Ramesh PéY

Principal Engineer & Engineering VICIsELs
Performance and Threading T@
Intel® Corporation, Austin, TX 787

intel)



Multi-Core Processors — Are they

Here Yet ?

* My shopping basket at Fry’s electronics on BlackFriday

Item Cost
Motherboard+Intel® Quad core 2.4Ghz 240]0)
4GB Memory 70
0.5TB Disk te]0)
Case 10
Graphics 10
CD/DVD 10
Total 380




Outline

e Parallelism in Intel® processors

 Intel® tools for parallel programming

e Some thoughts



A New
Era...

Performance
Equals IPC

THE OLD Multi-Core
Power Efficiency

Microarchitecture
Advancements

Performance
Equals Frequency

Unconstrained Power

Voltage Scaling

fimbal)

Performance Com' From Parallelism



Intel® Wide Dynamic Execution

EACH CORE CORE 1 CORE 2

EFFICIENT
14 STAGE INSTRUCTION FETCH INSTRUCTION FETCH

PIPELINE

DEEPER
BUFFERS

4 WIDE -
DECODE TO
EXECUTE

4 WIDE -
MICRO-OP
EXECUTE

MICRO

and (REORDER BUFFER) (REORDER BUFFER)
MACRO : :

FUSION 1444 VYWY

ENHANCED
ALUs

< Perf t J
<Energy i tj




Intel® Advanced Digital Media Boost
Single Cycle SSE

In Each Core SSE Operation
(SSE/SSE2/SSE3)
Single SOURCE 127 0
Cycle \Iﬁlﬁlﬁlﬁl
SSE
SSE/2/3 OP

DEST

Core™ parch
CLOCK _,l XdopY4 | X3opya | X2opy2 | Xiopy: |
CYCLE 1
Previ v ->| X20pY2 | X1opY1 |
evious CYCLE 1
CLOCK _,l Xdopy4 | X30pY3 |
CYCLE 2

SIMD instructions compute multiple

__ operations perinstruction |

*Graphics not representative of actual die photo or relative size




Instruction Fetch

Media Boost

|
s w00 128-hit Packed Multiply
oM (i Decode | Cache olus

e 128-bit Packed Add
__ plus

Retirement Unit 128-hit packed Load

v <_.T plus

128-hit packed Store

plus
Compare and jump




Many Levels of Parallelism

* Instruction-level parallelism
 SIMD (vector) parallelism

* Multi-core parallelism



Biggest Performance Leap Since
Out-of-Order Execution

Integer Performance at Introduction
(normalized to 25MHz 486D X)

i9240]0)

1000

800

600

400
y40]0)

O 1
Pentium D Conroe

ource: Spee \Wel site & Newsletter

Parallel Processor: Instruction-level Parallelism,
SIMD Parallelism, Multi-core Parallelism



Tera-Leap to Parallelism:
Energy Efficient Performance

Tera-Scale |======== Science
Computing ;;Eégggg—b fiction
becomes
y A REALITY
4
== Qu/d Core

More performance

ﬁ E
.. S P Using less energy
- Hyper-Threading . )
Single-core chips

ﬁ

ENERGY-EFFICIENT PERFORMANCE

. Instruction level parallelism

Many core re_ree of scaling e|)
-



Amdahl’s Law

Ideal performance scaling, varying serial
percentage

Runtime = serial + parallel

With perfect scaling: o
Runtime = serial + parallel/P = 0.50%

1.00%
5.00%
—x— 10.00%

To get 50x speedup on 65 e 50.00%
processors, serial time must '
be less than 0.5%

processors

Emerging class of highly parallel workloads: games, media
processing, personal data search, and more



Application Example

Sports Video Indexing

-

Field Blue kicks Red kicks

Recogn 1Ize players, objects and events
MINe the video for target scenes

Syﬂth eslize a summary of what happened

@



Outline

e Parallelism in Intel® processors

 Intel® tools for parallel programming

e Some thoughts



Parallel Programming Deserves

Visualization of
applications
and the system

Highly optimizing
compilers delivering
scalable solutions

Detect latent
Programming bugs

Tune for performance
and scalability

Great Tools

Architectural
Analysis

}

Introduce
Parallelism

|

Confidence /
Correctness

|

Optimize /
Tune

Ir."rLrle-'

