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Multi-Core Processors — Are they

Here Yet ?

* My shopping basket at Fry’s electronics on BlackFriday

Item Cost
Motherboard+Intel® Quad core 2.4Ghz 240]0)
4GB Memory 70
0.5TB Disk te]0)
Case 10
Graphics 10
CD/DVD 10
Total 380




Outline

e Parallelism in Intel® processors

 Intel® tools for parallel programming

e Some thoughts
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Performance Com' From Parallelism



Intel® Wide Dynamic Execution
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Intel® Advanced Digital Media Boost
Single Cycle SSE

In Each Core SSE Operation
(SSE/SSE2/SSE3)
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*Graphics not representative of actual die photo or relative size




Instruction Fetch

Media Boost
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Many Levels of Parallelism

* Instruction-level parallelism
 SIMD (vector) parallelism

* Multi-core parallelism



Biggest Performance Leap Since
Out-of-Order Execution

Integer Performance at Introduction
(normalized to 25MHz 486D X)
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Parallel Processor: Instruction-level Parallelism,
SIMD Parallelism, Multi-core Parallelism



Tera-Leap to Parallelism:
Energy Efficient Performance

Tera-Scale |======== Science
Computing ;;Eégggg—b fiction
becomes
y A REALITY
4
== Qu/d Core

More performance

ﬁ E
.. S P Using less energy
- Hyper-Threading . )
Single-core chips

ﬁ

ENERGY-EFFICIENT PERFORMANCE

. Instruction level parallelism

Many core re_ree of scaling e|)
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Amdahl’s Law

Ideal performance scaling, varying serial
percentage

Runtime = serial + parallel

With perfect scaling: o
Runtime = serial + parallel/P = 0.50%

1.00%
5.00%
—x— 10.00%

To get 50x speedup on 65 e 50.00%
processors, serial time must '
be less than 0.5%

processors

Emerging class of highly parallel workloads: games, media
processing, personal data search, and more



Application Example

Sports Video Indexing

-

Field Blue kicks Red kicks

Recogn 1Ize players, objects and events
MINe the video for target scenes

Syﬂth eslize a summary of what happened

@
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Parallel Programming Deserves

Visualization of
applications
and the system

Highly optimizing
compilers delivering
scalable solutions

Detect latent
Programming bugs

Tune for performance
and scalability

Great Tools

Architectural
Analysis
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Example: Prime Number Generation

Outer loop
steps through
numbers that
may be prime

for (long number = 3; number <= N; number += 2 )

{

Inner loop

tests factors
of number

while ( number % factor ) factor += 2;




Example: Prime Number Generation

for (long number = 3; number <= N; number += 2 )

{

S while ( number % factor ) factor += 2;

3,5

3,9,/

3

3,9,7,9,11

3 J 5 J 7 I 9’ 1 1 J 13 <% "cz\Intel{R)_Threading_Tools\build\Release\Primes.exe"
3 Determining primes from 1-18

3,5,7,9,11,13,15’17 Found 7 primes

Press any key to continue



Introducing
Threads

' * Call Graph
e Functional Structure
Debugging e EXxecution Times
‘ e Counts
Performance
Tuning



Vtune™ Call Graph Profile
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Vtune™ Sampling Profile

Instr|Clockt| |

for [ long number = 3; number <= M: nurber +=

long factor = 3;

e [ number % factor | factor 4= 2:
-:_ 'I 3 H i H

.0F == nurber |
g[ nuber of primes++ ] = number::

Function Swutinaty
Function Clasz: Instructions RFetired [(105) Clockticks (108) Clockticks pe...
Jelected Range —--

Ox1000 OxFE main 1,605 10,7738 f. 703

Sampled Cycles: 10,774

Sampled Instructions: 1,608

CPI: 6.7 (intel



Hardware Support for Sampling

INSTRUCTION FETCH Event counters count events
that occur in pipeline.
| ’“’ﬁii\iifffii il EUE | Key events:

e Clock cycle

\AAA / e Instruction_retired

FIaS Counters count down to zero.
% e At zero, interrupt and capture
Instruction pointer.
e Reset counter and continue
_ execution.
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Example: Prime Number Kernel

for (long number = 3; number <= N; number +=2)

