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Problem Definition

Face picture acquisition under the same physical conditions is not
always possible.

Different face recognition algorithms perform poorly in typical varying
environments.

Varying illumination, poses, lighting conditions, expressions,
backgrounds, scales causes a lot of variation in pixels intensities, and
hence different algorithms performance got severely affected.

So we require an algorithm that is robust enough to small amount of
such variations.
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Motivation

Edge images are less affected by illumination variations, but they
don’t carry overall facial appearance “they contains primarily the
structure of the faces”.

Gray images can’t be used directly as they are affected by this
illumination variation.

WNUP measure can compare the gray images and is found to be
robust to slight variation in pose, expression and illumination.
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SWHD and SW 2HD

For better discriminative power HD and M2HD measures were
improved by assigning the weights to every point according to its
spatial information.

Crucial facial feature points like eyes and mouth are approximated by
the rectangular windows and are given more importance than others.

Directed SWHD and SW2HD [11] were defined as:

Directed swhd and sw2hd

swhd(A,B) = max
a∈A

[
w(b) ·min

b∈B
‖a− b‖

]
sw2hd(A,B) =

1

Na

∑
a∈Na

[
w(b) ·min

b∈B
‖a− b‖

]
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Spatial Weighing Function
Where w(x) is defined as:

Weighing Function

w(x) =


1 x ∈ Important facial region

W x ∈ Unimportant facial region

0 x ∈ Background region

Figure: Spatial Weighing Function
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SEWHD and SEW 2HD

Rough estimation of facial features cannot fully reflect the exact
structure of human face.

Regions where the difference among the training images is large, the
corresponding regions at the eigenfaces will have large magnitude.

Eigenfaces appears as light and dark areas arranged in a specific
pattern. Regions where the difference among the training images is
large, the corresponding regions in the eigenfaces will have large
magnitude.

Eigen Weighing

Eigen faces can be used as weighing function because they represents the
most significant variations in the set of training face images.
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Eigen Faces

Figure: Eigenfaces
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Defining SEWHD and SEW 2HD

Proposed SEWHD and SEW2HD [12] are defined as:

Directed sewhd and sew2hd

sewhd(A,B) = max
a∈A

[
we(b) · min

b∈B
‖a− b‖

]
sew2hd(A,B) =

1

Na

∑
a∈Na

[
we(b) ·min

b∈B
‖a− b‖

]

where we(x) is defined as:

we(x) = Eigen weight function generated by the first eigen vector
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Hg and Hpg

Edge images loose most of the important facial features, which are
very useful for facial discrimination.

Hg and Hpg [13] measures works on quantized images and are found
robust to slight variation in poses, expressions and illumination.

Quantized Images

Images with n ≥ 5 retains the perceptual appearance and the intrinsic
facial feature information that resides in gray values (as shown in Figure
below).

Figure: Quantized-faces
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Defining Hg and Hpg

Hg and Hpg are defined on quantized gray images as :

Directed hg and hpg

hg (A,B) = max
i=0..2n−1

a∈Ai

d(a,Bi )

hpg (A,B) = K th max
i=0..2n−1

a∈Ai

d(a,Bi )

where d(a,Bi ) is defined as :

d(a,Bi ) =

{
min
b∈Bi

‖a− b‖ if Bi is non-empty

L otherwise

Ai and Bi are the set of pixels in quantized images A and B having quantized gray value i .
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WNUP Measure

WNUP

It is applied on gt-transformed images obtained from gray-scale facial
images.

It shows robustness against slight variation in pose, expression and
illumination.
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Transformation

A pixel’s relative gray value in its neighborhood can be more stable
than its own gray value.

SK -transformation [14] provides some robustness against illumination
variation and local non-rigid distortions by converting gray scale
images into transformed images that preserve intensity distribution.

Every pixel is represented by an 8-element vector which in itself can
store the sign of first-order derivative with respect to its
8-neighborhood.

