Efficiency, Precision, Simplicity, and Generality
in Interprocedural Data Flow Analysis:
Resurrecting the Classical Call Strings Method

Uday P. Khedker and Bageshri Karkare

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

Dec 2007

Efficiency, Precision, Simplicity, and Generality
in Interprocedural Data Flow Analysis:
Resurrecting the Classical Call Strings Method

Uday P. Khedker and Bageshri Karkare

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

Dec 2007

Dec 2007 Interprocedural DFA: Outline

1/25

Outline

Issues in interprocedural analysis

The classical call strings approach to interprocedural data flow
analysis

The proposed variant of call strings approach

Empirical Results

Conclusions

A clarification:
Data flow analysis has nothing to do with data flow architectures! ‘

UPK IIT Bombay

o5

Part 2

Issues in Interprocedural Analysis

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 2/25

Interprocedural Analysis: Overview

e Extends the scope of data flow analysis across procedure boundaries
Incorporates the effects of
» procedure calls in the caller procedures, and
» calling contexts in the callee procedures.
e Approaches :
» Generic : Call strings approach, functional approach.

» Problem specific : Alias analysis, Points-to analysis, Partial
redundancy elimination, Constant propagation

UPK IIT Bombay

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 3/25
Defining Interprocedural Context for Static Analysis
Start,
Entry
Startp;I ”1|d_51+b| la=1]m
Call p Call p
Call p Call g
5 wm "
End,
Exit \ /
End,

UPK

IIT Bombay

=

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

3/25

Defining Interprocedural Context for Static Analysis

Entry

Start, ?

G| Call p|

G| Callq|

R1|

Exit

| Rl
) ewo

Start,
n1|d:a+b| |a:1|n2
|
G| Call p| [Callp| G,
Rl LR
|
”3| | | |”4

UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

3/25

Defining Interprocedural Context for Static Analysis

Start,
Entry [)
Start,, n1|d—51+b| [a=1]n
afclip]| &[calq] G [Call p| [Callp] G
L
[Rs| | | | Ry
R R 1
Iil n3| | | |n4
End,
Exit "o \ /
End,
UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry [)
Start,, n1|d—51+b| [a=1]n
afclip]| &[calq] G [Call p| [Callp] G
L
[! R3| | | |R4
R R 1
Iil n3| | | |n4
End,
Exit "o \ /
—[‘j End,
UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry ﬁ
Start,, n1|d—51+b| [a=1]n
G| Cau G [Grq] G| Call p| [Gllp] G
—
[! R3| | | |R4
R R 1
Iil n3| | | |n4
End,
Exit "o \ /
—[‘j End,
UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry ﬁ
Start,, n1|d—51+b| [a=1]n
G| Cau G [Grq] G| Call p| [Gllp] G
—
[! R3| | | |R4
R R 1
Iil n3| | | |n4
End,
Exit "o \ /
—[‘j End,
UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry
a+b| | Start, n1|d—51+b| [a=1]m
|
afclip]| &[] G [Call p| [Callp] G,
[
(-
[! R3| | | |R4
R R 1
l ns | | | | na stack e
] = \ / main
Exit J o
q
UPK

IIT Bombay

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 3/25
Defining Interprocedural Context for Static Analysis
Start,
Entry
a+ b| | Start, ”1|d_51+b| |a:1|n2
|
C1|Ca|| p| C2|Ca||q| C3|C3“ P| |Ca|l p|C4
L ([
L
I e Y o B N
l ns | | [| na stack Z Cj
) v/ main
XIt J End,
S
UPK nT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry
a+b| | Start, n1|d—51+b| [a=1]m
|
afclip]| G[calq] G [Call p| [Callp] G,
|
L
L |-
] v Rs| | | Ry
R R 1
l ns | | | | na stack e
] = \ / main
Exit %:I o
q
UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry
a+b| | Start, n1|d—el+b| [a=1]m
|
afclip]| G[calq] G [Call p| [Callp] G,
|
L
L |-
] 4 Rs| | | Ry
R R 1
l ns | | | | na stack e
] = \ / main
Exit %:I o
q
UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry
a+b| | Start, ”1|d_51+b| la=1]n
|
G| Call p| [Callp| G,
G| Callp G| Call q
=n] e
v v
O |sCa | Caw
T R[]
l n3| | | |n4 stack e
I;I End, \ éd main
haq
UPK

