
Lawrence Rauchwerger

Hybrid Analysis
and its Application to Thread Level Parallelization

2

Thread (Loop) Level Parallelization

Thread level Parallelization
– Extracting parallel threads from a sequential program

Manual
– Very expensive for sequential legacy code: MPI - OpenMP

Automatic
– So far not very successful due to:

weak static analysis
Decisions depend on dynamic values (input dependent)

3

DO i = 1, 100
a[i] = a[i] + b[i]

ENDDO

DO i = 1, 100
a[i] = a[i] + b[i]

ENDDO

Parallelizable loop

What is a parallel loop ?

RWi=1

RWi=2

RWi=3

RWi=4

DO i = 1, 100
a[i+1] = a[i] + b[i]

ENDDO

DO i = 1, 100
a[i+1] = a[i] + b[i]

ENDDO

Sequential loop

R Wi=1

R Wi=2

R Wi=3

Ri=4 W

flow, i i+1

4

Static Data Dependence Analysis:
Linear Reference Patterns

– Geometric view: Polytope model
Some convex body contains no integral points

– Simplified solutions: GCD Test, Banerjee Test etc
Potentially overly conservative

– General solution: Presburger formula decidability
Omega Test: Precise, potentially slow

DO j = 1, 10
a(j) = a(j+40)
ENDDO

DO j = 1, 10
a(j) = a(j+40)
ENDDO

No cross iteration
dependences

1 ≤ jw ≤ 10

1 ≤ jr ≤ 10

jw ≠ jr
jw = jr+40

No integer
solutions:

Restricted to linear addressing and control: mostly small kernels

5

Static Data Dependence Analysis:
Nonlinear Reference Patterns

No known solution in general
Common cases:

Indirect access (subscripted subscripts)
Control dependence on data values
Recurrence without closed form

DO j = 1, 10
IF (x(j)>0) THEN
a(f(j)) = …

ENDIF
ENDDO

DO j = 1, 10
IF (x(j)>0) THEN
a(f(j)) = …

ENDIF
ENDDO

– Linear Approximation
Maslov ’94; Creusillet, Irigoin ‘96
Range Test (Blume, Eigenmann ‘94)
Monotonicity (Wu, Cohen, Padua ’01)

– Symbolic Unknowns
Uninterpreted Function
Symbols (Pugh, Wonnacott ’95)
Fuzzy Array Dataflow (Barthou,
Collard, Feautrier ’95)

– User assistance
Uninterpreted Function Symbols (Pugh, Wonnacott ‘95)
SUIF Explorer (Liao ‘00)

Most nonlinear cases not solvable statically: need run time analysis

6

Alternative: Run-time Analysis

READ *, N
DO j=1,N
a(j)=a(j+40)
ENDDO

Solution: LRPD Run-time Test (Rauchwerger and Padua ’95)

Instrument all relevant memory references

Analyze the resulting trace at run time

N = 5
1 5 41 45

N = 45

1 5 41 45
READ
WRITE

READ
WRITE

Independent

Dependent

Accurate, but overhead proportional to the dynamic memory reference count

Minimum necessary information for parallelization: N ≤ 40

Linear, very simple, but not decidable statically!

7

Compile-time vs. Run-time

PROs
– No run-time overhead

CONs: too conservative when
– Input/computed values

Indirection
Control

– Weak symbolic analysis
Complex recurrences

– Impractical symbolic analysis
Combinatorial explosion

Compile Time

PROs
– Always finds answers

CONs
– Run-time overhead proportional

to dynamic memory reference
count

– Unnecessary work: Ignores
partial compile-time results

Run-time, reference by reference

8

Why Did We Fail ?

Static Analysis cannot be sufficient
(weak and/or input sensitive)
Dynamic Analysis (misunderstood as
only speculation) is not a substitute for
Static Analysis (too costly)
No program level representation
suitable for representing statically un-
analyzable code

9

Hybrid Analysis of memory Reference
Patterns (Rus ICS’02, 07)

D
Y

N
A

M
IC

S
TA

TI
C

Symbolic analysisSymbolic analysis

Compile-time Analysis

Symbolic analysis

Extract conditions

Symbolic analysis

Extract conditions

Evaluate conditionsEvaluate conditions

Hybrid Analysis

Full reference-by-
reference analysis

Full reference-by-
reference analysis

Run-time Analysis

Framework: Hybrid memory reference analysis

Application: Automatic parallelization

10

Parallel
Loop

DO j=1,N
a(j)=a(j+40)
ENDDO

DO j=1,N
a(j)=a(j+40)
ENDDO

.Hybrid Analysis

4.a) If we can prove 10 ≤ N ≤ 30,
generate parallel.loop

Compile Time
Run Time

No run-time tests
performed if not necessary!

N≤404.b) If N is unknown,
Extract run-time test.

