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Abstract: Iris is considered as one of the best biometric trait for human authentication due to its accuracy and perma-
nence. However easy iris spoofing raise the risk of false acceptance or false rejection. Recent iris recognition
research has made an attempt to quantify the performance degradation due to the use of contact lens. This
study proposes a strategy to detect soft contact lens in visual pictures of the eye obtained using NIR sensor.
The lens border is detected by considering small annular ring-like area near the outer iris boundary and lo-
cating candidate points while traversing along the lens perimeter. The system performance is evaluated over
public databases such as IIITD-Cogent, UND 2010, IIITD-Vista along with our self created IITK database.
The rigorous experimentation revels the superior performance of the proposed system as compared with other
existing techniques.

1 INTRODUCTION

In present world scenario, with bigger threats to
the whole human race by several terrorist organiza-
tions around the world, ensuring human security is a
huge challenge. Therefore automated human identi-
fication and verification are the basic requirements in
order to provide secure and restricted access. There
are several ways by which it can be realized such as
token and knowledge based, but they can be very eas-
ily lost or circumvented. Several biometrics based so-
lution has now been deployed to ensure robust and
accurate human identification and verification. Many
physiological biometric traits such as face, palmprint
(Nigam and Gupta, 2014b), knuckleprint (Badrinath
et al., 2011; Nigam and Gupta, 2011), fingerprint,
face, iris (Nigam and Gupta, 2012), ear (Nigam and
Gupta, 2014c) are well suited hence studied exten-
sively. But it is observed that no trait can adequately
support and deliver a system with desired perfor-
mance. Hence recently many multimodal systems
are proposed (Nigam and Gupta, 2015), (Nigam and
Gupta, 2014a), (Nigam and Gupta, 2013a) suggesting
different combinations of knuckleprint, iris, palmprint
images in order to achieve better accuracy.

Image quality is another key factor which is very
relevant in such systems but its computation is very
difficult as its a very subjective task. Not much work

is reported, investigating the quality of iris (Nigam
et al., 2013), knuckleprint (Nigam and Gupta, 2013b)
and palmprint images.

Out of all the available biometric traits, arguably
iris can be considered as one of the best biometric trait
for human authentication process, as it contain highly
distinguishable texture (Flom and Safir, 1987). Also
iris pattern remain unchanged after the age of two and
does not degrade over time and environment. Perfor-
mance wise it is best but it is vulnerable to spoofing
via printed contact lenses. Also the system perfor-
mance degrades severely while subjects wear contact
lens (Lovish et al., 2015; Yadav et al., 2014; Kohli
et al., 2013). Contact lenses are of two types cosmetic
contact lens and Non-cosmetic or soft contact lens.
Soft contact lens detection is an important and chal-
lenging problem to preventing spoofing as compared
to cosmetic lens due to absence of any extra texture.
Very limited amount of work is done in this area. In
this work we deal with detection of soft contact lens
based on faint edge detection using line tracking.

There are some techniques available to detect
cosmetic contact lens which is easier to discrimi-
nate. Soft contact lens are texture-less and transpar-
ent hence are very difficult to differentiate. Most of
the time they are unrecognizable even by humans in
NIR images. The sole available clues are faintly vis-
ible lens boundaries. Thermal images has been used
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Figure 1: Overview of Occlusion Exclusion, showing Edge Map and Left/Right Occlusion

in (Kywe et al., 2006) to detect contact lens using
temperature variations. Basic edge extraction algo-
rithms has been utilized in (Erdogan and Ross, 2013)
to detect abrupt intensity changes and to extract con-
tact lens border. Texture features has been utilized
in (Yadav et al., 2014; Kohli et al., 2013) to obtain
impressive contact lens detection performance. Some
recent previous results are tabulated in Table 1.

Cite Technique Used Database Result
(Kywe et al., 2006) Thermo-Vision 39 Subject 50-66%

(Erdogan and Ross, 2013) Edge Detection ICE 2005 72-76%
MBGC 68.8-70%

(Yadav et al., 2014) Texture Features

IIITD Cogent 56.66%
IIITD Vista 67.52%
UND I(2013) 65.41%
UND II(2013) 67%

Table 1: Previous Work on Soft Contact Lens Detection

2 Occlusion Exclusion from Lens

Eyelids and eyelashes are two major challenges in
detecting contact lens as they occlude significant iris
regions. Particularly eyelid occlusion detection helps
to set dynamic angle range which depends on the visi-
bility of contact lens as lens cannot be beyond the eye-
lid boundaries. We detect occlusion from contact lens
area using Canny edge detector with a high threshold
(an overview of occlusion exclusion is shown in Fig.
1). Since sclera is white and texture-less there cannot
be any edge points. If some edge points are present
on sclera they must be due to eyelashes and eyelids.
Based on these edge points dynamic angle range is
defined ensuring that our algorithm never crosses the
eyelid boundaries.