IIT Bombay

Dec 2007

Interprocedural DFA: Issues in Interprocedural Analysis

Defining Interprocedural Context for Static Analysis

Start,
Entry
la+b| | Start, n1|d—el+b| [a=1]n
|
afclip]| G[calq] G [Call p| [Callp] G,
(. | 3
] ¥ Rs| | | Ry
R R 1
ﬁ # m]| C_dn
End,

stack

p:G

main

Context is defined by stack snapshot = Unbounded number of contexts

UPK

IIT Bombay

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 4/25

Safety, Precision, and Efficiency of Data Flow Analysis

e Data flow analysis uses static representation of programs to
compute summary information along paths

UPK nT Bombay®

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 4/25

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

e Data flow analysis uses static representation of programs to
compute summary information a

e Ensuring Safety. All valid paths must be covered

UPK IIT Bombay

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 4/25

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

e Data flow analysis uses static representation of programs to
compute summary information a

e Ensuring Safety. All valid paths must be covered

e Ensuring Precision. Only valid paths should be covered.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 4/25

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

Data flow analysis uses static representation of programs to
compute summary information a

Ensuring Safety. All valid paths must be covered

Ensuring Precision. Only valid paths should be covered.

Ensuring Efficiency. Only |relevant valid paths should be covered.

A path which yields information that
affects the summary information.

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 5/25
Flow and Context Sensitivity

e Flow sensitive analysis:
Considers intraprocedurally valid paths

e Context sensitive analysis:
Considers interprocedurally valid paths

UPK IIT Bombay

Dec 2007 Interprocedural DFA: lIssues in Interprocedural Analysis 5/25
Flow and Context Sensitivity

e Flow sensitive analysis:
Considers intraprocedurally valid paths

e Context sensitive analysis:
Considers interprocedurally valid paths

For maximum statically attainable precision,
analysis must be both flow and context sensitive.

UPK IIT Bombay

Part 3

Classical Call Strings Approach

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 6/25

Call Strings Approach [Sharir and Pnueli 1981]

Most general, flow and context sensitive method

e Remember call history
Information should be propagated back to the correct point

e Call string at a program point:

» Sequence of unfinished calls reaching that point
» Starting from the Entry

A snap-shot of call stack in terms of call sites

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 6/25

Call Strings Approach [Sharir and Pnueli 1981]

Most general, flow and context sensitive method

e Remember call history
Information should be propagated back to the correct point

e Call string at a program point:
» Sequence of unfinished calls reaching that point
» Starting from the Entry

A snap-shot of call stack in terms of call sites

Efficiency 7?7

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 7/25

Interprocedural Data Flow Analysis Using Call Strings

e Data flow information at a program point
(Call String : o, Data Flow Value : d)
e Flow functions
» Intraprocedural edges: Manipulate data flow value d
» Interprocedural edges: Manipulate call string o
o Call edge G — s, (i.e. call site ¢ calling procedure p)
append ¢; to every o reaching ¢;.

o Return edge e, — R; (i.e. p returning the control to call site ¢;)
if the last call site is ¢;, remove it and propagate the data flow value

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

read a, b
t:=axb

l

ol

—

m[]

Entry

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

Starty
read a, b
Entry t:=axb
| o
:
—

m[]

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

(arl1)
¥
Start,

read a, b
Entry t:=axb
| o

:

—

m[]

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

(all)
¥
Start,
read a, b
Entry t:=axb
| o
:
{ (ci]1)

m[]

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

(all)
¥
Start,
read a, b
Entry t:=axb
| o
:
{ (ci]1)

m[]

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

(all) (c1c2/0)

Starty
read a, b
Entry t:=axb
| o
:
{ (cai]1)

m[]

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

(all) (c12]0)

Starty
read a, b
Entry t:=axb
| o
:
{ (al1)

Ry (ac|l)

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

<C1‘1> <C1C2|O>,<C1C2C2|O>,...

Starty
read a, b
Entry t:=axb
| o
Cl C1C2|0>,.‘.
{ (cil1)

Ry (c1c2|0)

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

<C1‘1> <C1C2|0>,<C1C2C2|0>,...

