
Single-Chip Bottleneck

•Intel Core 2 Quad

•four 2.40GHz cores

•8 64-bit flops per cycle per core

•sustained memory bandwidth
!"#$%&"'()*(+,-./0()"123!#&4
•56789:$(;<&(;<%&(=3&"#'$
•>655()*="(?"&(2*2@"(?"&(2<&"A(>6>>B('C<&'(?"&(;@<?

•8MB L2 cache

•Locality

•How (in)frequent a program accesses main memory?

•How much data does it actively use?

•Must model long-range program behavior

•Program and machine balance
• [Callahan, Cocke, Kennedy, JPDC 88] [Ding, Kennedy, JPDC 04]

Large-Scale Program Behavior

Analysis and Adaptation

Chen Ding

Associate Professor

Computer Science Department

University of Rochester

Visiting Associate Professor

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

School of Informatics, University of Indiana, September 14 2007

TILE64™ Processor
Product Brief

Overview

The TILE64™ family of multicore processors delivers
immense compute performance to drive the latest
generation of embedded applications. This
revolutionary processor features 64 identical
processor cores (tiles) interconnected with Tilera's
iMesh™ on-chip network. Each tile is a complete full-
featured processor, including integrated L1 & L2
cache and a non-blocking switch that connects the
tile into the mesh. This means that each tile can
independently run a full operating system, or multiple
tiles taken together can run a multi-processing OS like
SMP Linux.

The TILE64 processor family slashes board real estate and system cost by integrating a complete
set of memory and I/O controllers, therefore eliminating the need for an external North Bridge or
South Bridge. It delivers scalable performance, power efficiency and low processing latency in an
extremely compact footprint.

The TILE64 Processor is programmable in ANSI standard C, enabling developers to leverage their
existing software investment. Tiles can be grouped into clusters to apply the appropriate amount
of horsepower to each application. Since multiple operating system instances can be run on the
TILE64 simultaneously, it can replace multiple CPU subsystems for both the data plane and
control plane.

Combining multiple C-programmable processor tiles with the iMesh multicore technology
enables the TILE64 processor to achieve the performance of a fixed function ASIC or FPGA in a
powerful software-programmable solution.

For more information on Tilera products, visit www.tilera.com© 2007 Tilera Corporation All Rights Reserved

Product Differentiators

Features Enables

Massively
Scalable
Performance

Power Efficiency

Integrated Solution

Multicore
Development
Environment

• 8 X 8 grid of identical, general purpose processor cores (tiles)
• 3-way VLIW pipeline for instruction level parallelism
• 5 Mbytes of on-chip Cache
• 192 billion operations per second (32-bit)
• 27 Tbps of on-chip mesh interconnect enables linear application scaling
• Up to 50 Gbps of I/O bandwidth

• 600MHz - 1GHz operating frequency
• 170 - 300mW per core
• Idle Tiles can be put into low-power sleep mode
• Power efficient inter tile communications

• Four DDR2 memory controllers with optional ECC
• Two 10GbE XAUI configurable MAC or PHY interfaces
• Two 4-lane 10Gbps PCI-e MAC or PHY interfaces
• Two GbE MAC interfaces
• Flexible I/O interface

• ANSI standard C compiler
• Advanced profiling and debugging designed for multicore programming
• Supports SMP Linux with 2.6 kernel
• iLib API's for efficient inter-tile communication

• 10 Gbps Snort® processing
• 20+ Gbps iptables (firewall)
• 20+ Gbps nProbe
• 16 X 16 SAD at 540 MBlocks/s
• H.264 HD video encode for two streams of 720p @ 30 Fps

• Highest performance per watt
• Simple thermal management & power supply design
• Lower operating cost

• Reduces BOM cost - standard interfaces included on-chip
• Dramatically reduced board real estate
• Direct interface to leading L2-L3 switch vendors

• Run off-the-shelf C programs
• Reduce debug and optimization time
• Faster time to production code
• Standard multicore communication mechanisms