Performance
Fln.'jll;m's

Fard InI:E-qr
Marth Kermel Per 1t'rn1-an )
Library Primitives

{Inked d {inkstd
Fre| S -
WTune"

Performance wier

Analyzers Thriaad Profiler

[ inked)

T‘Ereau;u.r-q
Building Elacks




Example: Prime Number Generation

Outer loop
steps through
numbers that
may be prime

for (long number = 3; number <= N; number += 2 )

{

Inner loop

tests factors
of number

while ( number % factor ) factor += 2;




Example: Prime Number Generation

for (long number = 3; number <= N; number += 2 )

{

S while ( number % factor ) factor += 2;

3,5

3,9,/

3

3,9,7,9,11

3 J 5 J 7 I 9’ 1 1 J 13 <% "cz\Intel{R)_Threading_Tools\build\Release\Primes.exe"
3 Determining primes from 1-18

3,5,7,9,11,13,15’17 Found 7 primes

Press any key to continue



Introducing
Threads

' * Call Graph
e Functional Structure
Debugging e EXxecution Times
‘ e Counts
Performance
Tuning



Vtune™ Call Graph Profile

| Function (58) _ self Time (88] | Total Time (.. Self Wait Ti
1 clock a
exit 4. 3% i 46

(B20)  free
Thread 0(BZ0 10763262 10763578
¥ Thread 0iB20) mainCRTStartup . ' 561
Thread 0 malloc

Yo s

MEMMmove
Thread memset
Thread 0 printf
Thread stropy 100.0¢
: Thread_0(B:

-

- T
o |

GetFileType



Vtune™ Sampling Profile

Instr|Clockt| |

for [ long number = 3; number <= M: nurber +=

long factor = 3;

e [ number % factor | factor 4= 2:
-:_ 'I 3 H i H

.0F == nurber |
g[ nuber of primes++ ] = number::

Function Swutinaty
Function Clasz: Instructions RFetired [(105) Clockticks (108) Clockticks pe...
Jelected Range —--

Ox1000 OxFE main 1,605 10,7738 f. 703

Sampled Cycles: 10,774

Sampled Instructions: 1,608

CPI: 6.7 (intel



Hardware Support for Sampling

INSTRUCTION FETCH Event counters count events
that occur in pipeline.
| ’“’ﬁii\iifffii il EUE | Key events:

e Clock cycle

\AAA / e Instruction_retired

FIaS Counters count down to zero.
% e At zero, interrupt and capture
Instruction pointer.
e Reset counter and continue
_ execution.




i ] ] [ S R

Example: Prime Number Kernel

for (long number = 3; number <= N; number +=2)

{

long factor = 3;

) while ( number % factor ) factor += 2;
57 If (factor == number )
N primes[ number_of primes++] = number;

,9,7,9,11
9,7,9,11,13

9,7,9,11,13,15,17



Using the Intel Programming Tools

Architectural - =4 |Nntel® Compilers

Analysis

e Creates one thread per core
Debugging = Assigns iterations to threads

\

Performance
Tuning



Example: Add OpenMP Directive

#pragma




Example: Add OpenMP Directive

Thread 1
i Iterations 1..50000

Thread 2 |
Iterations 50000..100000




Example: Add OpenMP Directive

¢ Command Prompt

C:\Primes\Re lease>Primes .exe
Determining primes from 1-100000

Found @ primes

C:\Primes\Release>Primes.exe
Determining primes from 1-1800080
Found (2589 primes

#pragma

C:\Primes\Re lease>Primes.exe
Determining primes from 1-1006800
Found (9590 \primes

C:\Primes\Re lease>Primes.exe
Determining primes from 1-100800
Found (9588 \primes

C:\Primes\Re lease>Primes.exe
Determining primes from 1-1600060
Found (72591 \primes

C:\Primes\Release>



Data Race

Thread 1 Thread 2
@)
O O
@)

