Single-Chip Bottleneck

eIntel Core 2 Quad _/3
efour 2.40GHz cores ‘ |nte|
¢ 8 64-bit flops per cycle per core \
e sustained memory bandwidth Core?2
measured by STREAM benchmark Quad
+5.3GB/s for four threads
+0.55 byte per cycle per core, 0.009 dword per flop
«8MB L2 cache
e Locality
eHow (in)frequent a program accesses main memory?
eHow much data does it actively use?
e Must model long-range program behavior

e Program and machine balance
¢ [Callahan, Cocke, Kennedy, JPDC 88][Ding, Kennedy, JPDC 04]

reference affinity
[PLDI'04, ICS'05, POPL'06]

whole-program 2. Data
locality [PLDI'03,
pacT03, 1. Input 4 cache management,
LACST'03, TOC'07] 27771 | 3. Code program tuning
!, 7 [o‘r.her's at Ghent,
’/? v}\ Rice, and MTU]
/ 4. Time

5. Environment locality phases,
models of data, cache, and active proflllng
memory sharing [LISMM'06, Ex [cAss'(')DI;OJSP([))‘::I'o7]
PPOPP'08 poster, unpublished: pLoBl
others at MIT, NCSU, UWis,

UMass/Amherst, etc]

High-level Parallelism

e High-level parallelism exists in many programs
o E.g. utilities, interpreters, scientific computations

e “[scientists] know how to write parallel algorithms”—
Rudi Eigenmann

e To parallelize or paralyze

Complex code Unpredictable parallelism
Bit-level operations,

Example*:
while (s=nextSentence())
{ if (isCommand(s))

'updateParsingEnv(s);

unrestricted pointers,
exception handling,

* Simplified Parser in SP by Sleator & Temperly

“we are interested in doing something now”—David Wood

Behavior Oriented Parallelization (BOP)

e Goal: parallelization using information
ea user reading a small fraction of the source code
e a profiler examining one or few inputs
e Approach: coarse-grain software speculation
especulate using processes (not threads)
+ protecting entire address space against unknown code
+on-demand replication to remove all false dependencies
svalue—based checking to remove some flow dependencies

e use granularity to hide overhead

emark likely parallelism to get course-grain tasks
*

+affect performance but not correctness

The BOP Cycle

Strong protection

Parallelism
hints

Coarse-grain
parallel tasks

Possibly Parallel Regions (PPRs)

while (1) {
get_work(); BeginPPR(1); e Region-based
WAL o Likely parallelism
BeginPPR(1); EndPPR(I);]
stepl(); o Allows unpredictable
step2(); BeginPPR(2); entries or exits
EndPPR(1); work(y);
- EndPPR(2);

}

Basic semantics: at BeginPPR, fork a speculation process
to execute from EndPPR.

Just hints of parallelism, no harm to correctness, unlike
parallel sections, future, or transactional memory

Process vs. Thread

Coarse-grain
processes

Strong isolation

Fine-grain
threads

Weak isolation

Opportunistic parallelism

Free of false sharing

no

yes

Easy rollback

Synchronization free

Full data replication

Independent of hardware
memory consistency

Value-based checking

yes

no

Run-time cost proportional to

data size

data access

“People who live in glass houses shall not throw stones.”

8

BOP Correctness

e Conflict detection
eprotect data based on size, access & data values
*value checking goes beyond dependence checking
*page-level protection for global and heap data
emethods for reducing false sharing
ecorrectness proof[similar to Allen & Kennedy, 2001]
¢ Conflict resolution
efeedback on the cause of conflicts
enon-trivial program changes may be needed
+changing sequential code only
*no parallel programming or debugging

The Understudy Process

lead process
b
Mp AN m}? o~
spec 1 starts
P P ms
mf; ~ mi% b
understud: mié
b ranc. spec 2 starts
my A starts |
0
R
0 0
spec |
mey Y Y commis l—)i spec 2
mﬁ T R I3 commits
R (partial) = gspec 2 finishes first I next lead
e and aborts understudy
me L (parallel exe. wins)

e The main overhead is off the critical path
elt is a race between sequential and parallel execution
¢“if you can’t win, join them”

An Example of Value-based Checking

indents = 0;
while (...) // compile all functions

{
BeginPPR(1);

while (...) // compile next function

if (“{”) indents++
if (“}”) indents--

}
EndPPR(1);

Gzip compressing an 84MB file

version sequen- speculation depth
tial 1 [3 [7
times (sec) |@8.46)8.56,
8.50, 8.51
8.53,8.48
avg time 8.51
avg speedup 1.00

Dell PowerEdge 6850 with 4 dual-core Intel 3.4GHz, Xeon 7140M
processors, GCC 4.0.1 with “-O3”

| B sequential B bop-2 B bop-4 B bop-8 |

gzip parser xlisp

Dell PowerEdge 6850 with 4 dual-core Intel 3.4GHz, Xeon 7140M
processors, GCC 4.0.1 with “-O3”

13

Intel MKL (Solving 8 Linear Systems)

| 4 sequential # omp4 & bop4 @ omp-8 W bop8 |

and threads scale, but
former are faster

500 1000 1500 2000 2500 3000 3500
Equations per system

30.0
g 225
(%]
1 4
[}
S 150
2 similar speed
S 75 as sequential both processes
3

0

Related Work (in Software)

eLoop based
e speculative do-all (LPD) [Rauchwerger&Padua PLDI95]
eguaranteed progress [Gupta&Nim SC98, Dang+TR02]
e design space exploration [Cintra&Llanos TPDS05]
eFunction or region based
esafe Java future [Welc+ OOPSLAO5], ordered transactions
e Many other related techniques
e dynamic parallelization
¢ inspector—executor, parallel functional languages
etransactional memory [Wood yesterday]
ethread-level speculation in hardware [Torrellas yesterday]
+a limit study [Kejariwal et al. ICS06]
* 12% max with infinite processors and zero overhead

Expression and Implementation of Parallelism

‘ static dynamic speculative
parallel- ess user effort
ism hints allelism, higher overhe
s inspector- peculative do-
I tomati executor all
implicit —gauromaric T
parallel-) 3lrallelization Multilisp, pH, Multi-lisp, safe
ko @ etc future, or‘c.iered
= transactions
E’ do-across, HPF, Jade _
E
peeticit loop(OpenMP, cilk, transactional
parallel- | function P, MPT, PGAS, Java future, *
ism / . memory
region x10, StreamIt, Charm++

Summary of BOP Ingredients

eStrong isolation
ecomplete, on-demand data replication
evalue- and dependence-based checking
eRun-time support
e conflict detection, recovery, and tolerance
eno worse perf. than sequential
eProgrammability
eonly hints, no harm to correctness
eno parallel programming or debugging
eincremental parallelization
eparallel execution despite hidden dependences