™

PCIe 1

MAC/
PHY

SerDes

GbE 0

GbE 1 Flexible
I/O

Flexible
I/O

UART,
HPI, I2C,
JTAG,SPI

DDR2 Controller 3 DDR2 Controller 2

DDR2 Controller 1 DDR2 Controller 0

XAUI 1
MAC/
PHY

XAUI 0
Mac/
PHY

SerDes

PCIe 0
MAC/
PHY

SerDes

SerDes

Reg File

P
2

P
1

P
0

L2 CACHE

PROCESSOR CACHE

SWITCH

2D DMA

L-1I

MDN TDN

UDN IDN

STN

L-1D

I-TLB D-TLB

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

r(t) is not in the resident set established at time t - 1, a seg-
ment (or page) fault occurs at time t. This fault interrupts the
program until the missing segment can be loaded in the resi-
dent set. Segments made resident by the fault mechanism are
"loaded on demand" (others are "preloaded").
The memory policies of interest here determine the content

of the resident set by loading segments on demand and then
deciding when to remove them. To save initial segment faults,
some memory policies also swap an initial resident set just
prior to starting a program. (Easton and Fagin refer to the
case of an empty initial resident set as a "cold start," and an
initially nonempty resident set as a "warm start" [60].)
The memory policy's control parameter, denoted 0, is used

to trade paging load against resident set size. For the working
set policy, but not necessarily for others, larger values of 0
usually produce larger mean resident set sizes in return for
longer mean interfault times. (See [66].) In principle, 0 could
be generalized to a set of parameters, e.g., a separate param-
eter for each segment; but no one has found a multiple param-
eter policy that improves significantly over all single param-
eter policies.
The performance of a memory policy can be expressed

through its swapping curpe, which is a function f relating
the rate of segment faults to the size of the resident set. A
fixed-space memory policy, a concept usually restricted to
paging, interprets the control parameter 0 as the size of the
resident set; in this case the swapping curve f(0) specifies
the corresponding rate of page faults. A variable-space mem-
ory policy uses the control parameter 0 to determine a bound
on the residence times of segments. Thus a value of 0 implic-
itly determines a mean resident set size x, and also a rate of
segment faults y; the swapping curve, y = f(x), is determined
parametrically from the set of (x, y) points generated for the
various 0. (See [53].)
One of the parameters needed in a queuing network model

of a multiprogramming system is the paging rate [47] - [49],
[521. This parameter is easily determined from the lifetime
curve, which is the function g(x) = 1 /f(x) giving the mean
number of references between segment faults when the mean
resident set size is x. Lifetime curves for individual programs
under given memory policies are easy to measure. A knee of
the lifetime curve is a point at which g(x)/x is locally maxi-
mum, and the primary knee is the global maximum ofg(x)/x.
(See Fig. 2.)
A memory policy's resident set at virtual time t for control

parameter 0 is denoted R (t1 0).
A memory policy satisfies the inclusion property ifR (t, 0) C

R (t, 0 + a) for a > 0. This means that, for increasing 0, the
mean resident set size never decreases and the rate of segment
faults never increases. In Fig. 2, this means that the lifetime
curve increases uniformly as 0 increases. (See [52], [53],
[66].)
Several empirical models of the lifetime curve have been

proposed. One is the Belady model [15]

g(x) = a . xk

where x is the mean resident set size, a is a constant, and k is
normally between 1.5 and 3 (a and k depend on the program).
This model is often a reasonable approximation of the portion

time/fault

g(o)

E
._

a,
E

'Vb/
PRwR g(x)

primary knee

/ /, tincreasing 0

// [secondary knee

ma

mean size of resident set
x

Fig. 2. A lifetime curve.

of the lifetime curve below the primary knee, but it is other-
wise poor ([49], [117]).1 A second model is the Chamberlin
model [28]

T/2
g(x) =1 + (d/X)2

where T is the program execution time and d is the resident
set size at which lifetime is T/2. Though this function has a
knee, it is a poor match for real programs. The recent empiri-
cal studies by Burgevin, Lenfant, and Leroudier contain many
interesting observations about and refinements of these models
([81], [83]). Since it is quite easy to measure lifetime curves
[52], [53], [58], I have greater confidence in results when the
model parameters are derived from real data rather than esti-
mated from the models. Since optimal performance is associ-
ated with the knees of lifetime functions [51], [73], [74],
I am hesitant to use lifetime curve models that have no knees.

It is well to remember that a lifetime (or swapping) curve is
an average for an interval of program execution. If the pro-
gram's behavior during a subinterval can differ significantly
from the average, conclusions based on its lifetime function
may be inaccurate. For example, a temporary overload of
the swapping device may be caused by a burst of segment
faults-an event that might not be predicted if the mean life-
time is long.

Space-Time Product
A program's space-time product is the integral of its resi-

dent set size over the time it is running or waiting for a missing

'Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of "cold start" (resident set
initially empty) to "warm start" [60]; however, the "warm start"
merely increases the height of the primary knee without significantly
changing the knee's resident set size. (See also [73], [78], [1171.)
Parent and Potier observed that the overhead of swapping can cause
programs conforming to the Belady model to exhibit lifetime curves,
measured while the system is in operation, with flattening beyond the
primary knee [95], [971; however, real programs exhibit flattening
beyond the primary knee even if all the faults normally caused by
initial references are ignored. (See [73], [78], [115], [117].)

