
1

Automatic Performance Tuning
for Multicore Architectures

Rudi Eigenmann

Purdue University



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 2

Why Autotuning ?
my bias

Ultimate goal: Dynamic Optimization Support For Compilers and More
Runtime decisions for compilers are necessary because compile-time
decisions are too conservative

Insufficient information about program input, architecture
When to apply what transformation in which flavor?
Polaris compiler has some 200 switches

Example of an important switch: parallelism threshold

Early runtime decisions:
Multi-version loops, runtime data-dependence test, 1980s 

My goals:
Looking for tuning parameters and evidence of performance difference
Go beyond the “usual”:  unrolling, blocking, reordering
Show performance on real programs



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 3

Is there Potential ?

You bet!

Imagine you (the compiler) had full knowledge of input
data and execution platform of the program

0 100%knowledge

P
er
fo
rm
an
ce

1

10

100
“Amdahl’s law
of dynamic
optimization”

You are here



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 4

Early Results on Fully-Dynamic Adaptation

ADAPT system (Michael Voss - 2000)

Features:

Triage

tune the most deserving program sections first

Used remote compilation

Allowed standard compilers and all options to be used

AL - adapt language

Issues:

Scalability to large number of optimizations

Shelter and re-tune



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 5

Recent Work
Offline Tuning - “Profile-time” tuning

Zhelong Pan

Challenges:
1. Explore the optimization space

Empirical optimization algorithm - CGO 2006

2. Comparing performance
  Fair Rating methods - SC 2004

Comparing two (differently optimized) subroutine invocations

3. Choosing procedures as tuning candidates
Tuning section selection - PACT 2006

Program partitioning into tuning sections

Two goals : increase program performance and reduce
tuning time



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 6

Search
Algorithm

Version
Generation

Performance Evaluation
(Program Execution)

Start

Final
Version

Whole-Program Tuning

Search Algorithms

BE: batch elimination

Eliminates “bad” optimizations in a batch => fast

Does not consider interaction => not effective

IE:  iterative elimination

Eliminates one “bad” optimization at a time => slow

Considers interaction => effective

CE: combined elimination (final algorithm)

Eliminates a few “bad” optimizations at a time

Other algorithms

optimization space exploration, statistical selection,
genetic algorithm, random search



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 7

Performance Improvement

Tuning Goal: determine the best combination of GCC options 



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 8

Tuning at the Procedure Level

   Tuning Section Selection (TSS)

   Rating Method Analysis (RMA)

   Code Instrumentation (CI)

   Driver Generation (DG)

   Performance Tuning (PT)

   Final Version Generation (FVG)

Pre-Tuning

Post-Tuning

During Tuning

(1)

(6)

(5)

(4)

(3)

(2)



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 9

Reduction of Tuning Time through
Procedure-level Tuning

62.22

50.99

105.76

69.23
63.14

89.28

50.59

87.32

36.96

102.97

68.28

2.33
7.06

11.21
4.03 1.79 2.33 3.38 4.22 2.59 1.61 3.36

0.00

20.00

40.00

60.00

80.00

100.00

120.00

a
m
m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

m
e
s
a

m
g
ri
d

s
ix
tr
a
c
k

s
w
im

w
u
p
w
is
e

G
e
o
M
e
a
n

N
o

rm
a
li
z
e
d

 t
u

n
in

g
 t

im
e

Whole PEAK



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 10

Tuning Time Components

0%

20%

40%

60%

80%

100%

a
m
m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

m
e
s
a

m
g
ri
d

s
ix
tr
a
c
k

s
w
im

w
u
p
w
is
e

A
v
e
ra
g
e

P
e

rc
e

n
ta

g
e

 o
f 

th
e

 t
o

ta
l 

ti
m

e
 s

p
e

n
t 

in
 t

u
n

in
g

TSS RMA CI DG PT FVG



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 11

Ongoing Work
Seyong Lee

Beyond autotuning of compiler options

New applications of the tuning system

MPI parameter tuning

Tuning library selection - (ScalaPack, ...)

OpenMP to MPI translator



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 12

TCP Buffer Size Effect on NPB

TCP Buffer Size Effect

-15

-10

-5

0

5

10

15

Default (16K) 32K 64K 128K 256K 512K

TCP Buffer Size

S
p

e
e

d
 U

p
 (

%
)

BT.A.4

CG.A.8

CG.B.4

FT.A.16

IS.A.16

IS.A.4

IS.B.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: MPICH1



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 13

Alltoall collective call performance
(without segmentation)

alltoall performance

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

default basic linear pairwise modified bruck

alltoall algorithms

S
p

e
e

d
 U

p
 (

%
)

FT.A.4

FT.A.8

FT.A.16

IS.C.4

IS.C.8

IS.B.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 14

Segmentation Effect on Basic Linear Alltoall
Algorithm

alltoll performance (basic linear algorithm)

0

2

4

6

8

10

12

14

N
o 
se

gm
en

t 32 64
12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

Segmentation (bytes)

S
p

e
e

d
 U

p
 (

%
)

FT.A.4

FT.A.8

FT.A.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 15

A Related Project

Autotuning in iShare - an Internet Sharing System

              Publish - Discover - Adapt

1. Published autotuner (available)

2. Tuning upon matching discovered application and
platform (current work)



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 16

Automatic Tuning for Multicore

Starting point was the Polaris compiler - 200 switches

Early results on dynamic serialization

Goal: parallelizing compiler that never lowers the
performance of a program

OpenMP to MPI translation

Tuning NICA architectures

Multicore + niche capabilities (accelerators and more)



Workshop on Architectures and Compilers for Multithreading, IIT Kanpur, Dec 13-15 2007 17

Conclusions and Discussion

Dynamic Adaptation is one of the most exciting research topics

There are still issues to Sink your Teeth in

Runtime overhead: when to shelter/re-tune

Fine-grain tuning

Model-guided pruning of search space

Architecture of an autotuner

If we could agree, we could plug-in our modules

AutoAuto - autotuning autoparallelizer

How to get order(s) of magnitude improvement

Wanted: tuning parameters and their performance effects