Start,
read a, b
Entry t:=axb
| o
Cl C1C2|0>,...
{ (all)
R~y (c1c2|0)
<C1C2C2|0> <C1C2|0>

<C1C2C2|0>

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

<C1‘1> <C1C2|0>,<C1C2C2|0>,...

Start,
read a, b
Entry t:=axb
| o
Cl C1C2|0>,...
{ (all)
R~y (c1c2|0)
<C1C2C2|0> <C1C2|0>

<C1C2C2|0>

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

<C1‘1> <C1C2|0>,<C1C2C2|0>,...

Start,
read a, b
Entry t:=axb
| o
Cl C1C2|0>,...
{ (all)
R~y (c1c2|0)
<C1C2C2|0> <C1C2|0>

<C1C2C2|0>

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

<C1‘1> <C1C2|0>,<C1C2C2|0>,...

Start,
read a, b
Entry t:=axb
| o
Cl C1C2|0>,...
t {all) (all)
R~y (c1c2|0)
<C1C2C2|0> <C1C2|0>

<C1C2C2|0>

23]

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 8/25

Available Expressions Analysis Using Call Strings Approach

<C1‘1> <C1C2|0>,<C1C2C2|0>,...
Start,
read a, b
Entry t:=axb
| o
G acl0),...
t (all) (al1)
Rl <C1C2|0>
(A1) (c1c202|0) (c1¢2/0)
<C1C2C2|0>
n Mﬂ A
Exit End,| |

UPK nT Bombayn

He

Dec 2007 Interprocedural DFA: Classical Call Strings Approach

9/25

Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite

Fortunately, the problem is decidable for finite lattices.

» All call strings with the length

o K- (|L| +1)? for general bounded frameworks
(L is the overall lattice of data flow values)

o K- (|L| + 1)? for separable bounded frameworks
(L is the component lattice for an entity)
o K -3 for bit vector frameworks

must be constructed

= Large number of long call strings

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 10/25

Intuition Behind the Classical Call String Length

e Consider call and return nodes C; and R;

e Let the value at C; x; and the value at R; be z;.

UPK nT Bombay®

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 10/25
Intuition Behind the Classical Call String Length

e Consider call and return nodes C; and R;
e Let the value at C; x; and the value at R; be z;.
e Both x; and z; are in L U {undef}

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 10/25

Intuition Behind the Classical Call String Length

Consider call and return nodes C; and R;

Let the value at C; x; and the value at R; be z;.
Both x; and z; are in L U {undef}
The number of possibilities for x; and z; is (|L| + 1)

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 10/25
Intuition Behind the Classical Call String Length

Consider call and return nodes C; and R;

Let the value at C; x; and the value at R; be z;.
Both x; and z; are in L U {undef}
The number of possibilities for x; and z; is (|L| + 1)

Thus ¢; can appear (|L| + 1)? times in a call string

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Classical Call Strings Approach 10/25
Intuition Behind the Classical Call String Length

e Consider call and return nodes C; and R;

e Let the value at C; x; and the value at R; be z;.

e Both x; and z; are in L U {undef}

e The number of possibilities for x; and z; is (|L| + 1)
e Thus ¢; can appear (|L| + 1)? times in a call string

e Since there are K call sites, it is sufficient to construct call strings
of length K - (|L| + 1)?

UPK IIT Bombay

Part 4

The Proposed Variant

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(0 - ocl|f(d))

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(o - 02|F*(d))
(0~ 0c|f(d))

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(0 a2|F(d))

(o o2|F?(d))
o-oc|f(d))

Start,

L "y
C\& CXHJ
R X/RXH\

Rx+y

V
UPK IIT Bombay g

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(o-adx*)

L "y
C\& CXHJ
R X/RXH\

Rx+y

(aly®)
(o-ocly)
(0-02]y?)
(7-aly®)

V
UPK IIT Bombay g

Dec 2007 Interprocedural DFA: The Proposed Variant

11/25
Call Strings for Recursive Contexts
(o a2|x®)
\ (7 - 02x?)
g - oc|x)

L oy
.t

/Rx+1
. \
e g

=~ X+y

End, | T T—=—--

UPK IIT Bombay I% ’

=y

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(o-adx*)

