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Introduction

Iris

universal
unique
permanent
acceptable
less circumvential

Challanges

occlusions
quality degradation
sensor interoperability

Figure: Iris Anatomy
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General Iris Recognition System

Figure: Iris Recognition System

Biometrics Lab (IITK) IWCF 2014 24th August 2014 4 / 29



Eyelid detection

Lower and Upper Eyelids

Traditional techniques

Parabola Fitting

Stratagic Seed Points

May leak out due to lack of contrast

Re-assigning the threshold

(a) Normalized image (b) Eyelid mask
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Eyelash detection

Separable and multiple.

Separable eyelashes −→ high local variance

Multiple eyelashes −→ have low average intensity

Varience and Intensity mapped for each pixel

Otsu threshold

(c) Normalized image (d) Eyelash mask
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Relational Measures

Traditional mathematical operations are computationally intensive
e.g. using complex mathematical filters like Gabor.

Relational Measures are calculated by comparing multiple entities in
an image and encoding only the “order” between them.

The “order” relationship is more stable than the actual difference
because it is an intrinsic and robust property.
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Feature Extraction

A central region of size b × b is chosen. Its four neighbor regions of
size b × b are selected at a particular distance d where d ≥ b.
A symmetric 2D gaussian filter centrally clipped to size b × b is put
and convoluted over each of these five regions.

G (~µ, σ) =
1

2πσ2
e−

(~X−~µ)(~X−~µ)T

2σ2 (1)

where ~µ is the spatial location of the peak, σ is the standard deviaton
of the gaussian and ~X is the spatial location.
Response compared with four neighbouring regions. Based on the
result, 1 or 0 bit is generated and concatenated for each of the four
regions.

Figure: Placement of Gaussian Filters for pixel (0,0) with d = 8, σ = 3
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Feature extraction cntd...

Vertically and horizontally overlapping rectangular patches over the
entire image are chosen as candidates for the central region.

All the resultant bits are concatenated spatially to generate 2-D
binary template. If the central block in feature extraction has more
than 50% occlusion, then the corresponding mask bits are set, to
generate a second level mask.

Figure: Choice of central regions
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Matching

Match using Hamming Distance

HD(t1, t2,m1,m2) =
ΣM
i=1ΣN

j=1[t1(i , j) ⊕ t2(i , j)] | [m1(i , j) + m2(i , j)]

M × N − ΣM
i=1ΣN

j=1[m1(i , j) + m2(i , j)]

(2)
where operators ⊕, |, and + stand for binary XOR, NAND and OR
operations. a⊕ b = 1 if a and b are not same, else 0.

If the minimum HD for a probe image comes out to be with a gallery
image belonging to same class, it is considered a hit else miss.

Identification accuracy is the proportion of hits among all possible
matchings of gallery and probes sets.
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Rotational Invariance in Matching

To account for head tilt

Rotation of the eye corresponds to horizontal translation in the
normalized image.

Take minimum/best Hamming Distance

Figure: Calculation of minimum HD
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Databases

Database Size Subjects Sessions Characteristic

CASIA-4.0 Interval 2,639 249 2 Clear Texture

CASIA-4.0 Lamp 16,212 411 1 Variable Illumination

IITK 20,420 1021 2 Quality Images

Table: Test Databases
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Images from Databases

Figure: Images from CASIA 4.0-Interval Subset

Figure: Images from CASIA 4.0-Lamp Subset

Figure: Images from IITK Database
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Recognition Results

Database CRR EER

CASIA-4.0 Interval 99.07% 2.26%

CASIA-4.0 Lamp 98.7% 4.2%

IITK 98.66% 2.12%

Table: Recognition Performance on Various Databases

The EER on Lamp database is higher because there is severe
occlusion present in its images as compared to other databases.

The best EER obtained is on IITK database due to good image
acquisition conditions.
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ROC curves

(a) False Accept Vs. False Reject
Rate

(b) Genuine-Impostor Dissimilarity
Scores

Figure: Recognition Performance on CASIA-4.0 Interval Database
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(a) False Accept Vs. False Reject
Rate

(b) Genuine-Impostor Dissimilarity
Scores

Figure: Recognition Performance on CASIA-4.0 Lamp Database
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(a) False Accept Vs. False Reject
Rate

(b) Genuine-Impostor Dissimilarity
Scores

Figure: Recognition Performance on IITK Database
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Comparison with Gabor filtering

Preprocessing has been kept common

Database CRR EER
Gabor Proposed Gabor Proposed

CASIA-4.0 Interval 99.47% 99.07% 1.88% 2.26%

CASIA-4.0 Lamp 98.90% 98.69% 5.59% 4.21%

IITK 98.85% 98.66% 2.49% 2.12%

Table: Comparative Results on Various Databases
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ROCs of Comparison

(a) Interval (b) Lamp (c) IITK

Figure: Comparison of Gabor Filtering with Proposed Approach
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Time Analysis

*

Database
Average Time Per Image (in sec)

Gabor Proposed
Template Matching Total Template Matching Total

Interval 1.491 0.020 1.512 1.483 0.014 1.497

Lamp 1.702 0.022 1.724 1.693 0.015 1.708

IITK 1.700 0.021 1.721 1.692 0.014 1.706

Table: Comparative Time Analysis on Various Databases
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Conclusion

Identification Rate (CRR) of 99.07% on CASIA-4.0 Interval, 98.7%
on CASIA-4.0 Lamp and 98.66% on IITK database respectively. A
Low EER of 2.26% on CASIA-4.0 Interval, 4.2% on CASIA-4.0 Lamp
and 2.12% on IITK database respectively has been achieved.
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Questions
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Muscle Movements in Iris

Two kind of muscles control the size of iris radial and circular
direction
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Effect of Enhancement

Figure: Effect of Enhancement on Proposed Approach
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