66

~/DingFiles/Trips/IndianaSept07

reuse distance

m
is

s
 r

a
te

0
.0

0
0

.0
4

0
.0

8

32 1K 32K 1M

1626

0.060 -

0.050

0.040 -

0.030

0 . m

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

0.010 -

U.M

0.20
M

1

S

S

R

a

1

I

0 0.10

0.00

M

I

S

s

M

I

S

S

IK

Cache Size (bytes)

(a)

10K

\, \

o.Oo0 J4,
IOK IOOK 1M

Cache Size (bytes)

(b)

Fig. 1 1 . Predicted (dashed) and actual (solid) m i s s ratios for trace “mu12”
with caches of associativity 1, 2, 4, and 8. (a) Smaller caches. (b) Larger
caches.

ing the same capacity, the same block size, and m i s s ratios

m(A = n) and m(A = 2n). Let the miss ratio spread be the

ratio of the miss ratios, less one:

m(A = n)

m(A =2n) m(A = 2n)

m(A = n) - m(A = 2n)
- I =

M

1

S

S

0.50

0.40

0.30

0.20

0.10

0.00

0.40

0.30

0.20

0.10

0.00

1c
I ’\
I \
I \

I \
I \

~ ; /-to-l I \

I

-4e-J:

-x’

x

IK 10K LOOK IM

Cache Size (bytes)

(a)

____)j;_-LIII
\

I
I

\ \ I \ \ I

- d

IK 10K IOOK IM

Cache Size (bytes)

(b)

Fig. 12. Unified cache miss ratio spreads (solid lines are smoothed data).
A line labeled “2n-to-n” displays [m(A = n) - m(A = 2n)]/m(A = 2n)
where m(A = n) is the miss ratio of an n-way set-associative cache. (a)
Five-trace group. (b) 23-trace group.

Figs. 12 and 13 and Table IV present data from trace-driven

simulation. As discussed in Section 111, data for larger caches

are subject to more error than data for smaller caches, and

measurements for caches larger than 64K should be treated

with considerable caution. Fig. 12 shows some miss ratio

11
http://en.wikipedia.org/wiki/Fifth_dimension

1. Input

2. Data

3. Code

4. Time

5. Environment

Locality

whole-program

locality [PLDI’03,

PACT’03,

LACSI’03, TOC’07]

reference affinity

[PLDI’04, ICS’05, POPL’06]

cache management,

program tuning

[others at Ghent,

Rice, and MTU]

locality phases,

active profiling

[ASPLOS’04,

ExpCS’07, JPDC’07]

models of data, cache, and

memory sharing [ISMM’06,

PPOPP’08 poster, unpublished;

others at MIT, NCSU, UWis,

UMass/Amherst, etc]

Behavior-oriented Parallelization

Chen Ding

Associate Professor

University of Rochester, Rochester, New York

Based on Ding et al. PLDI07, joint work w/ Prof. Xipeng Shen @ William & Mary

Benton Hess prepares students for a performance of Puccini!s La rondine.

High-level Parallelism

•High-level parallelism exists in many programs

•E.g. utilities, interpreters, scientific computations

•“[scientists] know how to write parallel algorithms”--
Rudi Eigenmann

•To parallelize or paralyze

 Complex code Unpredictable parallelism

Example*:
 while (s=nextSentence())
 { if (isCommand(s))
 updateParsingEnv(s);
 else parse(s);
 }

Bit-level operations,

unrestricted pointers,

exception handling,

custom mem. management,

third-party libraries
* Simplified Parser in SPEC2k by Sleator & Temperly

“we are interested in doing something now”--David Wood

Behavior Oriented Parallelization (BOP)

•Goal: parallelization using partial information

•a user reading a small fraction of the source code

•a profiler examining one or few inputs

•Approach: coarse-grain software speculation

•speculate using processes (not threads)
•?&<="2=D1E("1=D&"(#''&"$$($?#2"(#E#D1$=(%141<C1(2<'"
•<1F'"!#1'(&"?@D2#=D<1(=<(&"!<G"(#@@(;#@$"('"?"1'"12D"$
•G#@%"F)#$"'(23"24D1E(=<(&"!<G"($<!"(;@<C('"?"1'"12D"$

•use granularity to hide overhead

•mark likely parallelism to get course-grain tasks
•?<$$D)@*(?#&#@@"@(&"ED<1$(HII-J
•#;;"2=(?"&;<&!#12"()%=(1<=(2<&&"2=1"$$(

Parallelism

hints

Coarse-grain

parallel tasks
Strong protection

allow a user
to create

amortize
the cost of

allows the system
to implement

The BOP Cycle

Possibly Parallel Regions (PPRs)

while (1) {
 get_work();
 . . .
 BeginPPR(1);
 step1();
 step2();
 EndPPR(1);
 . . .
}

. . .
BeginPPR(1);
work(x);
EndPPR(1);
. . .
BeginPPR(2);
work(y);
EndPPR(2);
. . .