(0-02|x%)
g - oclx)

UPK nT Bombay®

ey

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(o-adx*)
(o 02[x?)

g - oclx)

UPK IIT Bombay ==

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25
Call Strings for Recursive Contexts
. (o - 02
(o - a2|x?)
g - oclx)
UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(o-adx*)
(o 02[x?)

g - oclx)

xX+y

J
D

~ R
S<o Xty

RX+1

CX\& Con
i«--\

g

”

UPK IIT Bombay ==

Dec 2007 Interprocedural DFA: The Proposed Variant 11/25

Call Strings for Recursive Contexts

(o-adx*)
(o 02[x?)

g - oclx)

UPK IIT Bombay ==

Dec 2007 Interprocedural DFA: The Proposed Variant 12/25

The Moral of the Story

e In the cyclic call sequence, the computation begins from the first
call string and influences successive call strings.

e In the cyclic return sequence, the computation begins from the last
call string and influences the preceding call strings.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant 13/25

Bounding the Call String Length

NSNS Y, S TN TN Y
Start, o 0-0c o'oY g.owtl Y comn X gt or
X0 X!

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 13/25

Bounding the Call String Length

NSNS Y, S TN TN Y
Start, o 0-0c o'oY g.owtl Y comn X gt or
X0 Xl

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 13/25

Bounding the Call String Length

! \' :'—--\ '4' v \' v N "‘--} T ’¢"_-"'
Start, o o0 N g-0f o-o¥tl Y om=n Yoo olom
X0 x! X%

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 13/25

Bounding the Call String Length

’ . ; \' " Y ow w+l ¥ . M rlr;— \V"‘_-“' m
Start, o o0 o-0f 00" om=n ool
x0 x! x¥ x¥

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant

13/25

Bounding the Call String Length

Start, o o oo Y O"O": o-ovtt A Zyg’—’? AR O’YO'g"
XO Xl X% XY x¥ XY XY x¥
: .
Same Values
UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant

13/25

Bounding the Call String Length

Start, o o‘oc ¥ o-0¢ g-owtl Yo gmn Yo olom
XO Xl X% XY x¥ XY XY x¥
: >
Same Values
’¢ .‘\‘ *"'\\ {’ ‘\\‘ { \‘ '—-'\" *,—-~~\ V_-~_1 _____ .
End, o o-0c - g.lggg.ggﬁl...g.qén—n... ool
I ‘I
Same Values
UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant

13/25

Bounding the Call String Length

< (IL])
SR RN " S N T Ty
Startp o-0c .- o-0f o0 ool ool
XO Xl X% XY x¥ XY XY x¥
f >
Same Values
’¢ -\‘ *"'\\ *»’ ‘\\‘ { \‘ '—-'\" *,--~\ V_-~~‘_f _____ .
End, o o-0c - g.lggg.ggﬁl...a.glén—n... ool
I
Same Values
< (IL])
UPK IIT Bombay

Interprocedural DFA: The Proposed Variant 13/25

Dec 2007
Bounding the Call String Length
< (IL])
PSRN "'-"\ ':' ‘‘‘‘‘ " . 'c"'~ ',-’-~' KA ”_____'
Start,, octoc VU o'oY oot N gigmen X g lgm
XO Xl X% XY x¥ X% X% x¥
1 »l
I 1
Same Values
v’"'\‘ v »"_"\‘ *' N {"\" *—"\\. ¥ e N
End, o o0-0c - O'-U?O'-Uerl"'O"O'én_n'Y- g-of
1 »l
I
Same Values

< (IL])

e m must be >=2-|L|
e Since there could be K call sites in o, call strings of length

K -2 -|L| are sufficient.