Parallel
Loop

Sequential
Loop

IF (N≤40) THEN
DO PARALLEL j=1,N
a(j)=a(j+40)

ENDDO
ELSE
DO j=1,N
a(j)=a(j+40)

ENDDO
ENDIF

Run-time Test

DO PARALLEL j=1,N
a(j)=a(j+40)

ENDDO

11

DO j=1,N
a(j)=a(j+40)
ENDDO

DO j=1,N
a(j)=a(j+40)
ENDDO

Under what conditions
can the loop be executed
in parallel?

READ WRITE

x x
j+40 j=1,N j=1,Nj

1. Collect and classify memory
references.

N≤404.b) If N is unknown,
Extract run-time test.

41:40+N

READ WRITE

1:N 2. Aggregate them symbolically

3. Formulate independence test.
41:40+N

∩

READ WRITE
1:N

Empty?

Hybrid Analysis
Compile-time Phase

4.a) If we can prove 10 ≤ N ≤ 30,
Declare loop parallel.

12

WF pattern for A:

LMAD = Linear Memory Access Descriptor (Hoeflinger ’98)
Multidimensional, strided intervals

Aggregation of Linear References
Across an Iteration Space

DO j=1,100
A(j) = …

ENDDO

DO j=1,100
A(j) = …

ENDDO1:100

13

IF (x=0) THEN
DO j=1,100
A(j) = …

ENDDO
ENDIF

IF (x=0) THEN
DO j=1,100
A(j) = …

ENDDO
ENDIF

1:100 x=0

Gate Operator
Postpone Analysis Failure

The truth value of (x=0) is not known

#

14

DO j=1,3
x = f(x)
IF (x=0) THEN
DO j=1,100
A(j) = …

ENDDO
ENDIF

ENDDO

DO j=1,3
x = f(x)
IF (x=0) THEN
DO j=1,100
A(j) = …

ENDDO
ENDIF

ENDDO

Recurrence Operator
Postpone Static Analysis Failure due to
Nonlinear Reference Pattern

Recurrence with no closed form on x

1:100

#

x=0

j=1,3

x

15

Uniform Set of References (USR)

T = { LMAD, ∩, ∪, −, (,), #, ⊗, Θ, Gate, Recurrence, Call Site}
N = { USR }
S = USR
P =

{ USR → LMAD | (USR)
USR → USR ∩ USR
USR → USR ∪ USR
USR → USR − USR
USR → Gate # USR
USR → Recurrence ⊗ USR
USR → Call Site Θ USR }

LMAD = Start + [Stride1:Span1, Stride2:Span2, ...]

1:100 x=0

j=1,3#

X

Closed under composition at program level

16

READ *, N
DO j=1,N
a(j)=a(j+40)
ENDDO

READ *, N
DO j=1,N
a(j)=a(j+40)
ENDDO Are there any cross-iteration dependences?

READ WRITE

x x

j+40 j=1,N j=1,Nj

1. Collect references.

N≤40 4. Extract lowest-cost runtime test.

41:40+N

READ WRITE

1:N
2. Aggregate them symbolically &

Classify Reference Type

3. Formulate independence test.
41:40+N

∩

READ WRITE

1:N

Empty?

17

Data Dependences

Given:
– Loop expression: j = 1,N
– Per-iteration aggregated descriptors ROj, WFj, RWj

Solve equation RO ∩ WF = ∅

At compile-time:
– RO ∩ WF evaluates to ∅ ⇒ independent
– RO ∩ WF evaluates to a set that is not empty ⇒ dependent
– All other cases: run-time dependence test

j=1,N

x

∩

ROj j=1,N

x

WFj

Empty?

Similar equations for privatization and reduction recognition

18

READ *, N
DO j=1,N
a(j)=a(j+40)
ENDDO

READ *, N
DO j=1,N
a(j)=a(j+40)
ENDDO Are there any cross-iteration dependences?

READ WRITE

x x

j+40 j=1,N j=1,Nj

1. Collect references.

N≤40 4. Extract lowest-cost runtime test.

41:40+N

READ WRITE

1:N
2. Aggregate them symbolically &

Classify Reference Type

3. Formulate independence test.
41:40+N

∩

READ WRITE

1:N

Empty?

19

Algorithm:
Recursive Descent

21:20+n x>0

41:40+n#

∪

∩
Empty?

1:n

1. Distribute
Intersection

21:20+n x>0

1:n#

∩ ∩

1:n41:40+n

∧

21:20+n 1:n

x≤0∩

∨
Empty?

n≤40

∧

2

x≤0

∨ n≤40

∧

n≤20

3(n≤20 or x≤0)
and n≤40

4

DO j = 1, n
A(j) = A(j+40)
IF (x>0) THEN
A(j) = A(j) + A(j+20)

ENDIF
ENDDO

Empty? Empty?

