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Background
• Regular programs

– Structured data such as arrays and relations
– Simple data access patterns such as fixed-stride accesses
– Application domains: databases, computational science
– We understand parallelism and locality in these domains
– Lots of language support, compiler techniques and tools

• Irregular programs
– Unstructured data such as lists, trees, graphs built from pointers
– Complex data access patterns
– Programs in most application domains are irregular
– We understand very little about parallelism and locality in irregular 

programs, let alone how to provide language constructs and system 
support for such programs

– My belief: 
• program = algorithm + data structure
• To make progress, we must study algorithms, not programs



• Irregular programs have data-parallelism 
– Work-list based iterative algorithms over irregular data structures

• Optimistic parallelization is essential for such apps
– Parallelism may be inherently data-dependent
– Pointer/shape analysis cannot work for these apps

• Expressing and exploiting irregular data-parallelism
– Algorithms:

• expressed using iterators over unordered and ordered sets
– Data structures:

• abstractions provided by object-oriented programming are critical
• high-level semantic information is important

– Generalization of approach for regular data-parallelism
• Galois system: implementation of these ideas

– Also includes data partitioning and support for scheduling iterator
iterations (PLDI 2007, ASPLOS 2008, PLDI 2008)

Main points



Parallelism case studies:
two irregular programs



Delaunay Mesh Refinement

• Initial mesh has bad triangles
• Iterative refinement procedure:

while there are bad triangles do {
Pick a bad triangle;
Find its cavity;
Retriangulate cavity; // may create new bad triangles
}

• Order in which bad triangles should be refined:
– Final mesh depends on order in which bad triangles are processed
– But all bad triangles will be eliminated ultimately regardless of order



Sequential Algorithm

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());
while (true) {

if ( wl.empty() ) break;
Element e = wl.get(); 
if (e no longer in mesh) continue;
Cavity c = new Cavity(e);//determine new cavity
c.expand();
c.retriangulate();//re-triangulate region
m.update(c);//update mesh
wl.add(c.badTriangles());

}



Parallelization opportunities

• Triangles with non-overlapping cavities can be 
processed concurrently
– if cavities of two triangles overlap, they must be done serially

• Any compile-time parallelization scheme must be 
conservative and assume that dependences might exist
Parallel execution requires runtime dependence 
checking
– Property of algorithm, not program 



Agglomerative Clustering

• Input:
– Set of data points
– Measure of “distance” (similarity) between them

• Output: dendrogram
– Tree that exposes similarity hierarchy

• Applications:
– Data mining
– Graphics: lightcuts for rendering with large numbers of light sources



Clustering algorithm

• Sequential algorithm: iterative 
– Find two closest points in data set
– Cluster them in dendrogram
– Replace pair in data set with a “supernode” that represents pair

• Placement of supernode: use heuristics like center of mass
– Repeat until there is only one point left



Key Data Structures
• Priority queue:

– Elements are pairs <p,n> where
• p is point in data set
• n is its nearest neighbor

– Ordered by increasing distance 
• kdTree:

– Answers queries for nearest neighbor of a point
– Convention: if there is only one point, nearest 

neighbor is point at infinity (ptAtInfinity)
– Similar to a binary search tree but in higher 

dimensions



Clustering algorithm: implementation

kdTree := new KDTree(points);
pq := new PriorityQueue();
for each p in points (pq.add(<p,kdTree.nearest(p)>));

while (true) do {
if (pq.size() == 0) break;
pair <p,n> := pq.get(); //get closest pair
……….
Cluster c := new Cluster(p,n); //create supernode
dendrogram.add(c);
kdTree.remove(p); //update kdTree
kdTree.remove(n);
kdTree.add(c);
Point m := kdTree.nearest(c); //update priority queue
…………. pq.add(<c,m>);

}



Parallelization Opportunities

• Natural unit of work: processing of a pair in PQ
• Algorithm appears to be sequential

– pair enqueued in one iteration into PQ may be the pair dequeued
in next iteration

• However, in example, <a,b> and <c,d> can be clustered 
in parallel

• If dendrogram is bushy tree, lots of opportunities for 
parallelism
– but parallelism is very data-dependent: compile-time 

parallelization cannot work



Take-away lessons
• Irregular programs have data-parallelism

– Data-parallelism has been studied in the context of arrays
– For unstructured data, data-parallelism arises from work-lists of 

various kinds
• Delaunay mesh refinement: list of bad triangles
• Agglomerative clustering: priority queue of pairs of points
• Maxflow algorithms:list of active nodes

– Boykov-Kolmogorov algorithm for image segmentation
– Preflow-push algorithm

• Approximate SAT solvers
• …….

• Data-parallelism in irregular programs is obscured within 
while loops, exit conditions, etc.
– Need transparent syntax similar to FOR loops for structured data-

parallelism



Take-away lessons (contd.)