Property of SK-transformed images

Gray value of pixels are being changed in different poses of the same
subject but their corresponding vector do not change by a great extent.
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Example
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Gray values

Transformed vector

Sign of first-order derivative

Problem

The above property holds when gray values of neighborhood pixels are
not too close to each other.

Usually, we have small variations in the gray values (e.g. in
background, facial features etc.), where the above property fails to
hold.
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Observation

Figure: Gray-value spectrum.

Gray levels are hardly distinguishable (Similar) within a range of ±5 units.
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Improvement

Basic Comparator

X


= X

< α ∈ (X , 255]

> α ∈ [0,X )

gt-Comparator

X


= α ∈ [(X − gt), (X + gt)]

< α ∈ (X + gt, 255]

> α ∈ [0,X − gt)

Where

gt is gray value tolerance, gt ≥ 0.

X is a gray level not merely a number.

Gray level X is neither greater than gray level (X − 1) nor less than
gray level (X + 1); ideally they should be considered as similar.
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Diagrammatically

X

REGION : LESS THAN X

REGION : GREATER THAN X

Figure: Basic Comparator

X

REGION : SIMILAR TO X

REGION : LESS THAN X REGION : GREATER THAN X

(X+gt)(X-gt)

Figure: gt-Comparator
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gt-Transformation

Any pixel ‘a’ is represented by an 8-element vector V (a) whose
elements are drawn from the set {0, 1, 2}.
The decimal equivalent of the V (a) is called the transformed value of
the pixel a, ranging from 0 to 6560 (= 38 − 1).

Stability

In typical varying environment transformed value of a pixel remains more
stable than its corresponding gray value.
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gt-Transformed Images

Encoding
Less Than < RED i.e.[0], Similar To = BLUE i.e [1], Greater Than > GREEN i.e. [2].

Figure: gt-Transformed images
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Big Illumination Variation [use gt = 0]

Effect of High gt values under heavy illumination variation

With higher gt values more and more elements of V (a) start
acquiring value 1.

This will boost the blue value of pixels in the gt-transformed images.

Directional lights and heavy illumination condition variations may
further lift up the blue value upto an extent that blue color starts
dominating in gt-transformed image.
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Weighing Function

Algorithm 1 Weighing(database)
Require: Binary Image W serving as weighing function given database.
Ensure: Important facial feature point have value 1 in Binary image W
1: Initialize a 2d-array A[r ][c] to 0;
2: for all I ∈ database do
3: for all i , j do
4: if I[i ][j] is a strong edge point then
5: A[i ][j]← A[i ][j] + 1;
6: end if
7: end for
8: end for
9: for all i , j do

10: A[i ][j]← A[i ][j]∗255
N

;
11: end for
12: for all i , j do
13: if A[i ][j] > threshold then
14: A[i ][j]← 1;
15: else
16: A[i ][j]← 0;
17: end if
18: end for
19: Write this matrix A to a Binary image W ;
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Weighing Function

Figure: The weighing functions for different databases with threshold values
10, 20, 30, 40
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Notations

Parameter Description

Parameter Description
AAA | BBB The corresponding gt-transformed images (r−2)×(c−2), bound-

ary pixels are ignored;
Na

BNa
BNa
B Neighborhood of pixel a in image B;

V (a)V (a)V (a) The 8-element vector at pixel a;
tval atval atval a The decimal equivalent of V (a), i.e. the transformed value of

pixel a;
WNUP(A, B)WNUP(A, B)WNUP(A, B) Undirected Weighted Normalized Unmatched Points measure be-

tween A and B;
wnup(A, B)wnup(A, B)wnup(A, B) Directed Weighted Normalized Unmatched Points measure, when

A is compared with B;
ppp Order of the norm ;
NaNaNa Total number of pixels in image A;
NU

ABNU
ABNU
AB Total number of unmatched pixels of A (which were considered

as important by the weighing function W ), when A is compared
with B;

Compare(A, B)Compare(A, B)Compare(A, B) Compares image A to image B, and returns NU
AB ;

Match(a, B)Match(a, B)Match(a, B) Matches a pixel a with B, and returns 1 if Matched or 0 if Un-
matched;
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Defining Na
B

Neighborhood of pixel a in image B

Pixel’s within a distance of d
√

2 from pixel a is considered to be in its
neighborhood.