IIT Bombay

UPK

Dec 2007 Interprocedural DFA: The Proposed Variant

14/25

Using Data Flow Values to Bound Call Strings

RN LemTes R ~. IS oo, oo .
R RN L A
Start, o ovoc Y olo¥ o oot A by v g,
XO Xl x¥ X% XY x¥ x¥ X%

Same Values

" ¥ ¥ \ ¥ oy) '.---\ ¥ -~ f-"-”-

. . o%¥ w+1l 7 cgm=n T .gm
End, o o0-0c o Ia'c 00" o n oion
I 1
Same Values
UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant

14/25

Using Data Flow Values to Bound Call Strings

e \' ,'—--\ ':' " ' \' v s "’--} 7T 'f—_--~'
Start, o ovoc Y olo¥ o - owtl AR g g1 Yooglgm
XO Xl XY X% XY x¥ x¥ X%
F >
Same Values
’f \\. *—--~~‘ {‘ \‘. v ~\. f—.\\‘ '.---\ f‘-~\"___-_~'
End, o o-0c St 0-0fg-0¥tt ool g0l
1 »l
I 1
Same Values
NN v
Start, o o'oc YU o'o¥ g.gwt

Same Values

- .- -~

A T A S
End, o o-0 ¢ o ol o- o“”f
\ 4

UPK IIT Bombay

Jiok

ﬁ

Dec 2007 Interprocedural DFA: The Proposed Variant 14/25
Using Data Flow Values to Bound Call Strings

AR AT SO AP e
Start, o o'oc Y o'oY g. owtl S8 & g1 Yooglgm
XO Xl XY X% XY x¥ x¥ X%

Same Values
’f ‘\l *—-'~~‘ {‘ '»\l *— \. f—.\\‘ '.---\ f”‘“‘ ey
End, o o-0c St 0-0fg-0¥tt ool g0l

Same Values

w <Ll
Startp g 0'" Oc¢ _V_'_ J'g’w o - z)— +1
e at most |L|+1

Same Values occurrences of 0.

- ~. - . ~

End, (; a\'- 85 A 0\ f, o 0.w+1 e call string length is at
% 4 most K - (|L]| + 1)

~o .

Jiok

UPK IIT Bombay ﬁ

Dec 2007 Interprocedural DFA: The Proposed Variant 15/25

The Final Algorithm

e Use exactly the same method with this small change:

UPK nT Bombay®

Dec 2007 Interprocedural DFA: The Proposed Variant 15/25

The Final Algorithm

e Use exactly the same method with this small change:

» discard redundant call strings at the start of every procedure, and

UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant 15/25

The Final Algorithm

e Use exactly the same method with this small change:
» discard redundant call strings at the start of every procedure, and

» simulate regeneration of call strings at the end of every procedure.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant 15/25

The Final Algorithm

e Use exactly the same method with this small change:
» discard redundant call strings at the start of every procedure, and
» simulate regeneration of call strings at the end of every procedure.

e Intuition:

UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant 15/25

The Final Algorithm

e Use exactly the same method with this small change:
» discard redundant call strings at the start of every procedure, and
» simulate regeneration of call strings at the end of every procedure.

e [ntuition:
> If o1 and o> have equal values at Start),

UPK IIT Bombay

Interprocedural DFA: The Proposed Variant 15/25

The Final Algorithm

Dec 2007

e Use exactly the same method with this small change:
» discard redundant call strings at the start of every procedure, and
» simulate regeneration of call strings at the end of every procedure.
e Intuition:

> If o1 and o> have equal values at Start),
» Then, since o1 and oy are transformed in the same manner by

traversing the same set of paths,

IIT Bombay

UPK

Dec 2007 Interprocedural DFA: The Proposed Variant 15/25

The Final Algorithm

e Use exactly the same method with this small change:
» discard redundant call strings at the start of every procedure, and

» simulate regeneration of call strings at the end of every procedure.

e Intuition:
> If o1 and o> have equal values at Start),
» Then, since o1 and oy are transformed in the same manner by

traversing the same set of paths,
» The values associated with them will also be transformed in the same

manner and will continue to remain equal at End,.

IIT Bombay

UPK

Dec 2007 Interprocedural DFA: The Proposed Variant 16/25

Implementing the Required Change

Let shortest(o, u) denote the shortest call string which has the same
value as ¢ at u.

represent((c, d), Start,) = (shortest(o, Start,), d)
regenerate((o, d), End,) = {(0’,d)| o and ¢’ have the same

value at Start,}

UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant 17/25

Points-To Analysis

e |L| =512,
K =3.

e The classical
method requires
789507 call
strings

e We need 5 call
strings!