Just hints of parallelism, no harm to correctness, unlike
parallel sections, future, or transactional memory

• Region-based

• Likely parallelism

• Allows unpredictable
entries or exits

Basic semantics: at BeginPPR, fork a speculation process
to execute from EndPPR.

“People who live in glass houses shall not throw stones.”
8

Process vs. Thread
Coarse-grain
processes

Strong isolation

Fine-grain
threads

Weak isolation

Opportunistic parallelism

Free of false sharing

Easy rollback

Synchronization free

Full data replication

Independent of hardware
memory consistency

Value-based checking

Run-time cost proportional to

no yes

yes no

data size data access

BOP Correctness

•Conflict detection

•protect data based on size, access & data values
•value checking goes beyond dependence checking
•page-level protection for global and heap data

•methods for reducing false sharing

•correctness proof [similar to Allen & Kennedy, 2001]

•Conflict resolution

•feedback on the cause of conflicts

•non-trivial program changes may be needed
•changing sequential code only
•no parallel programming or debugging

•The main overhead is off the critical path

•It is a race between sequential and parallel execution

•“if you can’t win, join them”

The Understudy Process

11

indents = 0;

while (...) // compile all functions

{
 BeginPPR(1);

 while (...) // compile next function

 {

 if (“{”) indents++;

 if (“}”) indents--;

 }
 EndPPR(1);

}

An Example of Value-based Checking

12

Gzip compressing an 84MB file

Dell PowerEdge 6850 with 4 dual-core Intel 3.4GHz, Xeon 7140M
processors, GCC 4.0.1 with “-O3”

13

0.5

1.0

1.5

2.0

2.5

3.0

3.5

gzip parser xlisp

sequential bop-2 bop-4 bop-8
Sp

ee
d
u
p

Dell PowerEdge 6850 with 4 dual-core Intel 3.4GHz, Xeon 7140M
processors, GCC 4.0.1 with “-O3”

14

Intel MKL (Solving 8 Linear Systems)

0

7.5

15.0

22.5

30.0

500 1000 1500 2000 2500 3000 3500 4000 4500

sequential omp-4 bop-4 omp-8 bop-8

b
ill

io
n
 i
n
st

. p
er

 s
ec

.

Equations per system

similar speed
as sequential both processes

and threads scale, but
former are faster

Related Work (in Software)

•Loop based

•speculative do-all (LPD) [Rauchwerger&Padua PLDI95]

•guaranteed progress [Gupta&Nim SC98, Dang+TR02]

•design space exploration [Cintra&Llanos TPDS05]

•Function or region based

•safe Java future [Welc+ OOPSLA05], ordered transactions

•Many other related techniques

•dynamic parallelization
• D1$?"2=<&F"K"2%=<&A(?#&#@@"@(;%12=D<1#@(@#1E%#E"$

•transactional memory [Wood yesterday]

•thread-level speculation in hardware [Torrellas yesterday]
•#(@D!D=($=%'*(LM"N#&DC#@("=(#@6(OP+>QR

• 12% max with infinite processors and zero overhead

static dynamic speculative

parallel-
ism hints

implicit
parallel-
ism

explicit
parallel-
ism

loop/

region
BOP

loop

automatic

parallelization

inspector-

executor

speculative do-

all

function

/region

Multilisp, pH,

etc

Multi-lisp, safe

future, ordered

transactions

data do-across, HPF, Jade

loop/

function

/region

OpenMP, Cilk,

CSP, MPI, PGAS, Java future,

x10, StreamIt, Charm++

transactional

memory*

Expression and Implementation of Parallelism

less user effort
more parallelism, higher overhead

m
or

e
ex

p
re

ss
iv

e

le
ss

 c
or

re
ct

n
es

s
co

n
ce

rn

Summary of BOP Ingredients

•Strong isolation
•complete, on-demand data replication

•value- and dependence-based checking

•Run-time support
•conflict detection, recovery, and tolerance

•no worse perf. than sequential

•Programmability

•only hints, no harm to correctness

•no parallel programming or debugging

•incremental parallelization

•parallel execution despite hidden dependences