Iris image I is segmented by algorithm proposed
in (Bendale et al., 2012), that uses Hough trans-
form and Integro differential operator to obtain cen-
ter (Cx,Cy) and the distance between center to limbus
boundary ri. An edge map of iris image using Canny
is generated using higher threshold and false edges
are removed by excluding those connected compo-
nent that are less than P pixels in size as shown in Fig-

Figure 2: Original Annotated Image

Figure 3: Edge Map of Original Image

ure 3. Now an arrangement of scan-lines (Fig. 4) is
characterized with in the radius range {RL

min to RL
max}

and {RR
min to RR

max} for left and right iris portion re-
spectively, as shown in Figure 5 and defined below:

Figure 4: Scan Line Arrangement



RL
min = (ri +δ1 +o f f set) (1)

RL
max = (RL

min +δ3) (2)
RR

min = (ri +δ2 +o f f set) (3)
RR

max = (RR
min +δ4) (4)

where, δ1, δ2 are the difference between the max-
imum possible radius of the lens and minimum pos-
sible radius of iris for left and right iris portions re-
spectively. The values of δ3, δ4 are discussed in next
subsection. The details of occlusion exclusion proce-
dure has been given in Algorithm 1, used to estimate
Topocc and Bottomocc as shown in Fig. 6.

Figure 5: Annotated Image version

Figure 6: Top and Bottom Occlusion (Left/Right) portion

2.1 Parameter Selection

Human iris diameter lies in the range of 10.2 to
13.0 mm with its expected value as 12 mm (Caroline
and Andre, 2002) whereas soft contact lens diameter
ranges from 13mm to 15mm (Details-a, 2010). How-
ever, diameter of an iris fluctuates from 4 to 8 mm
in the dark and 2 to 4 mm in bright light (Details-b,
2010). For calculating δ1 and δ2, 1 mm is assumed to
be equivalent to 3.779 pixels. Ideally based on heuris-
tics δ1 (in pixels) should be equal to 3.779 times the
difference between maximum possible contact lens
radius and minimum possible iris radius. But due to
dark and bright/light effect it can be much more. For

Algorithm 1 Occlusion Exclusion from Lens Area

Require: I: Iris image, (Cx,Cy,ri): center and radius.
Ensure: Bottomocc: Minimum range of θ, Topocc:

Maximum range of θ.
Part A: Define

1: θL
min,θR

min: (5∗ π

4 ),(
π

4 ) //min angle for left,right
2: θL

max,θR
max: (7 ∗ π

4 ),(3 ∗
π

4 ) //max angle for
left,right

3: RL
min: (ri +δ1+o f f set) //min radius for left

4: RL
max: (RL

min +δ3) //max radius for left
5: RR

min: (ri +δ2)+offset //min radius for right
6: RR

max: (RR
min +δ4) //max radius for right

7: S: S is 1-D array used to store current scan line
for corresponding θ, for given range.

8: H(θ): H is 1-D Array to store number of non zero
entries corresponding scan line.
Part B: Steps

9: IE : Edge map of (I) using canny edge detector
// False edges are eliminated from an edge map
by removing small connected component (having
pixels less than P).

10: for θ = θmin:θmax do
11: // θmin=θL

min, θmax=θL
max for left side and

θmin=θR
min, θmax=θR

max for right side.
12: count=0;
13: for r = Rmin:Rmax do
14: // Rmin=RL

min, Rmax=RL
max for left side and

Rmin=RR
min, Rmax=RR

max in case of right side.
15: a =Cx+r×cosθ

16: b =Cy+r×sinθ

17: if(IE (a,b)!=0)
18: count = count+1
19: end if
20: end for
21: if(count ≥ T ) // T is threshold which varies

database to database.
22: H(θ) =1
23: else
24: H(θ) =0
25: end for
26: [Bottomocc,Topocc] = MaxMargin(H)
27: // Find the index in array H containing the max-

