking (*i.e.* stc_{AB}^{v}) and hcode tracking (*i.e.* stc_{AB}^{h}) that have their tracked position within T_{d} , their local patch dissimilarity under T_{e} and also the patch-wise correlation is at-least equal to T_{cb} .
 - 3: Similarly compute successfully tracked corners of vcode I_B^v in vcode I_A^v (i.e. stc_{BA}^v) as well as hcode I_B^h in hcode I_A^h (i.e. stc_{BA}^h).
 - 4: Quantize optical flow direction for each successfully tracked corners into eight directions (*i.e.* at an interval of $\frac{\pi}{8}$) and obtain 4 histograms H_{AB}^v , H_{AB}^h , H_{BA}^v and H_{BA}^h using these four corner sets stc_{AB}^v , stc_{AB}^h , stc_{BA}^v and stc_{BA}^h respectively.
 - 5: For each histogram, out of 8 bins, the bin (*i.e.* direction) which is having the maximum number of corners is considered as the consistent optical flow direction. The maximum value obtained from each histogram is termed as corners having consistent optical flow represented as cof_{AB}^v , cof_{AB}^h , cof_{BA}^v and cof_{BA}^h .
 - 6: $ciof_{AB}^v = 1 \frac{cof_{AB}^v}{N_v^v}$; [Corners with Inconsis. Optical Flow (vcode)]
 - 7: $ciof_{BA}^v = 1 \frac{cof_{BA}^v}{N_v^v}$; [Corners with Inconsis. Optical Flow (vcode)]
 - 8: $ciof_{AB}^{h} = 1 \frac{cof_{AB}^{h}}{N^{h}}$; [Corners with Inconsis. Optical Flow (*hcode*)]
 - 9: $ciof_{BA}^{h} = 1 \frac{cof_{BA}^{h}}{N_{*}^{h}}$; [Corners with Inconsis. Optical Flow (*hcode*)]
- 10: return $CIOF(Knuckle_a, Knuckle_b) = \frac{ciof_{AB}^v + ciof_{AB}^h + ciof_{BA}^b + ciof_{BA}^h + ciof_{BA}^h}{4};$

Performance Analysis - Iris(Interval)

▶ Back

Aditya Nigam (SCEE, IIT-Mandi)

NCVPRIPG-15 at IIT Patna, Bihar

Performance Analysis - Iris(Lamp)

▶ Back

Aditya Nigam (SCEE, IIT-Mandi)

NCVPRIPG-15 at IIT Patna, Bihar

Performance Analysis - Knuckleprint(PolyU)

▶ Back

Aditya Nigam (SCEE, IIT-Mandi)

Performance Analysis - Palmprint(Casia)

▶ Back

Aditya Nigam (SCEE, IIT-Mandi)

NCVPRIPG-15 at IIT Patna, Bihar

Performance Analysis - Palmprint(PolyU) (I)

Back

