
Memory Consistency Models:
Convergence At Last!

Sarita Adve

Department of Computer Science

University of Illinois at Urbana-Champaign
sadve@cs.uiuc.edu

Acks:

Co-authors: Mark Hill, Kourosh Gharachorloo, Anoop Gupta, John Hennessy, 
Vijay Pai, Partha Ranganathan, Jeremy Manson, Bill Pugh, Hans Boehm

Others: Doug Lea, Bratin Saha, Herb Sutter, and many more



• Memory model defines what values a read can return

Initially A=B=C=Flag=0
Thread 1                       Thread 2                       

A = 26                            while (Flag != 1) {;}
B = 90                             r1 = B  
… r2 = A       
Flag = 1 …

What is a Memory Consistency Model?

90

26
0



What is a Memory Model?

• Interface between program and transformers of program
− Defines what values a read can return

C++ program Compiler

Dynamic 
optimizer

Hardware

• Language level model has implications for hardware

• Weakest system component exposed to programmer

A
ssem

bly



Desirable Properties of a Memory Model

• 3 Ps
− Programmability
− Performance
− Portability

• Challenge: hard to satisfy all 3 Ps
− Late 1980’s - 90’s: Largely driven by hardware

* Lots of models, little consensus
− 2000 onwards: Largely driven by languages/compilers

* Consensus model for Java, C++, Microsoft native code
* Most major hardware vendors on board

This talk: Path to convergence – challenges, limitations, implications



Programmability – SC [Lamport79] 

• Programmability: Sequential consistency (SC) most intuitive
− Accesses of a single thread in program order
− All accesses in a total order or atomic

• But Performance?
− Recent hardware techniques boost performance with SC
− But compiler transformations still inhibited

• But Portability?
− Almost all current hardware, compilers violate SC

⇒ SC not practical yet, but…



Next Best Thing – SC for Almost Everyone
• Parallel programming too hard even with SC

− Programmers write well structured code
− Explicit synchronization, no data races

Thread 1                                     Thread 2
Lock(L)                                       Lock(L)

Read Data1 Read Data2
Write Data2 Write Data1
Write Data3 Read Data3
Read Data2                                Write Data3
… …

Unlock(L)                                    Unlock(L)

− SC for such programs much easier: can reorder data accesses

⇒ Data-race-free model 
– SC for data-race-free programs
– No guarantees for programs with data races

[AdveHill, Gharachorloo et al. 1990s]



Definition of a Data Race
• Only need to define for SC executions ⇒ total order

• Two memory accesses form a race if
− From different threads, to same location, at least one is a write
− Occur one after another

Thread 1 Thread 2 
Write, A, 26 
Write, B, 90

Read, Flag, 0
Write, Flag, 1

Read, Flag, 1
Read, B, 90
Read, A, 26

• A race with a data access is a data race
• Data-race-free-program = No data race in any SC execution



Data-Race-Free Model

Data-race-free model = SC for data-race-free programs
− Does not preclude races for wait-free constructs, etc.
* Requires races be explicitly identified as synch 
* E.g., use volatile variables in Java, atomics in C++ 

− Dekker’s algorithm
Initially Flag1 = Flag2 = 0

volatile Flag1, Flag2
Thread1 Thread2

Flag1 = 1                            Flag2 = 1

if Flag2 == 0                        if Flag1 == 0

//critical section             //critical section

SC prohibits both loads returning 0



Data-Race-Free Approach

• Programmer’s model: SC for data-race-free programs

• Programmability
− Simplicity of SC, for data-race-free programs

• Performance
− Specifies minimal constraints (for SC-centric view)

• Portability
− Language must provide way to identify races
− Hardware must provide way to preserve ordering on races
− Compiler must translate correctly



1990’s in Practice
• Hardware

− Different vendors had different models – most non-SC
* Alpha, Sun, x86, Itanium, IBM, AMD, HP, Convex, Cray, …

− Various ordering guarantees + fences to impose other orders
− Many ambiguities - due to complexity, by design(?), …

• High-level languages
− Most shared-memory programming with Pthreads, OpenMP

* Incomplete, ambiguous model specs
* Memory model property of language, not library

− Java – commercially successful language with threads
* Chapter 17 of Java language spec described memory model
* But hard to interpret, badly broken



2000 – 2004: Java Memory Model

• ~ 2000: Bill Pugh publicized fatal flaws in Java memory model

• Lobbied Sun to form expert group to revise Java model

• Open process via mailing list with diverse subscribers
− Took 5 years of intense, spirited debates
− Many competing models
− Final consensus model approved in 2005 for Java 5.0

