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Outline of the talk

= Introduction
= Energy models
= Dynamic voltage scaling (DVS)

= Leakage energy optimization via
instruction scheduling

s INTACTE: A tool for modeling
Inferconnects
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Techniques to achieve energy
savings at various levels
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Importance of processor-level
energy-aware design
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Energy-aware compilation

= CPU voltage/frequency scaling

s Reduction of CPU bus switching

s CPU function unit voltage/clock gating

= Loop tiling

= Partitioning data cache so as to permit
efficient caching

= Cache reconfiguration

= Shutting down unused memory banks
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CMOS Device-level
Power dissipation basics

Pw/device = (21) c l/DD szing a f""zieakage VDD +Isc l/DD

= First factor is dynamic power dissipation
and is currently dominant

= Second factor is static power dissipation
and is expected to increase dramatically
with shrinking device sizes

» Third factor is short-circuit power and can
be controlled only by superior technology
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The Cube-root rule (1)

s Assuming, € as a constant (for a given
design), worst case activity (a-1), a
single voltage and frequency for the
whole chip, and that 7 = kV
Pu/chip=K\1V3=K1‘f3
where K, and K: are design-specific
constants

Y.N. Srikant 7



The Cube-root rule (2)

» This implies that voltage (hence
frequency) reduction is the single most
efficient method for reduction of
dynamic power dissipation

= However, V; cannot be reduced beyond a

imit

= Hence, voltage scaling combined with other

techniques need to be employed to reduce
power consumption
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Compiler-Based
Dynamic Voltage Scaling

= For memory bound programs
= based on profiling

= Loop scheduling
= based on loop rotation
= suitable for multi-core architectures
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Compiler DVS for Memory
Bound Programs - Basic Idea

= During CPU stall (awaiting completion
of memory operations)

= scale down CPU voltage and freq

= Save energy without performance
degradation

= Memory operations are assumed to be
asynchronous

» 0% - 25% energy savings with 0% -
3% performance loss
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Compiler DVS - CPU Slack
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DVS - An Algorithm

= Partition program into "regions” based on
energy consumption at different (V,f)

= 2 regions: one at a lower frequency and the
other at f,

= Introduce frequency-changing instructions at
the entry and exit of the (lower freq) region

» Finding best partitions is an optimization
problem

= Time for frequency change: 100 memory
accesses (10-20 ws)
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Dynamic Voltage Loop
Scheduling

= Repeatedly regroup a loop based on
rotation scheduling

= Decrease the energy by DVS as much
as possible within a timing constraint

= Not necessarily for memory bound
programs
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Original Loop Rotated Loop
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DVS - Research Issues

= DVS in multi-core and multiple clock
domain architectures

= DVS for speculative execution
architectures

= DVS for interconnection networks?
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Motivation for Leakage
Energy Optimization - (1)

= Leakage energy is the static
dissipation energy in CPU, cache, eftc.

= The FUs are in active state, but are not
doing any useful work

= With 70 nm technology, leakage
energy consumption will be on par
with dynamic energy consumption
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Motivation for Leakage
Energy Optimization - (2)

s Dual-threshold domino logic with
sleep mode can facilitate fast
transitions between active and sleep
modes without performance penalty
and moderate energy penalty

= Can put ALU into low leakage (sleep)
mode after even one cycle of idleness

s TALUs are idle for 60% of the time
(on the average)
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Motivation for Leakage
Energy Optimization - (3)

s Pure hardware scheme

= has 26% energy overhead over ideal
scheme (no overhead)

= frequent transitions between active and
sleep states
s A software-based scheme aids the
hardware and together they save

more energy with little performance
loss
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Energy-aware instruction
scheduling

An integrated energy-aware instruction
scheduling algorithm for clustered VLIW
architectures:

= Reduces #transitions between active and
sleep states and increases the active/idle
periods

2 Eaduces the total energy consumption of
S

= Generates a more balanced schedule which
helps to reduce the peak power and step
power
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Clustered VLIW
Architectures

