
Effective Static Race Detection for
Java

Mayur Naik
Alex Aiken

Stanford University

What is a Race?

• same memory location accessed by different threads
simultaneously (without holding a common lock)

• at least one of the accesses is a write

A condition in a shared-memory, multi-threaded
program in which:

• Particularly insidious concurrency bug
– Triggered non-deterministically
– No fail-fast behavior even in safe languages like Java

• Fundamental in concurrency theory and practice
– Lies at heart of many concurrency problems

• atomicity checking, deadlock detection, ...

– Today’s concurrent programs riddled with races
• “… most Java programs are so rife with concurrency bugs

that they work only ‘by accident’.”
– Java Concurrency in Practice, Addison-Wesley, 2006

Why is Race Detection Important?

Our Result

• 412 bugs in mature Java programs comprising 1.5 MLOC
– Many fixed within a week by developers

0

50

100

150

200

250

300

350

400

450

Sum over all published in
last 10 years

Chord

bu

gs
 re

po
rt

ed

Our Race Detection Approach

all pairs

racing pairs

• Precision
– Showed precise may alias analysis

is central (PLDI’06)
– low false-positive rate (20%)

• Soundness
– Devised conditional must not alias

analysis (POPL’07)
– Circumvents must alias analysis

• Handle multiple aspects
– Same location accessed
– … by different threads
– … simultaneously

• Correlate locks with
locations they guard
– … without common lock held

Challenges

Same location accessed by different threads simultaneously
without common lock held

Our Race Detection Approach

all pairs
aliasing pairs

shared pairs

parallel pairs

unlocked pairs

Same location accessed by different threads simultaneously
without common lock held

racing pairs

False Pos. Rate: 20%

MUST-NOT-ALIAS(e1, e2)¬ MAY-ALIAS(e1, e2)

• Field f is race-free if:

Alias Analysis for Race Detection

// Thread 1: // Thread 2:
sync (l1) { sync (l2) {

… e1.f … … e2.f …
} }

e1 and e2 never refer to the same value

k-Object-Sensitive May Alias AnalysisMay Alias Analysis

• Large body of work

• Idea #1: Context-insensitive analysis
– Abstract value = set of allocation sites

foo() { bar() {
… e1.f … … e2.f …

} }

¬ MAY-ALIAS(e1, e2) if Sites(e1) ∩ Sites(e2) = ∅

• Idea #2: Context-sensitive analysis (k-CFA)
– Context (k=1) = call site

foo() { bar() {
e1.baz(); e2.baz();

} }

Analyze function baz in two contexts

• Problem: Too few abstract values!

• Problem: Too few or too many contexts!

– Abstract value = set of strings of ≤ k allocation sites

– Context (k=1) = allocation site of this parameter

• Recent may alias analysis [Milanova et al. ISSTA’03]

• Solution:

• Solution:

k-Object-Sensitive Analysis: Our Contributions

• No scalable implementations for even k = 1

• Insights:
– Symbolic representation of relations

• BDDs [Whaley-Lam PLDI’04, Lhotak-Hendren PLDI’04]

– Demand-driven race detection algorithm
• Begin with k = 1 for all allocation sites
• Increment k only for those involved in races

• Allow scalability to k = 7

Our Race Detection Approach

Same location accessed by different threads simultaneously
without common lock held

all pairs
aliasing pairs

shared pairs

parallel pairs

unlocked pairs
racing pairs

¬ MAY-ALIAS(e1, e2)

l1 and l2 always refer to the same value

• Field f is race-free if:

Alias Analysis for Race Detection

// Thread 1: // Thread 2:
sync (l1) { sync (l2) {

… e1.f … … e2.f …
} }

MUST-ALIAS(l1, l2)

OR

e1 and e2 never refer to the same value

Must Alias Analysis

• Small body of work
– Much harder problem than may alias analysis

• Impediment to many previous race detection approaches
– Folk wisdom: Static race detection is intractable

Insight: Must alias analysis not necessary for
race detection!

