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Abstract. A reliable personal recognition based on ear biometrics is
highly in demand due to its vast application in automated surveillance,
law enforcement etc. In this paper a robust ear recognition system is
proposed using gradient ordinal relationship pattern. A reference point
based normalization is proposed along with a novel ear transformation
over normalized ear, to obtain robust ear representations. Ear samples
are enhanced using a local enhancement technique. Later a dissimilar-
ity measure is proposed that can be used for matching ear samples. Two
publicly available ear databases IITD and UND-E are used for the perfor-
mance analysis. The proposed system has shown very promising results
and significant improvement over the existing state of the art ear sys-
tems. The proposed system has shown robustness against small amount
of illumination variations and affine transformations due to the virtue of
ear transformation and tracking based matching respectively.

1 Introduction

Personal authentication plays an important role in the society. Every applica-
tion requires at least some level of security to assure personal identity. Hence
an automated and accurate human access control mechanism plays an impor-
tant role in several social applications such as law enforcement, secure banking,
immigration control etc. Security can be realized at one of the three levels.

1. Level-1 [Possession]: The user possesses something which is required to be
produced for successful authentication. For example, key of a car or room.

2. Level-2 [Knowledge]: The user knows something which is required to be
entered correctly for successful authentication. For example, PIN (personal
identification number), credit card CVV (card verification value) etc.

3. Level-3 [Biometrics]: The user owns certain physiological and behavioral
characteristics which are required to be acquired and matched for successful
authentication. For example, face, iris, fingerprint, signature, gait etc.
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(a) Physiological

(b) Behavioral

Fig. 1. Biometric Traits

Biometrics can be used for personal authentication using physiological (such
as face [1, 2], fingerprint [3, 4], iris [5–7], palmprint [8], ear [9, 10], knuckleprint
[11–13] etc.) and behavioral (such as gait, speech etc.) characteristics as shown
in Fig. 1, which are assumed to be unique for each individual. However, each
trait has its own challenges and trait specific issues hence none of the biometric
trait can be considered as the best one. The biometric trait selection completely
depends upon the application where ultimately it is going to be deployed. Ear
can be considered as a significant biometric because of its passive nature, as it
can be acquired without much user cooperation unlike iris, fingerprint. In [14],
manually measured twelve features extracted from 10, 000 ear samples suggested
that ear may contain unique characteristics. Also it is inherently different from
the invasive biometrics such as face which changes with expression, age, illumi-
nation, pose and artifacts such as beard, sunglasses etc. Moreover the structure
and size of a ear is assumed to be invariant for wide age ranges. Ear size is big-
ger than fingerprint and iris and smaller than face hence can be easily acquired
and processed. Still, scale and affine transformation remains to be the major
challenges for any ear based recognition system.

In this paper an automated reference point based ear normalization is pro-
posed to handle scale and affine variations. Also an image transformation along
with a feature extraction and matching algorithm is proposed that can compli-
ment each other for better performance. The system is tested over two publicly
available ear databases viz. IITD [15] and UND-E [16]. It has shown significantly
better performance than the state of the art ear authentication systems, pre-
sented in all these recent ear identification journal works [10], [17] and [15]. The
paper is organized as follows. In Section 2 the literature available on ear recog-
nition is reviewed. The proposed ear recognition system is discussed in Section
3. The experimental results are shown in Section 4. Conclusions are discussed in
the last Section.

? Authors would like to acknowledge the funding and support provided by IIT, Mandi.
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Table 1. Summarized Literature Review

Approach Number of
Images

Performance
(Rank 1)