Neighborhood

Na
B = {b ∈ B | ‖a− b‖ ≤ d

√
2}
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Defining Compare(A, B) and NU
AB

Compare(A,B) compares two gt-transformed images A and B.

Returns NU
AB (i.e. Total number of important unmatched pixels of A,

when A is compared with B), defined as:

Unmatched Points

NU
AB =

∑
a∈A

W (a)× (1−Match(a,B))
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Defining Match(a, B)

Match(a,B) matches a pixel a with a gt-transformed image B.

Returns 1 if there is a pixel within the neighborhood of a in image B,
having same gt-transformed value (i.e. Matched),
Else Returns 0 (i.e. Unmatched).

Match(a,B) can be defined as:

Matching

Match(a,B) =

{
1 If ∃b∈Na

B
V (a) = V (b) [i.e. Matched]

0 else
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Defining WNUP(A, B) and wnup(A, B)

WNUP(A,B) is defined as:

Undirected WNUP

WNUP(A,B) = ‖〈wnup(A,B),wnup(B,A)〉‖p

where wnup(A,B) is defined as:

Directed wnup

wnup(A,B) =
NU

AB

Na

and ‖.‖p is the pth norm.
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Some Properties of WNUP and wnup

Properties

1 WNUP(A,B) = WNUP(B,A).

2 WNUP(A,B) and wnup(A,B) are always positive and normalized
between 0 and 1.

3 WNUP(A,B) and wnup(A,B) are parameterized by gt, d and p.
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Efficient Match(a,B)

Computing WNUP(A,B) using naive method requires O(r2c2) time ,
which is prohibitively computationally intensive.

Performing Match(a,B) operation efficiently an array of pointers to
linked list BLIST is created.

BLIST

It has 38 elements such that ∀i ∈ [0, 38 − 1] the i th element points to a
linked list of pixels having the transformed value i [14].
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Date-Structure BLIST

-

-

-

-

-

- - -

- - -

- -

-

- -

-

2

1

0

22222222

00000010

00000002

00000001

00000000

i i in base 3

6560

Linked list of pixels having T-value i

3

T-Value

Figure: Data Structure: BLIST
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Time Complexity

Preprocessing

Gray scale images sized r × c transformed into gt-Transformed
images. It is done once and single scan of the whole image is
sufficient.

Time complexity is O(rc).

Processing

Constructing data structure BLIST require O(rc) time.

Match function involves linear search of a linked list of pixels.

Time taken by Match depends on the length of the list. Assuming
that k is the length of the largest linked list.

Computing WNUP(A,B), Match(a,B) function has to be called 2rc
times, therefore time required to compute WNUP will be O(krc).
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Setup

Figure: Images produced after various phases
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Testing Strategy

Whole database is treated as the testing set, then each image of the
testing set is matched with all other images excluding itself. Finally
top n best matches are reported.

Match is announced if and only if a subject’s image got matched with
another pose of himself/herself.

Recognition Rate

Recognition rate =
Number of matched images

Total number of images
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Parameterized Analysis

Parameters

WNUP measure is parameterized primarily by two parameters gt and
d , the third parameter p (order of norm) is set to 20 for this work.

Gray value Tolerance gt can vary within range [0, 5].

Neighborhood parameter d can vary within range [1, 9].
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Big Illumination Variation [use gt = 0]

Effect of High gt values under heavy illumination variation

With higher gt values more and more elements of V (a) start
acquiring value 1.

This will boost the blue value of pixels in the gt-transformed images.