• Parallelism may depend on “data values”
– whether or not two potential data-parallel computations conflict 

may depend on input data
• (e.g.) Delaunay mesh generation: depends on shape of mesh

• Optimistic parallelization is necessary in general
• Compile-time approaches using points-to analysis or shape 

analysis may be adequate for some cases
• In general, runtime conflict-checking is needed

• Handling of conflicts depends on the application
• Delaunay mesh generation: roll back all but one conflicting 

computation
• Agglomerative clustering: must respect priority queue order



Galois programming model 
and implementation



Beliefs underlying Galois system

• Optimistic parallelism is the only general approach to 
parallelizing irregular apps
– Static analysis can be used to optimize optimistic execution

• Concurrency should be packaged within syntactic 
constructs that are natural for application programmers 
and obvious to compilers and runtime systems
– Libraries/runtime system should manage concurrency (cf. SQL)
– Application code should be sequential

• Crucial to exploit abstractions provided by object-
oriented languages 
– in particular, distinction between abstract data type and its 

implementation type
• Concurrent access to shared mutable objects is 

essential



Components of Galois approach

1) Two syntactic constructs for packaging 
optimistic parallelism as iteration over 
sets

2) Assertions about methods in class 
libraries

3) Runtime system for detecting and 
recovering from potentially unsafe 
accesses by optimistic computations



(1) Concurrency constructs: 
two set iterators

• for each e in Set S do B(e)
– evaluate block B(e) for each element in set S
– sequential implementation

• set elements are unordered, so no a priori order on iterations
• there may be dependences between iterations

– set S may get new elements during execution
• for each e in PoSet S do B(e)

– evaluate block B(e) for each element in set S
– sequential implementation

• perform iterations in order specified by poSet
• there may be dependences between iterations

– set S may get new elements during execution



Galois version of mesh refinement

Mesh m = /* read in mesh */
Set wl;
wl.add(mesh.badTriangles()); // non-deterministic order

for each e in Set wl do { //unordered iterator
if (e no longer in mesh) continue;
Cavity c = new Cavity(e); //determine new cavity
c.expand(); //determine affected triangles
c.retriangulate(); //re-triangulate region
m.update(c); //update mesh
wl.add(c.badTriangles()); //add new bad triangles to workset

}



Observations

• Application program has a well-defined sequential 
semantics
– No notion of threads/locks/critical sections etc.

• Set iterators
– SETL language was probably first to introduce set iterators
– However, SETL set iterators did not permit the sets being 

iterated on to grow during execution, which is important for our
applications

• Generalization of regular program constructs
– FORTRAN-style DO loops are iterators over integer sets

• DO-ALL loop: special case of unordered set iterator
• Non-DO-ALL loop: special case of ordered set iterator



Parallel execution model

• Object-based shared-memory model
• Computation performed by some 

number of threads
• Threads can have their own local 

memory
• Threads must invoke methods to 

access internal state of objects
– mesh refinement:shared objects are 

• worklist
• Mesh

– agglomerative clustering
• priority queue
• kdTree
• dendrogram

Shared Memory

Objects



Parallel execution of iterators
• Master thread and some number of worker threads

– master thread begins execution of program and executes code 
between iterators

– when it encounters iterator, worker threads help by executing 
some iterations concurrently with master

– threads synchronize by barrier synchronization at end of iterator
• Key technical problem

– Parallel execution must respect sequential semantics of 
application program

• result of parallel execution must appear as though iterations were 
performed in some interleaved order

• for poSet iterator, this order must correspond to poSet order
– Non-trivial problem

• each iteration may access mutable shared objects



(2) Class libraries
• Complexity of concurrency control is 

hidden within library
• Mutual exclusion:

– To invoke method, thread acquires lock 
on object, performs method and 
releases lock

• Serializability: 
– Two-phase locking usually limits 

concurrency
– Another approach: exploit commutativity

of method invocations
– Semantic commutativity, not 

representational commutativity, as 
specified by user

• Back-off:
– Each class method must have an 

inverse that undoes the effect of that 
method

– Semantic inverse, not representational 
inverse

Shared Memory

Objects

1 2

3



Example: set
Class SetInterface {

void add (Element x);
[conflicts]

- add(x)
- remove(x)
- contains?(x)
- get() :x

[inverse] remove(x)
void remove(Element x);

[conflicts]
- add(x)
- remove(x)
- contains?(x)
- get(): x

[inverse] add(x)
………

}



(3) Runtime system
• Role is similar to that of reorder buffer in out-of-

order processors
– Maintain record for each iteration
– Track method invocations made by that iteration
– Take action to roll iteration back on conflicts
– Commit iteration when it reaches head of reorder 

queue
• Objects log method invocations made by 

ongoing iterations
– When iteration commits, its method invocations are 

removed from logs of all objects



Two extensions

• Data structure partitioning
– Improve locality
– Reduce speculation conflicts
– Reduce overhead of commutativity checks:

replace commutativity checks with two-phase locking on         
partitions

– To appear in ASPLOS’08
• Scheduling framework

– Specify application-specific schedule
– Generalizes Open-MP style schedules 

(static/dynamic/guided self-scheduling)
– Under submission



Results for Mesh Refinement
• 4 processor Itanium-2
• Versions:

– GAL: using stack as worklist
– PAR: partitioned mesh
– LCO: locks on partitions
– OVD: over-decomposed version



Conclusions

• Data parallelism:
– regular programs: matrix computations
– Irregular programs: worklist-based iterative algorithms

• Syntactic constructs:
– regular programs: DO loops and DO-ALL loops
– irregular programs: Ordered and unordered set iterators

• Parallelism in data structure operations
– Regular programs: reads and writes to different matrix locations
– Irregular programs: commutativity of method invocations

• Loop-level parallelism:
– DO-ALL loops: no dependences between iterations
– Irregular programs: may or may not be dependences between iterations

• Data structure partitioning
– Regular programs: arrays
– Irregular programs: graphs, trees, lists, ….

• Iteration scheduling:
– Generalizes OpenMP schedules 

Unified approach to parallelism 
in regular and irregular programs
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