Force Field Transformation and NKFDA [18] 711 75.3 %

Sparse Representation [19] 192 100 %

Locally Linear Embedding (LLE) [20] 1501 80 %

SIFT Landmark Points over Ear Model Face [21] 1060 95.32 %

SIFT features from various color models [22] 800 96.93 %

Partitioned Iterated Function System(PIFS) [23] 228 61 %

Gabor Wavelet and GDA [24] 308 99.1 %

Local Binary Pattern and Wavelet [25] 308 100 %

2 Literature Review

Several ear recognition and authentication systems have been proposed in last
decade. Force field transformation [18] is used along with null space based kernel
fisher discriminant analysis NKFDA to perform multi-pose ear recognition.
Sparse representations [19] are used to develop a dictionary during training stage.
A linear system of equations is obtained from probe images and is solved using
sparsity of probe image vector and l1 minimization. Ear recognition is done using
local linear embedding LLE and its improved version in [20]. Feature level fusion
of multiple ear samples is done for better results in [21]. SIFT features are fused
to obtain a single fused template from all training images. In [22] regions with
consistent color are used for matching using SIFT features with GMM based
skin modeling. Human ear recognition against occlusion (HERO) is proposed in
[23] which is based on fractals. It can deal with synthetic and natural occlusion.
They indexed images using partitioned iterated function system (PIFS). Gabor
filter [24] based feature extraction and general discriminant analysis GDA are
used together for ear recognition.

Some of the current state of the art systems are discussed as follows. In [9],
connected component analysis of the graph constructed using edge-map is used
to segment ear and SURF features are matched using nearest neighborhood ratio
matching. Automated ear segmentation [10] is done using Fourier descriptors and
ear identification is performed using log-gabor filters. Later in [17], they have
utilized the phase information using 2D quadrature filtering to improve their
results. Finally in [15], they have proposed sparse feature coding scheme using
localized radon transformation in order to produce their best result. Table 1
summarizes the most significant work done in the field of ear recognition.

3 Proposed Method

The proposed ear recognition system consist of following steps, viz. ROI ex-
traction, Reference point detection (Section 3.1), Ear Normalization (Section
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(a) Original (b) Thresholded (c) Canny (d) Ear Helix (e) Ref. Points

Fig. 2. Reference Points

3.2), Ear Enhancement (Section 3.3), Ear Transformation (Section 3.4), Fea-
ture Extraction (Section 3.5) and Matching (Section 3.6). The ear ROI from
any profile face image is cropped using the connected component graph based
algorithm proposed in [26]. The cropped ear is automatically normalized using
the proposed method that first detect two reference points and later use them
for ear normalization. The top and bottom-most ear points are chosen as refer-
ence points as shown in Fig. 2(e). The normalized ear is further enhanced and
transformed to obtain robust ear representations. Finally the corner features are
extracted and matched using the tracking based dissimilarity measure named as
Incorrectly Tracked Corners (ITC).

3.1 Reference Point Detection

The major problem in ear recognition is of scale variations. Hence to handle it
ear samples are normalized using two reference points r1 and r2. Hence these
two reference points that are considered as top and bottom ear points (as shown
in Fig. 2(e)) are detected automatically. The cropped ear ROI image is prepro-
cessed using an adaptive thresholding [27] and the noise is removed by applying
median filtering. The edges are detected using Canny edge detection algorithm
[28], and the output is divided into two halves. From both halves the largest con-
tour is extracted, which is considered as the outer helix part of the ear as shown
in Fig. 2(d). The two reference points r1 (over upper helix) and r2 (over lower
helix) are the points which are at maximum distance over these helical structures
as shown in Fig. 2(e) and Eq. 1. In Eq. 1, x, y represents all points belonging to
upper and lower helix respectively, r1 and r2 are the required reference points
and ||x, y|| represents the euclidean distance between x and y point.

{r1, r2} = argMax∀(x∈UP.Helix) and (y∈LW.Helix)||x, y|| (1)

3.2 Ear Normalization

The issues of affine transformations such as rotation, scaling and alignment,
are overpowered by the using the proposed automated ear normalization. All
database profile face images are scaled to a predefined size and are registered
using two reference points viz. (r1) and (r2), which are detected as discussed
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(a) Original (IOrig) (b) Nor. Face (It) (c) Ear ROI (Ie)

Fig. 3. Ear Normalization

above and shown in Figs. 2(e), 3(a). The reference points are detected in cropped
ear ROI but actual profile image is normalized to ensure that:

1. The points r1 and r2 should lie on same coordinates in all the images (i.e.
(xt1, y

t
1) and (xt2, y

t
2) respectively).