Directional lights and heavy illumination condition variations may
further lift up the blue value upto an extent that blue color starts
dominating in gt-transformed image.
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ORL:Pose and Expression Variations
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ORL:top 1 [gt = 5, d = 8, RR = 99.75%]
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ORL:top 5 [gt = 3, d = 8, RR = 100%]
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YALE:Illumination and Expression Variations
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YALE:top 1 [gt = 1, d = 1, RR = 92.75%]
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YALE:top 5 [gt = 1, d = 2, RR = 98.84%]
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BERN:Big Pose and Expression Variations
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BERN:top 1 [gt = 5, d = 5, RR = 98.66%]
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BERN:top 5 [gt = 5, d = 5, RR = 99.4%]
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CALTECH:Small Pose, Expression, Illumination and
Background Variation
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CALTECH:top 1 [gt = 1, d = 2, RR = 98.23%]
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CALTECH:top 5 [gt = 1, d = 3, RR = 99.75%]
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IITK:Very Small Expression and Pose Variations

Aditya Nigam (Phd CSE) Weighted Normalized Unmatched Points April 23, 2010 48 / 55



IITK: Results

Results

top 1

Best result with [gt = 5, d = 5,RR = 99.73%]

top 5

Best result with [gt = 5, d = 5,RR = 100%]
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Comparative Analysis

ORL and YALE
Distance Recognition rate (%)
Measure ORL YALE

PCA 63 50
HD 46 66
PHD 72.08 (f = 0.85) 84 (f = 0.7)

M2HD 75 80
SWHD 82 82
SW2HD 88 83
SEWHD 88 85
SEW2HD 91 89

Hpg 91.25 83.3 (f = 0.55)
WNUP 99.75 (gt = 5, d = 8) 92.75 (gt = 1, d = 1)

Table: Comparative study on ORL and YALE when considering top 1 best match
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Comparative Analysis

BERN
Test Recognition rate (%)
Faces PHD LEM Hpg WNUP

(f = 0.85) (gt = 5, d = 5)
Looks right/left 74.17 74.17 95.83 99.00

Looks up 43.33 70.00 90.00 99.00
Looks down 61.66 70.00 68.33 98.00

Average 58.75 72.09 87.50 98.66

Table: Comparative study on BERN database when considering top 1 best match
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Summarized Performance of WNUP

Databases Vs Parameters
Db,Nor S,P,T Time(Sec) gt,d,RR% [top1] gt,d,RR% [top5] Varying
ORL,N 40, 10, 400 1.8 5, 8, 99.75 3, 8, 100 Poses and Expressions
YALE,Y 15, 11, 165 1.2 1, 1, 92.75 1, 2, 98.84 Illumination and Expressions
BERN,N 30, 10, 300 1.6 5, 5, 98.66 5, 5, 99.4 Poses and Expressions

CALTECH,Y 17, 20, 340 1.6 1, 2, 98.23 1, 3, 99.75 Poses and Illumination
IITK,N 149, 10, 1490 4.6 5, 5, 99.73 5, 5, 100 Poses and Scale

Table: Databases vs Parameters
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Fast Screening

Fast First Level Scanner

For recognition in complex varying environments with big images it can
also be used as fast first level scanner, working on under sampled images
providing assistance to the higher levels.
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Conclusion

Weighted Normalized Unmatched Points (WNUP) measure proposed
is different from existing Hausdorff distance based methods as it
works on gt-transformed images.

This approach can achieve the appearance based comparison of faces.

Parameters gt, d , p are set taking into account the illumination
variation and the nature of the images.

Discriminative Power

It has shown tolerance to varying poses, expressions and illumination
conditions and can achieve a higher recognition rate than HD, PHD,
MHD, M2HD, SWHD, SW2HD, SEWHD, SEW2HD, Hg and Hpg .
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Future Work

In constrained environment which is uniformly well illuminated WNUP
measure could also be used for video surveillance, scene segmentation
in videos.

Extended to other biometric traits as iris and ear.

Quantization can be done but in terms of Hamming distance.

Extension

Extending to color images and doing efficiently.
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