• Field f is race-free if:

Whenever l1 and l2 refer to different values, e1 and e2
also refer to different values

MUST-NOT-ALIAS(l1, l2) => MUST-NOT-ALIAS(e1, e2)

New Idea: Conditional Must Not Alias Analysis

// Thread 1: // Thread 2:
sync (l1) { sync (l2) {

… e1.f … … e2.f …
} }

Example

a = new h0[N];
for (i = 0; i < N; i++) {

a[i] = new h1;
a[i].g = new h2;

}

…

…

a[0]

h1

h0
a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

x2 = a[*];
sync (?) {

x2.g.f = …;
}

x1 = a[*];
sync (?) {

x1.g.f = …;
}

MUST-NOT-ALIAS(l1, l2) => MUST-NOT-ALIAS(e1, e2)MUST-NOT-ALIAS(a, a) => MUST-NOT-ALIAS(x1.g, x2.g)true
Field f is race-free if:

Easy Case: Coarse-grained Locking

h0

…

…

a[0]

h1

a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

x2 = a[*];
sync (a) {

x2.g.f = …;
}

a = new h0[N];
for (i = 0; i < N; i++) {

a[i] = new h1;
a[i].g = new h2;

}

x1 = a[*];
sync (a) {

x1.g.f = …;
}

Example

x2 = a[*];
sync (?) {

x2.g.f = …;
}

a = new h0[N];
for (i = 0; i < N; i++) {

a[i] = new h1;
a[i].g = new h2;

}

x1 = a[*];
sync (?) {

x1.g.f = …;
}

h0

…

…

a[0]

h1

a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

MUST-NOT-ALIAS(x1.g, x2.g) => MUST-NOT-ALIAS(x1.g, x2.g)MUST-NOT-ALIAS(l1, l2) => MUST-NOT-ALIAS(e1, e2)true
Field f is race-free if:

Easy Case: Fine-grained Locking

x2 = a[*];
sync (x2.g) {

x2.g.f = …;
}

a = new h0[N];
for (i = 0; i < N; i++) {

a[i] = new h1;
a[i].g = new h2;

}

x1 = a[*];
sync (x1.g) {

x1.g.f = …;
}

h0

…

…

a[0]

h1

a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

Example

x2 = a[*];
sync (?) {

x2.g.f = …;
}

a = new h0[N];
for (i = 0; i < N; i++) {

a[i] = new h1;
a[i].g = new h2;

}

x1 = a[*];
sync (?) {

x1.g.f = …;
}

h0

…

…

a[0]

h1

a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

MUST-NOT-ALIAS(l1, l2) => MUST-NOT-ALIAS(e1, e2)MUST-NOT-ALIAS(x1, x2) => MUST-NOT-ALIAS(x1.g, x2.g)true (field g of distinct h1 values linked to distinct h2 values)

Field f is race-free if:

Hard Case: Medium-grained Locking

x2 = a[*];
sync (x2) {

x2.g.f = …;
}

a = new h0[N];
for (i = 0; i < N; i++) {

a[i] = new h1;
a[i].g = new h2;

}

x1 = a[*];
sync (x1) {

x1.g.f = …;
}

h0

…

…

a[0]

h1

a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

h0

…

…

a[0]

h1

a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

…

…

h1 …

…

h0

h2

h1

h2 h2

h1

► ► ►

►► ►

Disjoint Reachability

– from distinct h1 values

– we can reach (via 1 or more fields)

– only distinct h2 values

then {h2} ⊆ DR({h1})

In every execution, if:

Note: Values abstracted by sets of allocation sites

MUST-NOT-ALIAS(l1, l2) => MUST-NOT-ALIAS(e1, e2)– (Sites(e1) ∩ Sites(e2)) ⊆ DR(Sites(l1) ∪ Sites(l2))

– e1 reachable from l1 and e2 reachable from l2

// Thread 1: // Thread 2:
sync (l1) { sync (l2) {

… e1.f … … e2.f …
} }

Sites(l1)

Conditional Must Not Alias Analysis using
Disjoint Reachability

Sites(e1) Sites(e2)

Sites(l2)

Field f is race-free if:

⊆
D

R

– (Sites(x1.g) ∩ Sites(x2.g)) ⊆ DR(Sites(x1) ∪ Sites(x2))

– x1.g reachable from x1 and x2.g reachable from x2
– (Sites(e1) ∩ Sites(e2)) ⊆ DR(Sites(l1) ∪ Sites(l2))

– e1 reachable from l1 and e2 reachable from l2
– ({h2}) ⊆ DR({h1})
– x1.g reachable from x1 and x2.g reachable from x2

Field f is race-free if:
– true
– true

Hard Case: Medium-grained Locking

x2 = a[*];
sync (x2) {

x2.g.f = …;
}

a = new h0[N];
for (i = 0; i < N; i++) {

a[i] = new h1;
a[i].g = new h2;