2. The line joining r1 and r2 should be vertically aligned as shown in Fig. 3(c).

Let the co-ordinates of r1 and r2 are (xo1, y
o
1) and (xo2, y

o
2) respectively, in

original image Iorig as shown in Fig. 3(a). The image Iorig is scaled to Is by
a scaling factor S = d

distance(r1,r2)
with respect to r1, so as to set a predefined

fixed distance (d) between the points r1 and r2 using the scaling matrix [Ts], as
given in Eq. (2). The scaled image Is is then rotated to Ir by an angle φ with
respect to r1, where φ is the angle between the vertical direction (i.e. y-axis)
and the line-segment r1 and r2 using the rotation matrix [Tr], as given in Eq.
(2). Now Ir is translated to It (i.e Nor. Face, Fig. 3(b)), by tx = xt1 − xo1 and
ty = yt1 − yo1 units, in x and y directions using the translation matrix [Tt]. The
combined image transformation matrix [T ] is given below.

T =

S 0 xo1 · (1− S)
0 S yo1 · (1− S)
0 0 1


︸ ︷︷ ︸

Scaling Matrix [Ts] w.r.t. point r1

cosφ −sinφ xo1 · (1− cosφ) + yo1 · sinφ
sinφ cosφ yo1 · (1− cosφ)− xo1 · sinφ

0 0 1


︸ ︷︷ ︸

Rotation Matrix [Tr] w.r.t. point r1

1 0 tx
0 1 ty
0 0 1


︸ ︷︷ ︸

Translation [Tt]

(2)
In order to extract a consistent ear ROI, height-width ratio (δ=1.4) is used

that is computed heuristically from a set of randomly selected 100 images (50
images each from IITD and UND-E dataset). As the height of a ear is normalized
to (d in It), by using the above derived transformation matrix T (as given in
Eq. (2)) over Iorig, the width of the ear box to be cropped can be computed as
w = δ

d + offset. Here offset is the left margin along each box side with the
line joining the reference points exactly at the midpoint of the box, as shown in
Fig.3(c).

3.3 Ear Enhancement

The extracted region of interest (ROI) of an ear contains texture information but
generally is of poor contrast. Suitable image enhancement technique is required
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(a) Original (b) Bg Illum. (c) Uni. Illum. (d) Enhanced (e) Noise Removal

Fig. 4. Ear Image Enhancement

to apply on the ROI. The ear texture is enhanced in such a way that it increases
its richness as well as its discriminative power. The ear ROI is divided into
blocks and the mean of each block is considered as the coarse illumination of
that block. This mean is expanded to the original block size as shown in Fig.
4(b). Selection of block size plays an important role. It should be such that the
mean of the block truly represents the illumination effect of the block. So, larger
block may produce improper estimate. Since the ear sample images are of size
160 × 200, it is observed that a block size of 40 × 40 is the best choice for our
experiment. The estimated illumination of each block is subtracted from the
corresponding block of the original image to obtain the uniformly illuminated
ROI as shown in Fig. 4(c). The contrast of the resultant ROI is enhanced
using Contrast Limited Adaptive Histogram Equalization (CLAHE) [29]. It
removes the artificially induced blocking effect using bilinear interpolation and
enhances the contrast of image without introducing much external noise. Finally,
Wiener filter [30] is applied to reduce constant power additive noise to obtain
the enhanced ear texture as shown in Fig. 4(e).

3.4 Ear Transformation

(a) Image (b) Kernel=3 × 3 (c) Kernel=9 × 9

Fig. 5. Red: -ve grad; Green: +ve grad.; Blue: zero grad (Kernel size represents the
size of sobel kernel used to compute gradient.)

The normalized and enhanced ear samples are transformed using two pro-
posed encoding schemes Gradient Ordinal Relation Pattern (GORP ) and STAR
GORP (SGORP ). The gradient of any edge pixel is positive if it lies on an edge
created due to light to dark shade (i.e. high to low gray value) transition else
it will be having negative gradient or zero value. Hence all the edge pixels can
be divided into three classes of +ve, −ve or zero gradient values as shown in
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(a) GORP (b) SGORP

Fig. 6. Neighborhood structure used to compute the gradient and the robust encodings.