@)

mes+-+ mes—+-+

The updates to number_of_primes are not atomic!
(intel)



Data Race
Thread 1 Thread 2




Data Race
Thread 1 Thread 2

@)




Data Race
Thread 1 Thread 2

n_of_p Dn_of p

of_p=tl _of p=1t2




Example: Add Synchronization Directive

#pragma

cA Command Prompt

C:\Primes\Release>Primes
Determind primes from 1-106060

Found @ primes

C:\Primes\Re lease>Primes
Determinding primes from 1-100000

Found @ primes

C:\Primes\Re lease>Primes
Determipning primes from 1-1006000
ound pl‘ilTIES

C:\Primes\Re lease >Primes

Determiping primes from 1-10080060
ound pl‘ilTIES
C:\Primes\Re lease>Primes

Determining primes from 1-1060060
Found pl*imes

C:\Primes\Release>_




Using the Intel Programming Tools

Intel® Thread

Architectural

Analysis Checker
Introducing e ———————
Threads hread Safety Issues
e Pata Races
Debugging -~ eadIOCkS

Performance
Tuning



Intel® Thread Checker

w4 VTune(TM) Performance Environment - [Thread Checker - Activity: 03:17 PM, 2005 Feb 13 (TC: primes.exe)]

JJE Fle Edit View Activity Configure Window Help

D« Severity Count # IstAccess[Source Lineg] Short Description © 2nd Access[Source Ling]

a 9590 "2_openmp.cpp"14 Write -> Write data-race "2_openmp.cpp"14
ﬁ 9590 "2_openmp.cpp":14 Read -= Write data-race "2_openmp.cpp":14
o 1 "2_openmp.cpp"5b Thread termination "2_openmp.cpp"5

ElI‘ Memory read of number_of_primes at"2_openmp.cpp" 14 conflicts with a prior memory write of number_of_primes at"2_openmp.cpp":14 (flow dependence)

(D =]

| 1stAccess |- |Stack Imain "2_openmp.cpp":14

IREERR| L% 27|55

Source

long factor = 3;
while ( number % factor ) factor += 2;
1if ( factor == number )
primes[ number of primes++ ] = number;
}
printf( "Found %d primes\n", number of primes );
4

| 2nd Access | - | Stack: Imain "2_openmp.cpp"14

IRRBER| 4% 49565

Source

long factor = 3;
( number % factor ) factor += 2;
i1f ( factor == number )
primes[ number of primes++ ] = number;

printf( "Found %d primes\n", number of primes );
ql

Source View | Stack Traces |

For Help, press F1

Mewwng aydels 2]




How Does Thread Checker Work?

Thread 1 Thread 2
Lock(L); 5
n_of p++
Unlock(L); Lock(L):
§ n_of p++;



How Does Thread Checker Work?

Use binary instrumentation

Thread 1 Thread 2

O
O

O record lock(L)

LOCk(Ir_e)d-ord read(n_of_p)

record write(n_of p)
n_of p++
record unlock(L)

O OO

. record lock(L)
Unlock(L); Lock(L):
récord read(n_of p)

O record write(n_of p)
° n_of p++;
record unlock(L)

Unlock(L);(inte)



How Does Thread Checker Work?

Thread 1 Thread 2
O
O
O
O
O
O
Analysis reveals that “happens
. before” segment 2. So, no data race problem.
1\ Segment 2
: Lock(L);
O
0 n_of p++

Analysis based on [Lamport 1978] Unlock(L); (inter)




How Does Thread Checker Work??

