An Efficient Finger-knuckle-print based Recognition System Fusing SIFT and SURF Matching Scores

0

G S Badrinath, Aditya Nigam and Phalguni Gupta Indian Institute of Technology Kanpur INDIA

Beijing, China

Presenter Aditya Nigam

Biometrics Based Authentication Systems

- They are required badly as places like airports, ATMs others.
- Modes
 - Verification
 - Identification
- Several Traits
 - Face
 - Fingerprint
 - Iris
 - Palmprint
 - Ear
 - Knuckleprint (recently introduced)

Several challenges

- Face (Occlusion, Expression, Illumination, Pose, Ageing)
- Iris (Difficult and expensive to acquire, Occlusions)
- Fingerprints (Dirty fingers, Fail to acquire)
- Knuckleprints

Knuckleprint Database

- PolyU Hong Kong FKP database is the largest publically available database.
- It consist of
 - I65 Subjects
 - 4 fingers per subject (165x4=660 distinct subjects)
 - I2 images per finger (660xI2=7920 images) taken in different sessions.

Sample ROI images

Previous Work

- Used Global as well as Local feature.
- Also Combined and fused both of them.
- PCA, ICA and LDA used but they didn't perform well also computationally very expensive.
- Global feature BLPOC (Band Limited Phase only Correlation) performed well when fused with local features such as Compcode.
- Finally Compcode is improved to ImCompcode and Magcode to achieve better accuracy.

Block Diagram of Proposed Recognition System

Various Steps involved in Proposed System

- Enhancement
- Feature Extraction SIFT
 - SURF
- Matching
- Fusion

Finger-

knuckle-print

Estimated coarse reflection

Uniform brightness knuckleprint image

Enhanced Knuckleprint image

SIFT FEATURE EXTRACTION

• STEPS

- 1. Scale-space extrema detection
- 2. Key-point localization
- 3. Orientation assignment
- 4. Key-point descriptor
 - Feature vector of 64 values

FEATURE EXTRACTION (contd.)

• SURF

- 1. Key-point detector
- 2. Key-point descriptor
 - Feature vector of 64 values

EXTRACTED SIFT and SURF Points

(a) SIFT key-points detected (b) SURF key-points detected

MATCHING

- Nearest neighbour-ratio method is used for both SIFT and SURF key-points
- Here ||q_i e_j|| and ||q_i e_k|| are euclidean distance between qi and its first neighbour (i.e e_i) and second one (i.e e_k)

$$Q = \{q_1, q_2, q_3, \cdots q_m\}$$

$$E = \{e_1, e_2, e_3, \cdots e_n\}$$

 $q_i = \begin{cases} \text{Matched with } e_j & \text{if } \frac{\|q_i - e_j\|}{\|q_i - e_k\|} < T \\ \text{Unmatched} & \text{Otherwise} \end{cases}$

(a) SIFT key-points detected (b) Genuine matching of SIFT key-points (c) Imposter matching of SIFT key-points

(a) SURF key-points detected (b) Genuine matching of SURF key-points (c) Imposter matching of SURF key-points

FUSION (Weighted Sum Rule)

 $S = W_T * M_T + W_S * M_S$

 $W_T + W_S = 1$

 $W_T = C_T / (C_T + C_S)$

 $W_S = C_S / (C_T + C_S)$

EXPERIMENTAL RESULT

ROC curves of the proposed system

PERFORMANCE

Systems	CRR (%)	EER (%)
CompCode	-	1.658
BLPOC	-	1.676
ImCompCode&MagCode	-	1.475
MonogenicCode	-	1.720
OE-SIFT	-	0.850
LGIC	-	0.402
Proposed Non-Enh-SIFT	98.667	2.691
Proposed Enh-SIFT	99.125	1.900
Proposed Non-Enh-SURF	99.902	0.833
Proposed Enh-SURF	99.916	0.317
Proposed Non-Enh-FUSE	100.00	0.508
Proposed Enh-FUSE	100.00	0.215

PERFORMANCE AGAINST SCALE

ROC curves of the proposed system for various scales of query image

PERFORMANCE AGAINST SCALE (contd.)

Scale (%)	CRR (%)	EER (%)
100	100.00	0.215
90	100.00	0.458
80	99.917	1.458
70	99.792	3.708
60	98.625	5.25
50	95.000	12.75

Performance of the proposed system for various scales of query image

(a) 100%

(b) 90%

(c) 80%

(d) 70%

(e) 60%

(f) 50%

SIFT matching for various scales of query image

PERFORMANCE AGAINST SCALE (contd.)

(a) 100%

(b) 90%

(c) 80%

(d) 70%

(e) 60%

(f) 50%

SURF matching for various scales of query image

	SIFT	SURF	Total
Feature Extraction (ms)	58.091	17.970	76.061
Matching (ms)	4.782	0.083	4.865
Total (ms)	62.873	18.053	80.926

Speed of the Proposed System

REFERENCE

- Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features. Computer Vision and Image Understanding, 110:346–359, 2008
- 2. M. Choras and and R. Kozik. Knuckle biometrics based on texture features. In International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics, pages 1–5, 2010
- 3. Anil K. Jain, Patrick Flynn, and Arun A. Ross. Handbook of Biometrics. Springer-Verlag, USA, 2007
- 4. W. O. Jungbluth. Knuckle print identification. Journal of Forensic Identification, 39:375–380, 1989
- A. Kumar and C. Ravikanth. Personal authentication using finger knuckle surface. IEEE Transactions on Information Forensics and Security, 4(1):98 –110, 2009
- 6. A. Kumar and Y. Zhou. Personal identification using finger knuckle orientation features Electronics Letters, 45(20):1023 –1025, 2009

REFERENCE (contd.)

- 7. David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60:91–110, 2004
- Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local descriptors. IEEE Transaction Pattern Analysis Machine Intelligence, 27:1615–1630, October 2005
- 9. A. Morales, C.M. Travieso, M.A. Ferrer, and J.B. Alonso. Improved fingerknuckle-print authentication based on orientation enhancement. Electronics Letters, 47(6):380–381, 2011
- 10. Damon L. Woodard and Patrick J. Flynn. Finger surface as a biometric identifier. Computer Vision and Image Understanding, 100:357–384, 2005
- L. Zhang, L. Zhang, and D. Zhang. Finger-knuckle-print: A new biometric identifier. In International Conference Image Processing, pages 1981–1984, 2009
- L. Zhang, L. Zhang, and D. Zhang. Finger-knuckle-print verification based on band-limited phase-only correlation. In International Conference on Computer Analysis of Images and Patterns, pages 141–148, 2009

<u>REFERENCE</u> (contd.)

- L. Zhang, L. Zhang, D. Zhang, and H.L. Zhu. Online finger-knuckleprint verification for personal authentication. Pattern Recognition, 43(7):2560–2571, July 2010
- 14. Lin Zhang, Lei Zhang, and D. Zhang. Monogeniccode: A novel fast feature coding algorithm with applications to finger-knuckle-print recognition. In International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics, pages 1 –4, 2010
- Lin Zhang, Lei Zhang, David Zhang, and Hailong Zhu. Ensemble of local and global information for finger-knuckle-print recognition. Pattern Recognition, 44(9):1990 – 1998, 2011

Thank You