imum number of consecutive zeros and return its
corresponding index angles

28: return (Bottomocc,Topocc)

this work it is observed that they can vary from 25 to
35 pixel for UND, IIITD-Cogent, IIIT-Vista and IITK
contact lens databases. Ideally δ1 = δ2, but the lens
may be misplaced or shifted towards left or right. In
case of right shifting, δ2 is greater than δ1 and vice-



versa. Also, empirically δ3 and δ4 values depending
on visible part of contact lens can be fixed. Experi-
mentally they are found to follow: o f f set ≥ 0 and δ3
,δ4 ∈ {1,10}. If δ3, δ4 are greater than 10, then one
have to shrink our angle range because we are going
toward medial canthus or lateral canthus as shown in
Figs 2, 5 which will degrade the accuracy substan-
tially.

These scan-lines are within a radius range as dis-
cussed above, as well as they are also with in an an-
gular region ranging from {θL

min =
5∗π

4 to θL
max =

7∗π
4 }

and {θR
min = π

4 to θR
max =

3∗π
4 } for left and right iris

portion respectively, with an angular distance of 1◦

between any two consecutive scan lines (as shown in
Figure 5). Hence we are working on specified annu-
lar region of thge binary edge-map to estimate the top
and bottom occlusion.

Observation : The scan-line over sclera have
very few edge pixels, on the other hand if current
scan-line intersects eyelashes or eyelid then it is
bound to have non-zero edge pixels. Hence for each
scan-line (say at an angle θ) count the number of
edge (non-zero) pixels. If this count is greater then
a threshold T then that scan-line is occluded else it is
not occluded.

In order to estimate top and bottom occlusion an-
gle, we computed two maximally distant (in terms of
angular distance) scan-lines between which each and
every scan-line is having edge pixels less than T (i.e
not occluded). The lower angle is called Bottomocc
which represent lower eyelid or eyelashes and the
higher index angle called Topocc which represent the
upper eyelid or eyelashes as shown in Figure 6.

3 Soft Contact Lens Detection

Soft contact lens detection is very challenging and
only available hint is the faint lens boundaries. Hence
the proposed SCLD algorithm uses Multi Scale Line
Tracking (MSLT ) Algorithm (Vlachos and Dermatas,
2010), which was initially used to segment retinal
vessels. This algorithm can detect very faint edges
and can extract soft contact lens boundaries. The
steps involved in MSLT algorithm are given in Al-
gorithm 2.

Output of MSLT gives lines of variable size and
diameter based on the visibility of the contact lens
border. MSLT algorithm returns a binary image in
which the lens border lines are clearly visible on the
sclera portion, if contact lens is present as shown in
Figures 7 and 8. There must be some edge-lines
due to the presence of eyelid/eyelashes. Hence oc-
clusion exclusion from contact lens area is done as

Algorithm 2 Steps involved in MSLT Algorithm
(Vlachos and Dermatas, 2010)

1: Brightness Normalization.
2: Automated selection of initial seed pixels.
3: Initialize confidence array for boundary tracking.
4: Populating confidence array by adding most suit-

able boundary pixels.
5: Repeat this process for each scale. (Multi-scale

boundary tracking)
6: Initial rough estimation of boundary network.
7: Smoothing using Median filter to remove irregu-

larities.
8: Finally morphological directional filtering is per-

formed in five different directions.

discussed in Section 2. After applying MSLT algo-
rithm we compute two feature viz. Maximum edge
line Maximum Hough Votes, that are used to detect
contact lens as discussed below.

Figure 7: MSLTA algorithm based Masks (No Lens)

Figure 8: MSLTA based Masks (Soft Contact Lens)

An arrangement of arc-lines (scan-lines are ra-
dially outward in horizontal direction Figure 4) as
shown in Figure 9(a) are characterized (arc-lines are
vertical along an arc at some angle and radius) in an
angular range of {θL

min to θL
max} and {θR

min to θR
max} for

left and right iris portions respectively, at 1◦ angular
distance. These arc-lines are of radius ranging from



{RL
min to RL

max} form left and {RR
min to RR

max} for right
portion at an angular distance of 1◦ between any two
consecutive arc-line as shown in Figure 9(b) and dis-
cussed in previous Section for scan-lines. Every arc-
line between an angle range of {Bottomocc to Topocc}
is considered since it is not occluded. Algorithm 3 can
be used to detect soft contact lens using line tracking.