Thread 1 Thread 2
Segment 2

t | aD

N




Using the Intel Programming Ttools

Intel® Thread

Architectural

Analysis r rOﬁ |er

Thr;ads e Find Contended Locks
e Most Overhead

Debugging e |Largest Reduction In

Parallelism

Performance
Tuning



Profiling the Two Threads Iin Primes

abe Tn:ntal Farallel equential = Imbalanc B arrier Laocks Synchronized Farallel overheads
-I-H 0000 IIIIIIII IIIIIIII IIIIII 0,003

—

Work Is not balanced between threads

@



for (long number = 3; number <= N; number +=2)
{
long factor = 3;
while ( number % factor ) factor += 2;
If (factor == number)
primes[ number_of primes++] = number;

}

Thread 1
Iterations 1..50000

Thread 2
Iterations 50000..100000

Thread 2 does -k than thread 1




Example: Change to Dynamic Scheduling

Each iteration is assig-lly to a worker thread



Profiling the Two Threads with
Dynamic Scheduling

Work balanced between the threads



Using the Intel® Programming Tools

Architectural

Analysis Intel® VTune™ Analyzers
\

Introducing

Threads Intel® C++ Compiler

\

Debugging Intel® Thread Checker

\

e~ Intel® Thread Profiler

~
All these tools are available for free at Intel® website

\ e tel.
for mi —



Outline

e Parallelism in Intel® processors

 Intel® tools for parallel programming

e Some thoughts



The landscape of parallel tools

Tools need to just work out of the box

— Provide noise less information
— No false positives
— Information must be relevant and accurate

Must be scalable and work In a variety of environments
— Language, Architecture and OS independent
— Must work in the presence of VMMs

Must work on existing binaries
— No recompilation, special preparation of binaries for tools

Performance Degradation must be in acceptable range

Need more capable tools to handle future multi-core processors
— Non-Uniform memaory access

— Multiple layers of memory hierarchy visible to programmer

— Very large number of cores
(intel.



Other Software development tools

INn our lab

 Data Mining and machine learning techniques for utilization of PMU counters

to improve program performance

* Pin — a dynamic instrumentation system

— Computer Architecture Research
— For emulating new instructions
— Modeling micro-architectural features
— Branch Predictor Models:
— Cache Models:
— Simple Timing Models:
— Performance Analysis Tools
— Dynamic/Static Instruction Counting Tools
— CallGraph/CallCount Tools
— Tool to produce Annotated CFG
— Program Analysis Tools
— Code Coverage Tools
— Dynamic Optimization Tools
— Memory Checking Tools
— Race Detection Tools
— Replay Tools

* Dynamic optimization of programs
e Parallel libraries/domain specific languages



Summary

e Parallel processors
— Instruction level parallelism
— SIMD parallelism
— Multi-core parallelism

e Intel® tools for parallel programming
— Intel® Fortran/C++ compiler
— Intel® VTune™
— Intel® Thread Checker
— Intel® Thread Profiler

e Parallel applications
— New emerging class of parallel applications
— Tune for all levels of parallelism
— Need more research into parallel tools and methodologies






	Multi-Core Processors – Are they Here Yet ?
	Outline
	A New Era…
	Intel® Wide Dynamic Execution
	Intel® Advanced Digital Media Boost�Single Cycle SSE
	Advanced Digital�Media Boost
	Many Levels of Parallelism	
	Biggest Performance Leap Since �Out-of-Order Execution
	Tera-Leap to Parallelism: 
	Amdahl’s Law
	Application Example
	Outline
	Parallel Programming Deserves�Great Tools
	Example: Prime Number Generation
	Example: Prime Number Generation
	Using the Intel Programming Tools
	Vtune™ Call Graph Profile
	Vtune™ Sampling Profile
	Hardware Support for Sampling
	Example: Prime Number Kernel
	Using the Intel Programming Tools
	Example:  Add OpenMP Directive
	Example:  Add OpenMP Directive
	Example:  Add OpenMP Directive
	Data Race
	Data Race
	Data Race
	Data Race
	Example: Add Synchronization Directive
	Using the Intel Programming Tools
	Intel® Thread Checker
	How Does Thread Checker Work?
	How Does Thread Checker Work?
	How Does Thread Checker Work?
	How Does Thread Checker Work?
	Using the Intel Programming Ttools
	Profiling the Two Threads in Primes
	Example: Change to Dynamic Scheduling
	Profiling the Two Threads with Dynamic Scheduling
	Using the Intel® Programming Tools
	Outline
	The landscape of parallel tools
	Other Software development tools in our lab
	Summary

