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Introduction

@ lIris

universal

unique
permanent
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less circumvential

o Challanges
e occlusions
o quality degradation
@ sensor interoperability

Figure: Iris Anatomy
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General Iris Recognition System

Enhancement

/ Feature Extraction

Matching

Database
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Eyelid detection

Lower and Upper Eyelids
Traditional techniques
e Parabola Fitting

Stratagic Seed Points

May leak out due to lack of contrast
o Re-assigning the threshold

(a) Normalized image (b) Eyelid mask

Biometrics Lab (IITK) IWCF 2014 24th August 2014 5/29



Eyelash detection

Separable and multiple.

Separable eyelashes — high local variance
Multiple eyelashes — have low average intensity
Varience and Intensity mapped for each pixel
Otsu threshold

(c) Normalized image (d) Eyelash mask
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Relational Measures

o Traditional mathematical operations are computationally intensive
e.g. using complex mathematical filters like Gabor.

@ Relational Measures are calculated by comparing multiple entities in
an image and encoding only the “order” between them.

@ The “order” relationship is more stable than the actual difference
because it is an intrinsic and robust property.
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Feature Extraction

@ A central region of size b x b is chosen. lts four neighbor regions of
size b X b are selected at a particular distance d where d > b.
@ A symmetric 2D gaussian filter centrally clipped to size b x b is put
and convoluted over each of these five regions.
K=@)X=p@)"

Gil0) = 5o 2 1)
where i is the spatial location of the peak, ¢ is the standard deviaton
of the gaussian and X is the spatial location.

@ Response compared with four neighbouring regions. Based on the
result, 1 or O bit is generated and concatenated for each of the four
regions.

Biometrics Lab (IITK) IWCF 2014 24th August 2014 8 /29



Feature extraction cntd...

@ Vertically and horizontally overlapping rectangular patches over the
entire image are chosen as candidates for the central region.

@ All the resultant bits are concatenated spatially to generate 2-D
binary template. If the central block in feature extraction has more
than 50% occlusion, then the corresponding mask bits are set, to
generate a second level mask.

Figure: Choice of central regions
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@ Match using Hamming Distance

St ) ® ()] | [mi,)) + ma(i,j)]
Mx N—2M N [my(i.)) + ma(i, )]

HD(t17 tr, my, m2) =

(2)
where operators @, |, and + stand for binary XOR, NAND and OR
operations. a® b =1 if a and b are not same, else 0.

@ If the minimum HD for a probe image comes out to be with a gallery
image belonging to same class, it is considered a hit else miss.

@ Identification accuracy is the proportion of hits among all possible
matchings of gallery and probes sets.
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Rotational Invariance in Matching

@ To account for head tilt

@ Rotation of the eye corresponds to horizontal translation in the
normalized image.

@ Take minimum/best Hamming Distance
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Figure: Calculation of minimum HD
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Database Size | Subjects | Sessions Characteristic
CASIA-4.0 Interval | 2,639 249 2 Clear Texture

CASIA-4.0 Lamp | 16,212 411 1 Variable lllumination
ITK 20,420 1021 2 Quality Images

Table: Test Databases
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Images from Databases

Figure: Images from IITK Database
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Recognition Results

Database CRR EER
CASIA-4.0 Interval | 99.07% | 2.26%
CASIA-4.0 Lamp | 98.7% | 4.2%
IHTK 08.66% | 2.12%

Table: Recognition Performance on Various Databases

@ The EER on Lamp database is higher because there is severe
occlusion present in its images as compared to other databases.

@ The best EER obtained is on IITK database due to good image
acquisition conditions.
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FAR Vs FRR Genuine Score Vs Inposter Score Frequency Histogran
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Figure: Recognition Performance on CASIA-4.0 Interval Database
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FAR (%)

Genuine Score Vs Inposter Score Frequency Histogran
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Figure: Recognition Performance on CASIA-4.0 Lamp Database
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(a) False Accept Vs. False Reject (b) Genuine-Impostor Dissimilarity
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Figure: Recognition Performance on IITK Database
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Comparison with Gabor filtering

@ Preprocessing has been kept common

Database CRR EER
Gabor | Proposed | Gabor | Proposed
CASIA-4.0 Interval | 99.47% | 99.07% | 1.88% | 2.26%
CASIA-4.0 Lamp | 98.90% | 98.69% | 5.59% | 4.21%
ITK 08.85% | 98.66% | 2.49% | 2.12%

Table: Comparative Results on Various Databases
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ROCs of Comparison
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Figure: Comparison of Gabor Filtering with Proposed Approach
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Time Analysis

*
Average Time Per Image (in sec)
Datapase Gabor Proposed
Template | Matching | Total | Template | Matching | Total
Interval 1.491 0.020 1.512 1.483 0.014 1.497
Lamp 1.702 0.022 1.724 1.693 0.015 1.708
ITK 1.700 0.021 1.721 1.692 0.014 1.706

Table: Comparative Time Analysis on Various Databases
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Conclusion

o Identification Rate (CRR) of 99.07% on CASIA-4.0 Interval, 98.7%
on CASIA-4.0 Lamp and 98.66% on IITK database respectively. A
Low EER of 2.26% on CASIA-4.0 Interval, 4.2% on CASIA-4.0 Lamp
and 2.12% on IITK database respectively has been achieved.
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Muscle Movements in Iris

3 constrictor muscles
= pupil

= dilator muscles

@ Two kind of muscles control the size of iris radial and circular
direction
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Effect of Enhancement

FAR Vs FRR
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Figure: Effect of Enhancement on Proposed Approach
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