{

long factor = 3;

) while ( number % factor ) factor += 2;
57 If (factor == number )
N primes[ number_of primes++] = number;

,9,7,9,11
9,7,9,11,13

9,7,9,11,13,15,17



Using the Intel Programming Tools

Architectural - =4 |Nntel® Compilers

Analysis

e Creates one thread per core
Debugging = Assigns iterations to threads

\

Performance
Tuning



Example: Add OpenMP Directive

#pragma




Example: Add OpenMP Directive

Thread 1
i Iterations 1..50000

Thread 2 |
Iterations 50000..100000




Example: Add OpenMP Directive

¢ Command Prompt

C:\Primes\Re lease>Primes .exe
Determining primes from 1-100000

Found @ primes

C:\Primes\Release>Primes.exe
Determining primes from 1-1800080
Found (2589 primes

#pragma

C:\Primes\Re lease>Primes.exe
Determining primes from 1-1006800
Found (9590 \primes

C:\Primes\Re lease>Primes.exe
Determining primes from 1-100800
Found (9588 \primes

C:\Primes\Re lease>Primes.exe
Determining primes from 1-1600060
Found (72591 \primes

C:\Primes\Release>



Data Race

Thread 1 Thread 2
@)
O O
@)

@)

mes+-+ mes—+-+

The updates to number_of_primes are not atomic!
(intel)



Data Race
Thread 1 Thread 2




Data Race
Thread 1 Thread 2

@)




Data Race
Thread 1 Thread 2

n_of_p Dn_of p

of_p=tl _of p=1t2




Example: Add Synchronization Directive

#pragma

cA Command Prompt

C:\Primes\Release>Primes
Determind primes from 1-106060

Found @ primes

C:\Primes\Re lease>Primes
Determinding primes from 1-100000

Found @ primes

C:\Primes\Re lease>Primes
Determipning primes from 1-1006000
ound pl‘ilTIES

C:\Primes\Re lease >Primes

Determiping primes from 1-10080060
ound pl‘ilTIES
C:\Primes\Re lease>Primes

Determining primes from 1-1060060
Found pl*imes

C:\Primes\Release>_




Using the Intel Programming Tools

Intel® Thread

Architectural

Analysis Checker
Introducing e ———————
Threads hread Safety Issues
e Pata Races
Debugging -~ eadIOCkS

Performance
Tuning



Intel® Thread Checker

w4 VTune(TM) Performance Environment - [Thread Checker - Activity: 03:17 PM, 2005 Feb 13 (TC: primes.exe)]

JJE Fle Edit View Activity Configure Window Help

D« Severity Count # IstAccess[Source Lineg] Short Description © 2nd Access[Source Ling]

a 9590 "2_openmp.cpp"14 Write -> Write data-race "2_openmp.cpp"14
ﬁ 9590 "2_openmp.cpp":14 Read -= Write data-race "2_openmp.cpp":14
o 1 "2_openmp.cpp"5b Thread termination "2_openmp.cpp"5

ElI‘ Memory read of number_of_primes at"2_openmp.cpp" 14 conflicts with a prior memory write of number_of_primes at"2_openmp.cpp":14 (flow dependence)

(D =]

| 1stAccess |- |Stack Imain "2_openmp.cpp":14

IREERR| L% 27|55

Source

long factor = 3;
while ( number % factor ) factor += 2;
1if ( factor == number )
primes[ number of primes++ ] = number;
}
printf( "Found %d primes\n", number of primes );
4

| 2nd Access | - | Stack: Imain "2_openmp.cpp"14

IRRBER| 4% 49565

Source

long factor = 3;
( number % factor ) factor += 2;
i1f ( factor == number )
primes[ number of primes++ ] = number;

printf( "Found %d primes\n", number of primes );
ql

Source View | Stack Traces |

For Help, press F1

Mewwng aydels 2]




How Does Thread Checker Work?

