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Diffusion Tensor Imaging(DTI)

DTI
@ Diffusion of water molecule probes tissue structure at the smallest i.e.
voxel resolution.
e Water diffusion in oriented fibrous structures (as white matter and
muscles) is anisotropic (varies with direction).
@ Tensors are used to model diffusion. Major eigen vectors of the tensor
(Principle Directions) gives the fiber tract direction.
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Tractography

Tractography

@ Streamline Tractography estimates white matter tract trajectories
following the most likely tract direction. It locally chooses the most
likely fiber trajectory.

@ Entire brain tractography is estimated by stepping along the major
eigen vector direction using RK method.

DTI with Tractography gives us the white matter fiber orientation.
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Tractography Cont
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Tractography Data

The fiber trajectories are colored with random colors. This data is the
input to the segmentation algorithm.

Figure: An example of whole brain white matter tractography
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Introduction

@ A fiber is represented as a set of points in 3D space (typically 20 to
30 points per fiber).

@ Tractography produces thousands of fiber trajectories per subject
(250K).

@ Tractography can be seen as a 3D point cloud but that is not very
useful.

@ Useful information can be extracted only when they are organized into
anatomically meaningful structure.
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Problem Statement

Automatically Tractography Segmentation

@ Given the tractography data of a human brain, Segment it
automatically into tracts having “similar” fibers which are
anatomically meaningful.

Eight Major Tracts
Arcute
Cingulum
Corticospinal
Forceps Major
Fornix
Inferior Occipitofrontal Fasciculus
Superior Longitudinal Fasciculus
Uncinate
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Segmented Tractography Data
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Figure: Major fiber tracts
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@ Localization of specific tracks for surgical planning.

@ Surgery planning with minimum damage to the fibers.

Accelerated Learning  Treatment
Skill, D on MV g Brain Surgery.

Figure: Some Applications
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Approach

Atlas creation

@ Learn common white matter structure present across the subjects and
build white matter atlas.

@ Project the fibers into a high dimensional space where each fiber can
be seen as a point.

@ Cluster the points in that space using any central clustering technique
(as K-mean or GMM).

o Label the clusters formed using experts knowledge (allot anatomical
names).

@ This constitutes the anatomical model of white matter structure
(High Dimensional White Matter Atlas).
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Atlas Creation
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Approach

Automatic Segmentation

@ Novel subjects can be segmented by embedding new fiber trajectory
as a point in the high dimensional white matter atlas space.

@ Label fiber according to the nearest cluster centroid.
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Figure: A cmap to segment a novel brain
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Diagrammatically

Shape information is automatically extracted and used for clustering.

A B C
Figure: [A] Shows input fiber tracts, [B] Shows Clustering Step: Each point
represents the similarity relationships of a fiber (points are coming from the
highest eigenvectors of affinity matrix), [C] Shows the tracts with different colors
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Background Tractography Segmentation

Three modes of Segmentation
@ Interactive.
o Automatic Clustering.

@ Automatic Atlas Based.
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Background Tractography Segmentation

Interactive (Virtual Dissection)
@ Labeling is done by experts knowledge.
@ Select fibers passing through user defined ROI.
o Partridge [1] defined pyramidal tract ROl instead of manual.

@ Commonly used but requires extensive knowledge of 3D white matter
fiber tract anatomy.
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Background Tractography Segmentation

Automatic Clustering

o Clustering algorithms are used to organise fiber trajectories into fiber
bundles or tracts.

Attach Anatomical label to the cluster.
Mathematically define a fiber similarity measure.
Calculate pairwise distances and calculate Affinity matrix.

Calculate the principle components and use them for segmentation.

| N\

Assumption Exploited

Fiber trajectories that begin near each other follow similar path and
terminates near each other should belong to the same anatomical
structure.
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Background Tractography Segmentation

Fiber Similarity Measures

@ Brun [13] considered distances between fiber end points.

@ Brun [10] further used a 9D shape descriptor vector defined as mean
and lower triangular part of the covariance matrix of the points on
fiber and computed euclidean distance between shape descriptor.

o Gerig [8, 9] et.al proposed mean closest point distance.

@ Jonasson et.al [11] used a similarity measure based on the number to
times 2 trajectories shared the same voxel.

Convergence of literature with respect to the fiber distance measure is on
mean closest point distances as used by [7, 8, 9, 12, 14, 15].
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Background Tractography Segmentation

Automatic Atlas Based

e Madah [16] proposed a manual interaction method to create a
tractography atlas and gave an algorithm for transferring its labels to
novel subjects.

o Madah [17] further proposed an atlas creation method for corpus
callosum using labeled tractography from several subjects and then
used Expectation Maximization (EM) framework to classify fibers of
novel subjects.
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Proposed Atlas Generation Procedure

@ Registration.

@ Whole Brain Tractography.
© Fiber Affinity Calculation.
@ Fiber Embedding.

© Fiber Clustering.