Fig. 5(b,c). The sobel x-direction kernel of size 3 × 3 and 9 × 9 are applied to
obtain Fig. 5(b,c) respectively. Bigger size kernel produces coarse level features.
The sobel kernel lacks rotational symmetry hence more consistent scharr kernel
[31] which is obtained by minimizing angular error is applied. This gradient aug-
mented information of an edge pixel can be more discriminative and robust. The
proposed encoding schemes GORP and SGORP precisely uses this information
to calculate a 8-bit code for each pixel by using x and y-direction derivatives
of its 8 neighboring pixels to obtain four codes viz. vcodeGORP , hcodeGORP ,
vcodeSGORP and hcodeSGORP as shown in Figs. 7(b,c,d,e) respectively. The
vertical/horizontal code (i.e. vcode and hcode) signifies that whether x-direction
or y-direction derivatives are used while encoding.

Let Pi,j be the (i, j)th pixel of an ear sample P and N [l], l = 1, 2, ...8 (as
shown in Fig. 6(a)) are the gradients of 8 neighboring pixels centered at pixel
Pi,j that are obtained by applying scharr kernel.

[a] GORP based Encoding: An eight bit encoding viz. gorp code for every
pixel is computed whose kth bit can be defined as :

gorp code[k] =

1 if N [k] > 0

0 otherwise
(3)

In vcodeGORP or hcodeGORP as shown in Fig. 7 (b,c) every pixel is represented by
its gorp code instead of its gray value which is obtained using the gradient of its 8
neighboring pixels computed using x and y direction scharr kernel respectively.

(a) Original (b) vcodeGORP (c) hcodeGORP (d) vcodeSGORP (e) hcodeSGORP

Fig. 7. Ear Transformation Using Local Gradient
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[b] SGORP based Encoding: The sgorp code encodes the ordinal rela-
tionships between diagonally opposite neighbors along with top and bottom one
(as shown in Fig. 6(b) in red color). Due to this star structure it is termed as
STAR GORP (i.e SGORP ). In vcodeSGORP or hcodeSGORP as shown in Fig.7
(d,e) every pixel is represented by its sgorp code instead of its gray value. It is
a 4 bit code represented in 8 bits as follows:

sgorp code[1] = sgorp code[2] = 1 if abs(N [1] −N [5]) > T else 0

sgorp code[3] = sgorp code[4] = 1 if abs(N [2] −N [6]) > T else 0

sgorp code[5] = sgorp code[6] = 1 if abs(N [3] −N [7]) > T else 0

sgorp code[7] = sgorp code[8] = 1 if abs(N [4] −N [8]) > T else 0

(4)

where T , is empirically determined threshold that depends upon the size of
scharr kernel used to compute gradient. The pattern of edges within a neighbor-
hood can be assumed to be robust; hence each pixel’s encodings (i.e. gorp code
or sgorp code) are considered, that only used sign of the derivative within its
specified neighborhood which is their ordinal relationships. Hence they ensures
the robustness of the proposed transformation under illumination variation.

Justifications: The subsequent samples of same ear will be having vary-
ing illumination and affine transformations. The proposed GORP and SGORP
transformation can handle illumination variations. In Fig. 8(a) the first ear sam-
ple is shown in six significantly different illumination conditions that are arti-
ficially created to observe the robustness of the proposed transformation. The
Figs. 8(b) and 8(c) shows their corresponding hcodeGORP and vcodeGORP . One
can clearly observe that they are not varying much even under such drastic
illumination variations.

(a) An ear image in seven different illumination conditions

(b) Their corresponding hcodeGORP

(c) Their corresponding vcodeGORP

Fig. 8. Robustness of GORP against varying Illumination
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3.5 Feature Extraction

We have considered corner points as features because of their repeatability and
discrimination. The autocorrelation matrix M [32], can be used to calculate
corner points that are having strong orthogonal derivatives. The matrix M is a
2×2 matrix and hence it can have two eigen values λ1 and λ2 such that λ1 ≥ λ2
with e1 and e2 as the corresponding eigenvectors. All pixels having λ2 ≥ Tq
(smaller eigen value greater than a threshold) are considered as corner points.

3.6 Feature Matching

Tracking algorithms can be used to achieve robustness against affine transfor-
mations as it assumes that any feature can move within a small neighborhood.
Tracking can also handle partial ears, as they are occluded mostly by hairs or
ear-rings. They can easily be detected and masked using skin-tone detection and
feature over them are ignored while tracking. A constrained version of KL track-
ing [33], has been used to perform matching between two ear samples Ea and Eb.
The KL tracking make use of three assumption namely brightness consistency,
temporal persistence and spatial coherency as defined below, hence its perfor-
mance depends completely on how well these three assumptions are satisfied.