~ INTER-CLUSTER COMMUNICATION NETWORK
An Individual Cluster

FU  Function Unit
CFU Communication Function Unit

NTERCLUSTER COMMONCATINNETWORK
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The scheduling algorithm
for clustered VLIW

= Makes cluster assignment decisions during
temporal scheduling

s Basic block scheduler using list scheduling

= Three main steps
= Prioritizing the ready instructions

= Assignment of a cluster to the selected
instruction

= Assignment of an FU to the selected
instruction in the assigned target cluster
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Results

= Comparison with hardware-only
schemes

» #Transitions reduce on the average
by 58.29% (4-clusters)

= Average reduction in energy overhead
s 16.92% (4 clusters)
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Energy Overhead (4-clusters)
w.r.t No-overhead Scheme
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Heterogeneous Interconnects

= An interconnect composed of two
sets of wires

= one set optimized for latency and
another optimized for energy

= less area than two sets of low
latency wires

= Instr. scheduling can help to reduce
energy but maintain performance
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Exploiting Heterogeneous
Interconnects

» Selectively mapping communication to
the appropriate interconnect
= urgent communications
= low latency (high energy) path
= honh-urgent communications
= high latency (low energy) path

= identify urgent comm. using comm. slack
(60.88% of comm. have 3-cycle slack)

= Increase in execution time is 1.11% and
reduction in comm. energy is 39% (both for
a 4-cluster processor)
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Research Issues in Leakage
Energy Optimization

» Cache reconfigurations
= Memory bank control
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INTACTE: An Interconnect Area,
Delay, and Energy Estimation Tool

= Interconnects can consume power equiv. to
ohe core, area equiv. to three cores, and

delay can account for 0.5 of L2 cache
access time

= Can be a major source of performance
bottleneck

= We present an interconnect modeling tool

= Enables co-design of interconnects with other
architectural components
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INTACTE - What?

= Interconnect microarchitecture
exploration tool to estimate

= Delay
= Power

= Given the technology, area, clock
frequency and latency

= for point to point interconnect
= Analogous to CACTI
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INTACTE - How?

= Solves an optimization problem of
minimizing power by finding the
optimal values for
= Wire width
= Wire spacing
= Repeater size
= Repeater spacing
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INTACTE - More

= Additional design variables - can be either
constraints or determined by the tool
= Area
= Pipelining

= Voltage Scaling Support

= Tool optimizes power and delay for nominal
(Maximum) supply
= Power and Delay numbers reported

= for 32 different voltage levels separated by 15 mV
from the nominal values
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INTACTE Tool description (1)

= The tool models the interconnect as consisting of
a set of identical, equal length pipeline stages

= Each stage starts with a Flop driving a repeater
through a set of buffers followed by equally
spaced wire-repeater sections.

= All parameters for the model are taken from
detailed HSPICE simulations and ITRS

Buffers Repeaters Flops
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INTACTE Tool description(2)

= The parameters related to the flops, repeaters,
wires and buffers are pre-computed for 4

different technology nodes (90, 65, 45 and 32nm)
and 32 different supply voltages.

= For each iteration of optimization, the tool
computes the power and delay for each wire-
repeater section.

= These values are multiplied by #repeaters and
degree of pipelining and added to the pipelining
overhead to get the overall power and delay
numbers.

= This reduces the size of the search space
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Block Diagram

of INTACTE
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| = Tool Inputs

Technology
= 90,65, 45 & 32nm

Clock frequency

Length of
interconnect

Bit width
Supply

Delay (in cycles)
Activity Factor
Coupling Factor

= Tool Outputs

Power, Delay versus
= Areaq, Pipelining,
Supply
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Experimental Results

= Demonstrate the accuracy of
the tool

= various trends in interconnect
power and performance have
been exhibited

s detailed HSPICE simulations
have been carried out to validate
the results.

Y.N. Srikant 35



Architectural Tradeoff
Evaluation

= Architectural tradeoffs in having two
heterogeneous wires can be evaluated
using our tool

= Architect provides length, no. of bits,

target technology, operating voltage,
and delay estimates

= Tool provides a set of possible
intferconnect desigh options to choose
from
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Interconnect Energy Savings
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