20

Novel Static/Dynamic Interface:
Predicate DAG

T = { Logical Expression, ∧, ∨, ⊗∧, ⊗∨, Θ, Recurrence, Call Site, Library Routine}
N = { PDAG }
S = PDAG

P = { PDAG → Logical Expression
PDAG → PDAG ∧ PDAG
PDAG → PDAG ∨ PDAG
PDAG → PDAG ⊗∧ Recurrence
PDAG → PDAG ⊗∨ Recurrence
PDAG → PDAG Θ Call Site
PDAG → Library Routine }

x≤0

∨ n≤200

∧

n≤100

• Expressive: arbitrary dependence questions

• Inexpensive: evaluates quickly at run-time

Represents any dynamic condition for loop parallelization

21

P D = ∅

PDAG Extraction

Input: USR equation D = ∅

Output: PDAG P

Such that:

Optimistic: Sufficient predicate: P ⇒ D = ∅

Pessimistic: Necessary predicate: D = ∅ ⇒ P, or P ⇒ D ≠ ∅

22

Fallback

Not all equations can be reversed

Fallback Solutions

x

j=1,100ind1(j)

x

j=1,100ind2(j)

∩

Possibly Aggregated

Trace based
. Speculation

Empty?

DO j=1,100
A(ind1(j)) = A(ind2(j))

ENDDO

23

Hybrid Analysis: Run Time

O(1) Scalar
Comparison

Pass

Fail

Independent

O(n/k) Comparisons

Pass

Reference Based

Fail

Dependent

Pass Fail

24

Evaluation Methodology

Fortran 77 Fortran 77 +
OpenMP

Executable
Code

Polaris
HA

Intel ifort
version 9.0

• Automatic parallelization using Hybrid Analysis in Polaris
• Analyses/Transformations: Dependence analysis, privatization, reduction, pushback
• Candidate loop selection: Profiling
• No scheduling or memory locality optimization
• Simple dynamic mechanism to rule out very small loops

• Experiment Setup
• SPEC 2000 - 2006, PERFECT, Other SPEC
•-Dual Core CoreDuo Intel, Lenovo X60s
• Dual Core AMD, quad socket Sun

25

Polaris-HA vs. Ifort Coverage:
PERFECT/SPEC89/92

26

Polaris-HA vs. Ifort Coverage:
PERFECT Benchmarks

27

Polaris-HA vs. Ifort Coverage:
SPEC 89/92

28

Polaris-HA vs. Ifort Coverage:
SPEC2000/06

29

Speedups SPEC2000/06:
AMD dual core/quad socket

30

Speedups Perfect/Spec89/92:
Intel Core Duo

31

Speedups PERFECT:
Intel CoreDuo

32

Speedups SPEC 89/92:
Intel Core Duo

33

Conclusions: HA + Autopar

Hybrid memory reference analysis is a
general framework for optimization
Representation is crucial
-- USR

Closed-form representation that tolerates analysis failure
– PDAG:

Input sensitivity of optimization decisions
Continuum of compile-time to run-time solutions

Efficient automatic parallelization
– Good Speedups on FP benchmark applications

http://parasol.tamu.edu/compilers/ha
http://parasol.tamu.edu/compilers/ha

	Hybrid Analysis �and its Application to Thread Level Parallelization
	Thread (Loop) Level Parallelization
	What is a parallel loop ?
	Static Data Dependence Analysis:�Linear Reference Patterns
	Static Data Dependence Analysis:�Nonlinear Reference Patterns
	Alternative: Run-time Analysis
	Compile-time vs. Run-time
	Why Did We Fail ?
	Hybrid Analysis of memory Reference Patterns (Rus ICS’02, 07)
	Aggregation of Linear References �Across an Iteration Space
	Gate Operator�Postpone Analysis Failure
	Recurrence Operator�Postpone Static Analysis Failure due to �Nonlinear Reference Pattern
	Uniform Set of References (USR)
	Data Dependences
	Algorithm:�Recursive Descent
	Novel Static/Dynamic Interface:�Predicate DAG
	PDAG Extraction
	Fallback
	Hybrid Analysis: Run Time
	Evaluation Methodology
	Polaris-HA vs. Ifort Coverage: PERFECT/SPEC89/92
	Polaris-HA vs. Ifort Coverage: PERFECT Benchmarks
	Polaris-HA vs. Ifort Coverage: �SPEC 89/92
	Polaris-HA vs. Ifort Coverage: SPEC2000/06
	Speedups SPEC2000/06: �AMD dual core/quad socket
	Speedups Perfect/Spec89/92: �Intel Core Duo
	Speedups PERFECT: �Intel CoreDuo
	Speedups SPEC 89/92:� Intel Core Duo
	Conclusions: HA + Autopar