Let there be a feature at location (x, y) at a time instant t with intensity
I(x, y, t) and this feature has moved to the location (x+ δx, y + δy) at the time
instant t+δt. Three basic assumptions that are used by KL Tracking to perform
tracking successfully are :

– Brightness Consistency: Features in a frame do not change much for small
change in the value of δt, i.e

I(x, y, t) ≈ I(x+ δx, y + δy, t+ δt) (5)

– Temporal Persistence: Features in a frame moves only within a small
neighborhood. Using the Taylor series and neglecting the high order terms,
one can estimate I(x+ δx, y + δy, t+ δt) with the help of Eq. (5) as :

IxVx + IyVy = −It (6)

where Vx, Vy are the components of the optical flow velocity for pixel I(x, y, t)
and Ix, Iy and It are the derivatives in the corresponding directions.

– Spatial Coherency: Estimating unique flow vector from Eq. 6 for every fea-
ture point is an ill-posed problem. Hence KL tracking estimates the motion
of any feature by assuming local constant flow (i.e a patch of pixels moves
coherently). An over-determined system of linear equations have been finally
obtained and solved using least square method to estimate the flow vector
for each pixel. Finally this vector is used to estimate the new position of that
feature.
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Justification for Tracking based Matching: In this work we expect that
these assumptions are more likely to be satisfied while tracking is performed
between features of same subject (genuine matching) and degrades substantially
for others (imposter matching). The above fact hold because brightness con-
sistency is assured by GORP and SGORP transformation while the temporal
persistence and spatial coherency are satisfied only for genuine matching. There-
fore one can infer that the tracking performance of KL tracking algorithm will
be good (or at-least better) for genuine matching as compared to imposter.

However, all the tracked corner features may not be the true matches because
of the noise, local non-rigid distortions and less difference in inter class matching
as compared to intra class matching. Hence a notion of consistent optical flow
is proposed to handle this.

Consistent Optical Flow: The true corner matches have their optical flow
that can be aligned with the actual affine transformation between the images be-
ing matched. Hence the estimated optical flow direction is quantized into eight
directions (i.e. at an angular difference of π

8 ) and the most consistent direc-
tion (MCD) is selected as the one which has the maximum number of correctly
tracked corner features. Any corner matching pair (i.e corner and its correspond-
ing corner) having optical flow direction other than the most consistent direction
(MCD) is considered as false matching pair and have to be discarded.

A dissimilarity measure ITC (Incorrectly Tracked Corners) has been pro-
posed to estimate the KL-tracking performance by evaluating simple geometrical
and statistical quantities defined as:

Locality: Euclidean distance between any corner and its estimated tracked
location should be less than or equal to an empirically selected threshold
THd. The parameter THd depends upon the amount of translation and
rotation in the sample images. High THd signifies more translation.

Dissimilarity: The tracking error is defined as pixel-wise sum of absolute
difference between a local patch centered at current corner feature and that
of its estimated tracked location patch, that should have to be less than
or equal to THe. This error should have to be less than or equal to an
empirically selected threshold THe. The parameter THe ensures that the
matching corners must have similar neighborhood patch around it.

Correlation: Phase only correlation [34] between a local patch centered at any
feature and that of its estimated tracked location patch should be at-least
equal to an empirically selected threshold THcb.

Any corner is considered as tracked successfully if it satisfies the above de-
fined three constraints. These three parameters (viz. THd, THe and THcb) are
experimentally determined over a small validation set (including only 200 images,
100 each from both dataset) and are optimized w.r.t performance. The values
for which the optimized performance is achieved are THd = 13, THe = 750
for both GORP and SGORP databases while THcb = 0.1 for GORP and 0.4
for SGORP . The SGORP transformation requires more correlation because it
is more sparse as compared to GORP as shown in Fig. 7 here correlation and
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Algorithm 1 ITC(Ea, Eb)

Require:

(a) Let Ea and Eb be two ear images and (Iv
L

A , Iv
L

B ), (Ih
L

A , Ih
L

B ), (Iv
SL

A , Iv
SL

B ) and

(Ih
SL

A , Ih
SL

B ) are their four corresponding vcodeGORP , hcodeGORP , vcodeSGORP

and hcodeSGORP pairs respectively.

