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Why Autotuning ?
my bias

Ultimate goal: Dynamic Optimization Support For Compilers and More
Runtime decisions for compilers are necessary because compile-time
decisions are too conservative

Insufficient information about program input, architecture
When to apply what transformation in which flavor?
Polaris compiler has some 200 switches

Example of an important switch: parallelism threshold

Early runtime decisions:
Multi-version loops, runtime data-dependence test, 1980s 

My goals:
Looking for tuning parameters and evidence of performance difference
Go beyond the “usual”:  unrolling, blocking, reordering
Show performance on real programs
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Is there Potential ?

You bet!

Imagine you (the compiler) had full knowledge of input
data and execution platform of the program
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Early Results on Fully-Dynamic Adaptation

ADAPT system (Michael Voss - 2000)

Features:

Triage

tune the most deserving program sections first

Used remote compilation

Allowed standard compilers and all options to be used

AL - adapt language

Issues:

Scalability to large number of optimizations

Shelter and re-tune
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Recent Work
Offline Tuning - “Profile-time” tuning

Zhelong Pan

Challenges:
1. Explore the optimization space

Empirical optimization algorithm - CGO 2006

2. Comparing performance
  Fair Rating methods - SC 2004

Comparing two (differently optimized) subroutine invocations

3. Choosing procedures as tuning candidates
Tuning section selection - PACT 2006

Program partitioning into tuning sections

Two goals : increase program performance and reduce
tuning time
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Search
Algorithm

Version
Generation

Performance Evaluation
(Program Execution)

Start

Final
Version

Whole-Program Tuning

Search Algorithms

BE: batch elimination

Eliminates “bad” optimizations in a batch => fast

Does not consider interaction => not effective

IE:  iterative elimination

Eliminates one “bad” optimization at a time => slow

Considers interaction => effective

CE: combined elimination (final algorithm)

Eliminates a few “bad” optimizations at a time

Other algorithms

optimization space exploration, statistical selection,
genetic algorithm, random search
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Performance Improvement

Tuning Goal: determine the best combination of GCC options 
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Tuning at the Procedure Level

   Tuning Section Selection (TSS)

   Rating Method Analysis (RMA)

   Code Instrumentation (CI)

   Driver Generation (DG)

   Performance Tuning (PT)

   Final Version Generation (FVG)

Pre-Tuning

Post-Tuning

During Tuning

(1)

(6)

(5)

(4)

(3)

(2)
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Reduction of Tuning Time through
Procedure-level Tuning
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Tuning Time Components
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Ongoing Work
Seyong Lee

Beyond autotuning of compiler options

New applications of the tuning system

MPI parameter tuning

Tuning library selection - (ScalaPack, ...)

OpenMP to MPI translator
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TCP Buffer Size Effect on NPB

TCP Buffer Size Effect
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Alltoall collective call performance
(without segmentation)

alltoall performance
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Segmentation Effect on Basic Linear Alltoall
Algorithm

alltoll performance (basic linear algorithm)
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A Related Project

Autotuning in iShare - an Internet Sharing System

              Publish - Discover - Adapt

1. Published autotuner (available)

2. Tuning upon matching discovered application and
platform (current work)
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Automatic Tuning for Multicore

Starting point was the Polaris compiler - 200 switches

Early results on dynamic serialization

Goal: parallelizing compiler that never lowers the
performance of a program

OpenMP to MPI translation

Tuning NICA architectures

Multicore + niche capabilities (accelerators and more)
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Conclusions and Discussion

Dynamic Adaptation is one of the most exciting research topics

There are still issues to Sink your Teeth in

Runtime overhead: when to shelter/re-tune

Fine-grain tuning

Model-guided pruning of search space

Architecture of an autotuner

If we could agree, we could plug-in our modules

AutoAuto - autotuning autoparallelizer

How to get order(s) of magnitude improvement

Wanted: tuning parameters and their performance effects