@ Expert Anatomical labeling.

[1] Registration

All subject tractography must be in same co-ordinate system. Unbiased
group registration congealing algorithm is used for rotation, translation,
scaling [19].
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Proposed Atlas Generation Procedure

[2] Whole Brain Tractography

@ Generate Tractography of the entire white matter of brain using RK
method of order 2 using fixed step size 0.5mm

@ Every voxel have a C; value associated to it.
o C = Al/\*l)‘z, where A1 and A, are first 2 eigen values of diffusion
tensor for any voxel.

Threshold

Tseeq: Initiate tractography in voxels having C; value greater than Teeq-
Tstop: Stop tractography if C; falls below Tgp, indicating gray matter
(area of planar anisotropy).

Tiengtn: Higher (for major tracts), Lower (to see everything).

@ Depending on subject, thresholds and seeding resolution brain
tractography produces 10000 to 100000 fibers per subject.

@ Picking up randomly 10000 fibers per subject is reasonable.

v
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Proposed Atlas Generation Procedure
[3] Fiber Affinity Calculation

Assumption: Fibers following similar trajectories belongs to the same
anatomical structure.
@ Mean closest point a variant of Hausdorff distance is used for
calculating the pairwise fiber distances because it captures the degree
of similarity through the shape trajectory.

Mean Closest Point (dmcp(/,/))

o For each point on fiber / find the closest point on fiber j and compute the
distance between them.

o The distance for all the points on fiber i, giving you the corresponding
distances d;.

o dmcp(iaj) = %Zzzl di )
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Represent each fiber using 15 to 10 equi-distant points, including end

points (distances are calculated along the trajectory). Sample points are
represented as yellow points.

fiber i

Figure: lllustration of computation of mean closest point between 2 fibers.

Directed closest point distances from fiber i to j are represented with
black arrows.
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o dmcp(i7j) 7é dmCP(j7 i)

o djj = Min(dmep(i,f), dmep(J, 1)) Taking Min encourages grouping of shorter
fibers with longer fibers, if they run parallel for some distance.

e dj =dj
e d;=0

Pairwise fiber distances are converted into pairwise fiber affinity through
Gaussian kernel.
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Fiber Affinity

Finally, fiber distances are converted into fiber affinity using the Gaussian
kernel to get the Affinity Matrix (W)

Affinity Matrix (W)
a2
o WI[illj]=e"".
@ o defines the size scale of the problem by setting the distance over
which fibers can be considered similar.
@ W contains affinities for all pairs of fibers across all brain.

Problem: W is huge hence cannot be computed. We use an approximation
called Nystrom method for eigen analysis of W, with explicitly computing

it completely.
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Steps

/@@

1. Input Paths 2. Weighted Graph and Affinity Matrix (

- [

3. Normalized Affinity ( 4. Embedding Vectors 5. Clusters

Figure: Atlas Creation
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Overall Approach
Nystrom Analysis [ ]

@ Randomly choose a subset of fiber trajectory.

@ Compute affinities of them from all the fibers, dividing W into A,B,C
matrices (as in figure).
@ A = Pairwise affinities of randomly chosen subset.

o B = Pairwise affinities of rest of the fibers to that subset.

o C = Huge matrix and is not required to be calculated.

Figure: Multi subject fiber affinity matrix
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Proposed Atlas Generation Procedure

[4] Fiber Embedding

@ In embedding space each fiber is represented as a point and nearby
points generally corresponds to similar fiber trajectories.

@ Similarity relationships are represented spatially to facilitates the
clustering.

@ Embedding is done using the eigen vectors of fiber affinity matrix.

3 steps of fiber embedding
@ Normalization of W to get W'.

@ Estimating Eigen vector and values of W'.

@ Calculating Embedding vector for each fiber.
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3 steps of fiber embedding

[1] Normalization

o Wil[j] =
o W =

V J

e W-D%l

, where d; is the row sum of ith

, here D is the diagonal matrix having d;’'s as

14 PO
diagonal elements. [ £ 4 ] — [ a8 ]
34 33 )
A B b,
_ ar + by
BT | C~BTA-1B | [pTA b, be+BTA b, |’
here d is a column matrix
such that d; is the sum of
ith row.
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3 steps of fiber embedding

[2] Estimating Eigen vector and values of W'.

@ The eigen vector matrix U’ of W’ are required for the fiber
embedding.

o U’ is estimated by projecting A’ and B’ onto the eigen vector basis
from A (i.e. UN"Y) [18].
, U ATUN?
U' = B'TUN ! = B'TUA L
where
U : Eigen Vector Matrix of A’
A : Eigen Value Diagonal Matrix of A’
A’ and B’ are normalized version of matrices A and B respectively.
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3 steps of fiber embedding
[2] Estimating Eigen vector and values of W’. Continued

@ Let N is the total number of fibers and n is the fibers selected
randomly for the Nystrom estimation.