(b) NvL

A , NhL

A , NvSL

A , and NhSL

A are the number of corners in Iv
L

A , Ih
L

A , Iv
SL

A , and Ih
SL

A

respectively.
Ensure: Return ITC(Ea, Eb).

1: Track individually corners within the 4 ear encoding pairs (Iv
L

A , Iv
L

B ), (Ih
L

A , Ih
L

B ),

(Iv
SL

A , Iv
SL

B ) and (Ih
SL

A , Ih
SL

B ) .
2: Obtain four set of corners that are successfully tracked in,

(a) (Iv
L

A , Iv
L

B ) pair tracking (i.e. stcv
L

),

(b) (Ih
L

A , Ih
L

B ) pair tracking (i.e. stch
L

),

(c) (Iv
SL

A , Iv
SL

B ) pair tracking (i.e. stcv
SL

),

(d) (Ih
SL

A , Ih
SL

B ) pair tracking (i.e. stch
SL

) ,
that have their tracked position within THd and their local patch dissimilarity
under THe also the patch-wise correlation is at-least equal to THcb.

3: Quantize optical flow direction for each successfully tracked corner set into only

eight directions (i.e. at an interval of π
8

) to obtain 4 histograms HvL , HhL

, HvSL

and HhSL

using these four corner set stcv
L

, stch
L

, stcv
SL

and stch
SL

respectively
as computed above.

4: For each histogram, out of 8 bins the bin (i.e. direction) having the maximum
corners is considered as the consistent optical flow direction. The maximum value
obtained from each histogram is termed as corners tracked correctly (i.e. ctc value)

represented as ctcv
L

, ctch
L

, ctcv
SL

and ctch
SL

.

5: return ITC(Ea, Eb)=1 −
ctcv

L

NvL
A

+ ctch
L

NhL
A

+ ctcv
SL

NvSL
A

+ ctch
SL

NhSL
A

4
;

path wise error are computed using a block size of 5× 5. Let Ea and Eb are two

ear sample images that have to be matched and (Iv
L

A , Iv
L

B ), (Ih
L

A , Ih
L

B ), (Iv
SL

A ,

Iv
SL

B ) and (Ih
SL

A , Ih
SL

B ) are their four corresponding vcodeGORP , hcodeGORP ,
vcodeSGORP and hcodeSGORP pairs respectively. The Algorithm 1 can be used
to compute the ITC(Ea, Eb) based dissimilarity score between two ear sample
images Ea and Eb.

4 Experimental Analysis

4.1 Database

The proposed system is tested over two widely used publicly available ear databases
IITD [10, 17, 15] and UND-E [16]. The IITD ear database have 493 images col-
lected from 125 subjects (age range 14-58 years) over a period of 9 months in
indoor environment with out extra illumination. Each subject has given at-least
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3 left ear images. The UND-E database consists of 443 profile face images col-
lected from 114 subjects with 3 to 9 images per subject. Images are collected on
different days with different pose and illumination. It can be noted that there ex-
ist a huge intra-class variation in these images due to pose variation and different
imaging conditions.

4.2 Testing Strategy

The testing strategy used in this work is exactly the same as adopted in [10], [17]
and [15] so as to compare our result against these state of the art systems. The
test protocol A (i.e. single image in training and testing) computes the average
of 3 tests in which only initial 3 images per subject are used with one as the
test image while remaining images as training images (one by one). The test
protocol B (i.e. all to all) computes the average performance when all images
from all subjects are used as training images (except itself). For IITD dataset
using protocol A, 125 × 3 and 124 × 125 × 3 genuine and imposter matchings
are considered respectively while using protocol B, 493 genuine and 124 × 493
imposter matchings are performed. Similarly for UND-E dataset using protocol
A, 110× 3 and 109× 110× 3 genuine and imposter matchings are considered re-
spectively while using protocol B, 443 genuine and 109×443 imposter matchings
are performed.