3.1 Feature Computation

Out of all arc-line the one which has got the maxi-
mum number of edge pixels (MEP) (pixels that are
probable candidates of lens) has been selected, and
the value of MEP is used as our first feature. Also to
ensure circular shape Hough voting is used. The cen-
ter and radius for which maximum number of Hough
votes (MHV ) are obtained has been selected, and the
value of MHV is used as the second feature. These
features can be seen as a likelihood of soft contact
lens. Both MEP and MHV values must be high in
case of soft contact lens and vice-versa as shown in
Figure 10. The overall flow diagram of the complete
Soft Contact Lens Detection (SCLD) is shown in Fig-
ure 11.

(a) Arc-Lines

(b) Annotation

(c) Left/Right Reg.

Figure 9: Arc-line Arrangement

Algorithm 4 can be used to perform Hough voting
in order to extract features. All parameters used in
this experimentation are reported in Table 2.

Algorithm 3 Soft Contact Lens Detection (SCLD)
using Line Tracking

Require: I: Iris image, (Cx,Cy): Iris Center , ri: Iris
radius, Bottomocc, Topocc.

Ensure: Two parameter, H1: Max Hough
Voting,Maxlinesize: Size of the contact lens
in contact lens iris image.

Define:

1: θL
min, θR

min: (5∗ π

4 ),(
π

4 ) //min angle for left and
right side.

2: θL
min, θR

min: (7 ∗ π

4 ),(3 ∗
π

4 ) // max angle for left
and right side.

3: RL
min: (ri)+offset //min radius for left side.

4: RL
max: (ri +δ1) //max radius for left side.

5: RR
min: (ri)+offset //min radius for right side.

6: RR
max: (ri +δ2) //max radius for right side.

Steps:
7: I:Apply Gaussian filter on (I)
8: I1:Apply MLSTA Algorithm(I) (Vlachos and

Dermatas, 2010).
9: H1=0,Maxlinesize=0.

10: for r = Rmin:Rmax do // Rmin=RL
min, Rmax=RL

max
in case of left side and
// Rmin=RR

min, Rmax=RR
max in case of right side.

11: count=0;
12: for θ = θmin:θmax do // θmin=θL

min,
θmax=θL

max in case of left side and
// θmin=θR

min, θmax=θR
max in case of right side.

13: if(θ≥Bottomocc and Topocc≥ θ) // Con-
sidering lines within the range
// of top and bottom occlusion

14: a =Cx+r×cosθ.
15: b =Cy+r×sinθ.
16: if(I1(a,b)!=0)
17: count = count+1 //Store corresponding

Co-ordinate into xi,yi
// and radius into r1.

18: end if
19: end if
20: end for
21: Maxlinesize=max(Maxlinesize,count) //Store

corresponding Maxlinesize Co-ordinate and r into
Xi,Yi Co-ordinate and R1.

22: end for
23: [H1] = Hough Voting(Xi,Yi,R1);
24: return (H1,Maxlinesize)



(a) Soft Contact Lens

(b) No Contact Lens

Figure 10: Pixels selected using MEP and MHV features

Figure 11: Soft Contact Lens Detection(SCLD) using Line
Tracking

4 Experimental Analysis

In this section experimental analysis of the pro-
posed system is presented.

Algorithm 4 Hough Voting

Require: (Xi,Yi): Co-ordinate of the selected line,
R1: Radius of selected line

Ensure: H1: Max Hough Voting pixel from accumu-
lator array.

Steps:
1: for every edge pixel (Xi,Yi) do
2: for each possible radius value R1 do
3: for each possible gradient direction Θ do

//or use estimated gradient at (Xi,Yi).
4: a = Xi−r∗cosΘ

5: b = Yi+r∗sinΘ

6: H[a,b,r]+=1;
7: end for
8: end for
9: H1=max(H) //Select maximum voting pixel

10: end for
11: return (H1)

Table 2: Description of Parameter Values
Algorithm Parameter Description Value

Parameter
common to
all algorithm

ri Iris radius(in pixel) (Bendale et al., 2012)
(Cx,Cy) Iris Center(in pixel) (Bendale et al., 2012)

δ1, δ2

δ1 , δ2 (in pixels)
is the difference
between the maximum
possible radius of the
lens and minimum
possible radius of the
iris, where radius
of contact lens and
iris in millimeter(mm).