Matrix Name Dimension
A nxn
B nx (N —n)
BT (N—n)xn
C~BTAIB [ (N—n)x(N—n)
U nxn
BTUA? (N—n)xn
v’ N x n

@ U’ contains N dimensional top n eigen vectors of huge normalized
affinity matrix W',
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3 steps of fiber embedding

[3] Calculating Embedding vector for each fiber

@ Normalize the matrix U’ to get E matrix. Each row corresponds to
the embedding vector.

° E = ﬁ(uj’l, (L p—t
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Automatic Segmentation

Atlas information can be used to segment novel brain. New tractography
path is embedded in the same space in which the clustering was performed
originally. Cluster labels and anatomical informations are assigned
according to the nearest cluster centroid.

Transfer Atlas Information to new subject
o STEP 1: Affinity Computation
o STEP 2: Matrix Normalization

o STEP 3: Embedding New Data
@ STEP 4: Classification and Labeling
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Automatic Segmentation

[1] Affinity Computation

@ S holds the pairwise affinities between all the trajectories (in novel
brain) and each path in the random subset of paths that was chosen
during atlas creation.

@ Distances are symmetrized and converted to affinities.

A B S
B' C D
s D'
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Automatic Segmentation
[2] Matrix Normalization

o Each element is normalized by the row and column sums at that
location. Required row sums are estimates of row sums of [ SsTpDT }

o drow = [ = _|_STA_1br ]
Y dCOI: [ ar+br ]

T — ST
o S'T[ij] = drow 1] deatl]]

Reasons

@ Re-embedding of already seen path mapped to same location in the
embedding space.

o ST will not change the column sum significantly.

@ Hence, scaling applied to a novel path is basically the same as that
which have been applied if it were part of the original clustering
problem.

v
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Automatic Segmentation

[3] Embedding New Data

@ From normalized S matrix i.e S’, eigen vectors are estimated using
Nystrom method as:

@ Embedding vectors are given as the rows of Uy, each divided by the
square root of the corresponding row sum from d,, -

@ This processes is exactly same as that employed for the matrix B in
atlas creation. )
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Automatic Segmentation

[4] Classification and Labeling
@ New subject's embedding vectors are labelled according to the nearest
cluster centroid, giving a cluster label for each path.
@ Per cluster anatomical label and any addition (say color) informations
are transferred to the novel subject.
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Integral Eigen Value Problem

@ Integral and Inverse Integral Transforms are defined as:
K(t,u)- f( ) dt = T(f(u)) = g(v)
fu2 K=(t,u) - T(f(u)) du = f(t)

@ K Kernel defines the transform which maps an equation from its
original domain into another domain.

@ Such mappings are useful when manipulating and solving the
equation in the target domain is much easier than manipulating in
original domain.

@ Finally solution is mapped back to original domain with the inverse of
integral transform.

o
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Integral Eigen Value Problem

@ Given a kernel there are some special functions ¢ which only got

scaled up by a scalar A after transformation. Such functions are called
Eigen functions and corresponding \A's are called Eigen values.

@ [ W(x,y)- ¢y) dy = Ab(x) = T((x)).
© Approximating above integral by evaluating it over a set of evenly

spaced points y1, V2, ¥3..ccconnn. ¥n on interval [a,b] using quadrature
rule as:

P22 Y1 Wik, y) - dyy) = Ad(x)

where ¢(x) is the approximation of true ¢(x).

@ If we sample x also on the interval [a,b] over same points then W can
now be seen as a square matrix. We solve the above equation by
setting:

(x =yi) Vi € {1 to n}.
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Integral Eigen Value Problem

© We got the system of equations Vi € {1 to n} as:
T Wi y) - 6ilyy) = Nidi(vi)

@ Above system can be seen as :
A-d=n-d-A
where A[i][j] = W(yi,y;), ® = [¢1, @2, .....¢5) are n eigen vectors of A
and A is diagonal corresponding eigen value matrix.

@ Natural Nystrom extension for each ng,- that allow us to extend an
eigenvector computed for a set of sample points to any arbitrary point

X is:
A 1 A
ilx) = —— S Wy) - 9ily;)
/\v—l B'T columns of U
1T -1
@ Hence, U' = [ B'TZ/\_I ] = [ g’T(lj//t_l ] where U is (n x n),

B'TUNtis (N — n) x n) and U’ is (N x n) matrix.

Aditya Nigam (CSE, IITK) 25th October 2010 44 / 46

v




Integral Eigen Value Problem

QO W= [ BAT 'g],whereAisa(nxn), Bisa (nx (N —n))and C
isa ((N—n) x (N — n)) Matrices.

@ Let us denote U’ a (N x n) matrix as the approximate eigen vector of
W’ using Nystrom extension as :

U
U = |: B/TU/\—l :|

@
W = UNU'T (1)
- [B'TZA—l] A[UT AT UT-B] 2)
UNUT B A B
- [ BT BTA'B ] - [ BT c~BTatg| O
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Thank You.
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