4.3 Performance Analysis

The performance of the system is measured using correct recognition rate (CRR)
in case of identification and equal error rate (EER) for verification. The CRR
(i.e. the Rank 1 accuracy) of any system is defined as the ratio of the number of
correct (Non-False) top best match of ear ROI and the total number of ear ROI in
the query set. At any given threshold, the probability of accepting the impostor
is known as false acceptance rate (FAR) and the probability of rejecting the
genuine user known as false rejection rate (FRR). Equal error rate (EER) is
the value of FAR for which FAR and FRR are equal.

EER = {FAR|FAR = FRR} (7)

For all these experimentations average results in terms of EER, CRR and
receiver operating characteristics (ROC) [35] curves are reported in Table 2 and
Fig. 10. In Table 2 the proposed system is compared with six existing most
recent state of the art algorithms proposed in [10], [17] and [15] and is found
to be performing much better. The proposed system outperforms non negative
formulation (NNG) [15] in both CRR and EER parameters over both databases
and using both testing protocol A and B. The prime reasons behind the proposed
system’s superior performance includes :

– In [10], [17], [15] they have only considered left half of the ear and discarded
most of the right half as shown in Fig. 9. But in this work we have utilized
the information from both halves of ear ROI.
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(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

Fig. 9. Ear Images. Each subject’s first image is the raw ear image, second is used by
[15] while third image which is full ear ROI is used in this work.

Algorithm Protocol A Protocol B

IITD UND IITD UND

CRR%,EER% CRR%,EER% CRR%,EER% CRR%,EER%

Hessian[15] 95.47, 5.28 86.06, 9.84 95.94, 4.64 85.91, 9.97

LG[10] 95.73, 4.32 87.88, 8.18 95.74, 4.06 88.91, 7.40

Q.Log.G[17] 96.53, 3.73 90.30, 7.27 96.55, 3.78 90.99, 7.16

LRT[15] 94.40, 4.27 84.84, 7.07 94.93, 3.87 84.76, 7.01

s-LRT[15] 97.07, 2.38 91.52, 5.45 97.57, 2.03 92.61, 5.08

NNG[15] 96.80, 1.87 91.52, 5.15 97.16, 1.62 92.38, 5.31

Proposed 98.93, 1.05 98.18, 2.42 99.20, 1.43 99.20, 4.78

Table 2. Comparative Performance Analysis

– In this work GORP and SGORP based transformations have been proposed
that can handle some amount of illumination variations in the subsequent
ear samples as shown in Fig. 8.

– The ear samples are enhanced so as to obtain robust texture information as
shown in Fig. 4.

– Matching is done using corner feature tracking, hence it can handle some
amount of affine transformations.

– To handle partial and occluded ear by hairs or ear ring, simple Gaussian
model based skin tone detection [36] is done and features over occluded
regions are discarded while tracking.

From Table 2, one can observe that the CRR as well as EER of the proposed
system has been found to be much better than the non negative formulation
(NNG) [15] in the case of UND-E database because the proposed systems can
handle affine variations better than NNG. Also database enlargement has not
been done as performed in [10], [17] and [15] which makes the system very
efficient.

In Fig. 10 the ROC curves that plots FAR Vs FRR for all thresholds, are
plotted for the proposed ear recognition system. Since FAR and FRR both are
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Fig. 10. The Average ROC for IITD and UND Databases. (x-axis is in log scale)

error hence the curve which is lower and towards both axis is considered as better.
The curve shown in red color is the EER curve and the point where it intersect
any curve is the equal error rate of that system. One can clearly observe that the
performance of the propose system is better over IIT ear database under either
testing protocol. This is because UND-E ear database is much more challenging
and contains ear samples with in-plane rotations.

5 Conclusion

In this paper an end to end automated ear based recognition system is pro-
posed. All steps in the proposed ear recognition system viz. ROI extraction,
Reference point detection, Ear Normalization, Ear Enhancement, Ear Trans-
formation, Feature Extraction and Matching are proposed and discussed. Two
publicly available ear databases IITD [15] and UND-E [16] are considered for
performance analysis. The proposed system has shown very promising results
and significant improvement over the six recently proposed state of the art ear
authentication systems [15], [10] and [17]. The superior performance is achieved
by utilizing full (both halves) of ear ROI’s and by using the robust encoding
scheme (GORP and SGORP ) along with the tracking based measure that can
handle affine transformations effectively. The partial ear and occlusion due to
hair and ear ring are handled by using Gaussian model based skin tone detection.
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