Thread 1 Thread 2
Lock(L); 5
n_of p++
Unlock(L); Lock(L):
§ n_of p++;



How Does Thread Checker Work?

Use binary instrumentation

Thread 1 Thread 2

O
O

O record lock(L)

LOCk(Ir_e)d-ord read(n_of_p)

record write(n_of p)
n_of p++
record unlock(L)

O OO

. record lock(L)
Unlock(L); Lock(L):
récord read(n_of p)

O record write(n_of p)
° n_of p++;
record unlock(L)

Unlock(L);(inte)



How Does Thread Checker Work?

Thread 1 Thread 2
O
O
O
O
O
O
Analysis reveals that “happens
. before” segment 2. So, no data race problem.
1\ Segment 2
: Lock(L);
O
0 n_of p++

Analysis based on [Lamport 1978] Unlock(L); (inter)




How Does Thread Checker Work??

Thread 1 Thread 2
Segment 2

t | aD

N




Using the Intel Programming Ttools

Intel® Thread

Architectural

Analysis r rOﬁ |er

Thr;ads e Find Contended Locks
e Most Overhead

Debugging e |Largest Reduction In

Parallelism

Performance
Tuning



Profiling the Two Threads Iin Primes

abe Tn:ntal Farallel equential = Imbalanc B arrier Laocks Synchronized Farallel overheads
-I-H 0000 IIIIIIII IIIIIIII IIIIII 0,003

—

Work Is not balanced between threads

@



for (long number = 3; number <= N; number +=2)
{
long factor = 3;
while ( number % factor ) factor += 2;
If (factor == number)
primes[ number_of primes++] = number;

}

Thread 1
Iterations 1..50000

Thread 2
Iterations 50000..100000

Thread 2 does -k than thread 1




Example: Change to Dynamic Scheduling

Each iteration is assig-lly to a worker thread



Profiling the Two Threads with
Dynamic Scheduling

Work balanced between the threads



Using the Intel® Programming Tools

Architectural

Analysis Intel® VTune™ Analyzers
\

Introducing

Threads Intel® C++ Compiler

\

Debugging Intel® Thread Checker

\

e~ Intel® Thread Profiler

~
All these tools are available for free at Intel® website

\ e tel.
for mi —
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The landscape of parallel tools

Tools need to just work out of the box

— Provide noise less information
— No false positives
— Information must be relevant and accurate

Must be scalable and work In a variety of environments
— Language, Architecture and OS independent
— Must work in the presence of VMMs

Must work on existing binaries
— No recompilation, special preparation of binaries for tools

Performance Degradation must be in acceptable range

Need more capable tools to handle future multi-core processors
— Non-Uniform memaory access

— Multiple layers of memory hierarchy visible to programmer

— Very large number of cores
(intel.



Other Software development tools

INn our lab

 Data Mining and machine learning techniques for utilization of PMU counters

to improve program performance

* Pin — a dynamic instrumentation system

— Computer Architecture Research
— For emulating new instructions
— Modeling micro-architectural features
— Branch Predictor Models:
— Cache Models:
— Simple Timing Models:
— Performance Analysis Tools
— Dynamic/Static Instruction Counting Tools
— CallGraph/CallCount Tools
— Tool to produce Annotated CFG
— Program Analysis Tools
— Code Coverage Tools
— Dynamic Optimization Tools
— Memory Checking Tools
— Race Detection Tools
— Replay Tools

* Dynamic optimization of programs
e Parallel libraries/domain specific languages



Summary

e Parallel processors
— Instruction level parallelism
— SIMD parallelism
— Multi-core parallelism

e Intel® tools for parallel programming
— Intel® Fortran/C++ compiler
— Intel® VTune™
— Intel® Thread Checker
— Intel® Thread Profiler

e Parallel applications
— New emerging class of parallel applications
— Tune for all levels of parallelism
— Need more research into parallel tools and methodologies
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