[MansonPughAdve POPL 2005] 



Java Memory Model - Highlights

• Quick agreement that SC for data-race-free was required

• Missing piece: Semantics for programs with data races
– Java cannot have undefined semantics for ANY program
– Must ensure safety/security guarantees of language

• Goal: minimal semantics for races to satisfy security/safety
− Problem: safety/security issues for multithreading very vague

• Final model based on consensus, but complex [POPL05]
− But programmers can program with “SC for data-race-free”
− Can use races, but declare them volatile



2005 - :C++, Microsoft Prism, Multicore

• ~ 2005: Hans Boehm started effort for C++ concurrency model
− Prior status:  no threads in C++, most concurrency w/ Pthreads

• Microsoft concurrently started its own internal effort

• C++ easier than Java because it is unsafe
− Data-race-free is plausible model

• BUT
− Multicore ⇒ New h/w optimizations, h/w vendors cared more
− Pthreads has larger set of synchronization techniques 
− Can we really get away with no semantics for data races?



Hardware Implications of Data-Race-Free
• Synchronization (volatiles/atomics) must appear SC

– Each thread’s synch must appear in program order

synch Flag1, Flag2

T1                                          T2           

Flag1 = 1                              Flag2 = 1

Fence                                   Fence

if Flag2 == 0                         if Flag1 == 0

critical section                      critical section 

SC ⇒ both reads cannot return 0

Requires efficient fences between synch stores/loads

– All synch writes must appear in a total order (atomic)



Independent reads, independent writes (IRIW):
Initially X=Y=0

T1                   T2                     T3                T4
X = 1               Y = 1                … = Y                     … = X

fence                      fence
… = X                     … = Y

SC ⇒ no thread sees new value until old copies invalidated

– Shared caches w/ hyperthreading/multicore make this harder

– Programmers don’t usually use IRIW

– Why pay cost for SC in h/w if not useful to s/w?

0

Implications of Atomic Synch Writes

1 1

0



Implications of Atomic Synch Writes

2006: Pressure to change Java/C++ to remove SC volatiles

• But what is alternative?
− Must allow non-SC outcome for IRIW
− But must be teachable to undergrads

• Showed such an alternative (probably) does not exist
– IRIW style optimizations give non-intuitive results for 

codes that programmers do care about
− Violates composability of cache coherence and causality
− Unacceptable for Joe



C++ Compromise

• Default C++ model is data-race-free

• AMD, Intel, … on board
− Provide way to give SC synchs
− Synch writes replaced with xchg

• But
– Some IBM systems need expensive fence for SC IRIW 
– Some programmers really want more flexibility
* C++ specifies low-level atomics only for experts
* Complicates spec, but only for experts



Status So Far

• Convergence to “SC for data-race-free programs” as baseline

• For safe languages, minimal semantics for data races
− Implications for compilers
− NOT for programmers

• Hardware: fences for program order, atomicity for some writes

• Compiler: translate synch (volatiles/atomics) to correct 
fences, atomic writes

• For super-duper-expert programmers, non-SC flavors of synch
– Don’t teach this in undergrad class



Lessons Learned (1 of 2)

• Specifying semantics for programs with data races is HARD
− But “no semantics for data races” also has problems

* Debugging
* Source-to-source compilers cannot introduce data races

⇒ Need languages that banish data races

• But should programmers have to reason about reads and writes?
− Need higher level programming models

* Must inherently be “race-free”
* Transactions are only part of the story



Lessons Learned (2 of 2)

• Simple optimizations can have unintended consequences
− A little extra performance is not worth the larger increase in 

programming complexity

• DRF/Java models not prescriptive for hardware, compilers
− Hard to verify when hardware, compilers obey the models
− Abstractions for describing/verifying hardware/compilers

• Affecting a standard is different from writing a paper
− It helped to have Microsoft on our side…

• Stick with it!
− Especially for work crossing boundaries


	Memory Consistency Models:�Convergence At Last!
	What is a Memory Consistency Model?
	What is a Memory Model?
	Desirable Properties of a Memory Model
	Programmability – SC [Lamport79] 
	Next Best Thing – SC for Almost Everyone
	Definition of a Data Race
	Data-Race-Free Model
	Data-Race-Free Approach
	1990’s in Practice
	2000 – 2004: Java Memory Model
	Java Memory Model - Highlights
	2005 - :C++, Microsoft Prism, Multicore
	Hardware Implications of Data-Race-Free
	Implications of Atomic Synch Writes
	Implications of Atomic Synch Writes
	C++ Compromise
	Status So Far
	Lessons Learned (1 of 2)
	Lessons Learned (2 of 2)