25 - 35

δ3, δ4

Constant fix by
experimental
analysis (in pixels)

0-10

o f f set
Constant fix by
experimental
analysis (in pixels)

0-10

1.Occlusion
Exclusion in
Contact Lens
Area.
2.Soft Contact
Lens Detection
(SCLD) using
Line Tracking.

θ: [θmin,θmax]
Scan line interval

[5∗ π

4 , 7∗ π

4 ]
for left portion of iris
[ π

4 , 3∗ π

4 ]
for right portion of iris
[5∗ π

4 , 7∗ π

4 ]
for left portion of iris
[ π

4 , 3∗ π

4 ]
for right portion of iris

r: [Rmin, Rmax] Scan line size

[ri+δ1+o f f set, ri+o f f set+δ1 +δ3]
for left portion of iris.
[ri+δ1+o f f set, ri+o f f set+δ1+δ3]
for right portion of iris
[ri+o f f set, ri+δ1]
for left portion of iris.
[ri+o f f set, ri+δ2]
for right portion of iris.

4.1 Dataset

The system performance is tested over IIITD (Yadav
et al., 2014; Kohli et al., 2013), UND and self cre-
ated contact lens databases, acquired using FA2 and
LG−4000 iris sensors. The images are acquired in 3
conditions :



• Soft contact lens iris images [’Y ’]

• Colored/Textured lens iris images [’C’]

• Normal iris images without lens [’N’]

We have only considered no contact lens and soft
contact lens images i.e. [’N’,’Y ’] classes and binary
classification has been done. The features values as
define earlier as MEP and MHV are computed for
every image. Their values are normalized so as to de-
fine a weighing scheme that can give a single score,
ranging between {0 to 1}. Finally this normalized
weighted score is used for contact lens detection.

4.2 Threshold Selection

In order to estimate the best possible thresholding pa-
rameters all databases are partitioned into two parts,
training and testing. Best suited threshold value for
the above mentioned normalized weighted score is
computed over the training images by checking ev-
ery value with in the range of {0 to 1}. Finally, the
value of threshold at which the system performance
got maximized (Tbest ), over training data, has been
used for testing the proposed system over test dataset.

Prediction : Left over 34% data has been used as
testing dataset. In the similar way as defined above,
weighted normalized feature score has been calcu-
lated and compared against pre-computed threshold
value Tbest , for contact lens decision making.

Table 3: Performance Analysis across Various databases
using SCLD Line Tracking approach.

Descriptor SCLD using Line Tracking

Database CCR Accuracy FAR FRR EER
IITK Left Eye 92.99 92.81 6.21 8.15 7.56

IITK Right Eye 93.39 93.43 7.25 5.86 6.56
IIITD Vista Left Eye 88.44 88.43 12.1951 10.94 11.56

IIITD Vista Right Eye 90.99 90.94 10.22 7.88 9.05
IIITD Cogent Left Eye 88.96 88.96 10.40 11.66 11.03

IIITD Cogent Right Eye 89.48 89.35 10.41 11.49 10.95
UND 90.54 90.53 8.77 10.16 9.46

The system performance is analyzed using stan-
dard parameters viz. CCR, Accuracy, FRR, FAR,
EER and shown in Table 3. Accuracy is defined as
100− FAR+FRR

2 . To best of our knowledge this is the
first work performing two class binary classification
to detect soft contact lens over IIITD Vista, IIITD Co-
gent and UND database hence there is no available al-
gorithm to compare. The EER and accuracy on these
database using soft contact lens detection using Line
Tracking algorithm is shown in Table 3 and in Fig-
ures 12. It is observed that proposed system can han-
dle small amount of uneven illumination also. The
EER over our database has been found to be low as

it is collected under controlled environmental condi-
tions.

5 Conclusion

In this work fully automatic soft contact lenses de-
tection algorithm is proposed using NIR sensor. The
lens border is detected by considering small annular
ring-like area near the outer iris boundary and locat-
ing candidate points while traversing along the lens
perimeter. Multi-Scale Line Tracking (MSLT) based
faint edge detection algorithm is used and features
like number of edge pixels (MEP) and number of
Hough votes (MHV ) are used for classification. Ex-
periments are conducted on publicly available IIITD-
Vista, IIITD-Cogent, UND 2010 and our indigenous
database. Results of the experiment indicate that pro-
posed method outperforms previous soft lens detec-
tion techniques.
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