He

UPK IIT Bombay

Dec 2007 Interprocedural DFA: The Proposed Variant 18/25
Approximate Version

e For framework with infinite lattices, a fixed point for cyclic call
sequence may not exist.

e Use a demand driven approach:
After a dynamically definable limit, start merging the values and
associate them with the last call string.
Assumption: Height of the lattice is finite.

UPK IIT Bombay

Part 5

Empirical Measurements

Dec 2007

Interprocedural DFA: Empirical Measurements

19/25

Reaching Definitions Analysis in GCC 4.0

Program LoC | #F | #C 3K length bound Proposed Approach
K] #CS | Max] Time | #CS | Max | Time

hanoi 33 2 4] 4]100000+] 99922 [3973 x103 8 7 2.37
bit_gray 53 5| 11| 7]100000+ |31374|2705 x103 17 6 3.83
analyzer 288| 14| 20| 2 21 4 20.33 21 4 1.39
distray 331 9] 21|6 96 28 32241 22 4 1.11
mason 350 9| 13| 8[100000+ [22143| 432 x10° 14 4 0.43
fourinarow| 676| 17| 45| 5 510 158 397.76 46 7 1.86
sim 1146| 13| 45| 8100000+ | 335461427 x103| 211 105 | 234.16
181 mcf 1299 | 17| 24| 6 3278932767 | 484 x103 41 11 5.15
256_bzip2 |3320| 63|198| 7 492 63 258.33| 406 34 1200.19

e LoC is the number of lines of code,

e #F is the number of procedures,

e #(is the number of call sites,

e #(CS is the number of call strings

e Max denotes the maximum number of call strings reaching any node.

e Analysis time is in milliseconds.

UPK

nT Bombayn

HE

Part 6

Conclusions

Dec 2007 Interprocedural DFA: Conclusions 20/25

A Summary of Contributions

e Clearly identified the exact set of call strings required.

UPK nT Bombayn

Dec 2007 Interprocedural DFA: Conclusions 20/25

A Summary of Contributions

e Clearly identified the exact set of call strings required.

e Value based termination of call string construction. No need to
construct call strings upto a fixed length.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Conclusions 20/25
A Summary of Contributions

o (Clearly identified the exact set of call strings required.

e Value based termination of call string construction. No need to
construct call strings upto a fixed length.

e Only as many call strings are constructed as are required.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Conclusions 20/25
A Summary of Contributions

Clearly identified the exact set of call strings required.

Value based termination of call string construction. No need to
construct call strings upto a fixed length.

Only as many call strings are constructed as are required.

Significant reduction in space and time.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Conclusions 20/25
A Summary of Contributions

Clearly identified the exact set of call strings required.

Value based termination of call string construction. No need to
construct call strings upto a fixed length.

Only as many call strings are constructed as are required.

Significant reduction in space and time.

Worst case call string length becomes linear in the size of the lattice
instead of the original quadratic.

He

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Conclusions 20/25
A Summary of Contributions

Clearly identified the exact set of call strings required.

Value based termination of call string construction. No need to
construct call strings upto a fixed length.

Only as many call strings are constructed as are required.

Significant reduction in space and time.

Worst case call string length becomes linear in the size of the lattice
instead of the original quadratic.

All this is achieved by a simple change without compromising on the
precision, simplicity, and generality of the classical method.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Conclusions 21/25
Conclusions

e Compromising on precision may not be necessary for efficiency.

e Separating the necessary information from redundant information is
much more significant.

e A precise modelling of the process of analysis is often an eye opener.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Conclusions 22/25
Future Work

Implementing for points-to analysis.

Modelling parameters and return values.
Applying it to Heap Reference Analysis [TOPLAS, Nov 2007]

Machine independent optimizer generator in GCC.

UPK IIT Bombay

Dec 2007 Interprocedural DFA: Conclusions 23/25

Reference

e To appear in CC 2008.

UPK nT Bombay®

Dec 2007 Interprocedural DFA: Conclusions 24/25

Acknowledgement

e Implementation was carried out by Seema Ravandale.

UPK nT Bombay®

Dec 2007 Interprocedural DFA: Conclusions 25/25

Last but not the least ...

UPK nT Bombay®

ey

	Outline
	Issues in Interprocedural Analysis
	Classical Call Strings Approach
	The Proposed Variant
	Empirical Measurements
	Conclusions