}

x1 = a[*];
sync (x1) {

x1.g.f = …;
}

h0

…

…

a[0]

h1

a[N-1]

h2

h1

g

h2

g

…

… h2

a[i]

h1

g

Experience with Chord

• Experimented with 12 multi-threaded Java programs
– smaller programs used in previous work
– larger, mature and widely-used open-source programs
– whole programs and libraries

• Tool output and developer discussions available at:
http://www.cs.stanford.edu/~mhn/chord.html

• Programs being used by other researchers in race detection

http://www.cs.stanford.edu/~mhn/chord.html

Benchmarks

vect1.1
htbl1.1
htbl1.4
vect1.4
tsp
hedc
ftp
pool
jdbm
jdbf
jtds
derby

classes
19
21

366
370
370
422
493
388
461
465
553

1746

KLOC
3
3

75
76
76
83

103
124
115
122
165
646

description
JDK 1.1 java.util.Vector
JDK 1.1 java.util.Hashtable
JDK 1.4 java.util.Hashtable
JDK 1.4 java.util.Vector
Traveling Salesman Problem
Web crawler
Apache FTP server
Apache object pooling library
Transaction manager
O/R mapping system
JDBC driver
Apache RDBMS

time
0m28s
0m27s
2m04s
2m02s
3m03s
9m10s

11m17s
10m29s
9m33s
9m42s

10m23s
36m03s

Pairs Retained After Each Stage (Log scale)

1

10

100

1000

10000

100000

1000000

10000000

100000000

ve
ct1

.1
htb

l1.
1

htb
l1.
4

ve
ct1

.4 tsp he
dc ftp po
ol
jdb

m jdb
f

jtd
s
de

rby

all
aliasing
shared
parallel
unlocked
racing

Classification of Unlocked Pairs

vect1.1
htbl1.1
htbl1.4
vect1.4
tsp
hedc
ftp
pool
jdbm
jdbf
jtds
derby

harmful
5
0
0
0
7

170
212
105
91

130
34

1018

benign
12
6
9
0
0
0
3

10
0
0

14
0

false
0
0
0
0
4

41
43
13
7

34
17
78

bugs
1
0
0
0
1
6

32
17
2

18
16
319

Developer Feedback

• 16 bugs in jTDS
– Before: “As far as we know, there are no concurrency issues in jTDS …”
– After: “It is probably the case that the whole synchronization approach in

jTDS should be revised from scratch ...”

• 17 bugs in Apache Commons Pool
– “Thanks to an audit by Mayur Naik many potential synchronization

issues have been fixed” -- Release notes for Commons Pool 1.3

• 319 bugs in Apache Derby
– “This looks like *very* valuable information and I for one appreciate

you using Derby … Could this tool be run on a regular basis? It is
likely that new races could get introduced as new code is submitted ...”

Related Work

• Static (compile-time) race detection
– Need to approximate multiple aspects
– Need to perform must alias analysis
– Sacrifice precision, soundness, scalability

• Dynamic (run-time) race detection
– Current state of the art
– Inherently unsound
– Cannot analyze libraries

• Shape Analysis
– much more expensive than disjoint reachability

Summary of Contributions

• Precise race detection (PLDI’06)
– Key idea: k-object-sensitive may alias analysis
– Important client for may alias analyses

• Sound race detection (POPL’07)
– Key idea: Conditional must not alias analysis
– Has applications besides race detection

• Effective race detection
– 412 bugs in mature Java programs comprising 1.5 MLOC
– Many fixed within a week by developers

The End

http://www.cs.stanford.edu/~mhn/chord.html

	Effective Static Race Detection for Java
	What is a Race?
	Why is Race Detection Important?
	Our Result
	Our Race Detection Approach
	Challenges
	Our Race Detection Approach
	Alias Analysis for Race Detection
	May Alias Analysis
	k-Object-Sensitive Analysis: Our Contributions
	Our Race Detection Approach
	Alias Analysis for Race Detection
	Must Alias Analysis
	New Idea: Conditional Must Not Alias Analysis
	Example
	Easy Case: Coarse-grained Locking
	Example
	Easy Case: Fine-grained Locking
	Example
	Hard Case: Medium-grained Locking
	Disjoint Reachability
	Conditional Must Not Alias Analysis using�Disjoint Reachability
	Hard Case: Medium-grained Locking
	Experience with Chord
	Benchmarks
	Pairs Retained After Each Stage (Log scale)
	Classification of Unlocked Pairs
	Developer Feedback
	Related Work
	Summary of Contributions
	The End

