
1

A Hardware-design Inspired
Methodology for Parallel
Programming

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

Workshop on Architectures and Compilers for Multithreading
December 14, 2007

2

Plan for this talk
My old way of thinking (up to 1998)

“Where are my threads?”
Not necessarily wrong

My new way of thinking (since mid 2006)
“Parallel program module as a resource”
Not necessarily right

Acknowledgement: Nirav Dave

3

Only reason for parallel programming
used to be performance

This made programming very difficult
Had to know a lot about the machine
Codes were not portable – endless
performance tuning on each machine
Parallel libraries were not composable
Difficult to deal with heap structures and
memory hierarchy
Synchronization costs were too high to
exploit fine-grain parallelism

How to exploit 100s of threads from software?

4

Implicit Parallelism
Extract parallelism from programs
written in sequential languages

Lot of research over four decades –
limited success

Program in functional languages
which may not obscure parallelism in
an algorithm

If the algorithm has no parallelism then forget it

5

If parallelism can’t be
detected automatically ...

High-level
Data parallel: Fortran 90, HPF, ...
Multithreaded: Id, pH, Cilk,..., Java

Low-level
Message passing: PVM, MPI, ...
Threads & synchronization:

Forks & Joins, Locks, Futures, ...

Design/use new explicitly parallel
programming models ...

Works
well
but not
general
enough

6

Fully Parallel, Multithreaded Model
Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

asynchronous
at all levels

Synchronization?

Efficient mappings on architectures proved difficult

7

Functional Languages (Id) /
Dataflow (Monsoon) Experience

Monsoon was a simple, high performance
design, easily exploited fine-grain
parallelism, tolerated latencies efficiently
Id preserved fine-grain parallelism which
was abundant
Robust compilation schemes; DFGs provided
easy compilation target
Issues:

No C or Fortran compiler for Monsoon
No Id or pH compiler for conventional parallel
machines
Dataflow model gave you parallelism for free, but
required analysis to get locality

8

My unrealized dream

A time when Freshmen will be taught
sequential programming as a special case

of parallel programming

9

Has the situation changed?
Multicores have arrived

Functional Languages are going main
stream

Google talks about map-reduce
Microsoft has released F#

Explosion of cell phones
Explosion of game boxes

It is all about parallelism now!

Freshmen are going to be hacking
game boxes and cell phones

10

SoC Trajectory:
multicores, heterogeneous, regular, ...

On-chip memory banks

Structured on-
chip networks

General-
purpose

processors

Application-
specific

processing units

Can we rapidly produce high-quality chips and
surrounding systems and software?

IBM Cell
Processor

11

now ...

Cell phone

Mine sometimes misses a call
when I am surfing the web

To what extent the phone call
software should be aware of web
surfing software, or vice versa?
Is it merely a scheduling issue?
Is it a performance issue?

Sequential “modules” are often
used in concurrent environments
in unforeseen ways

12

New Goals
Synthesis as opposed to Decomposition

A method of designing and connecting
modules such that the functionality and
performance are predictable

Must facilitate natural descriptions of concurrent
systems

A method of refining individual modules into
hardware or software for SoCs
A method of mapping such designs onto
“multicores”

Time multiplexing of resources complicates the
problem

K
n
o
w

 h
o
w

 t
o
 d

o
 t

h
is

13

A hardware inspired methodology
for “synthesizing” parallel programs

Rule-based specification of behavior
(Guarded Atomic Actions)

Lets you think one rule at a time
Composition of modules with guarded
interfaces

Bluespec

Unity – late 80s
Chandy & Misra

Closely connected with
transactional memory

14

rdy
enab

int

int
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

int

y == 0

y == 0

implicit
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module
t

#(type t)

t

t

t t
t

In a GCD call t
could be
Int#(32),
UInt#(16),
Int#(13), ...

The module can easily be made polymorphic

Many different implementations, including pure software
ones, can provide the same interface

module mkGCD (I_GCD)

15

Bluespec: State and Rules
organized into modules

Each module embodies its own
resources and is mapped on to its own
hardware – no time-multiplexing

interface

module

16

Parallel Programming can be
easier than sequential
programming

17

Example:
H.264 Video Decoder

May be implemented in hardware
or software depending upon ...

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
o
m

p
re

ss
ed

B
it
s

Fr
am

es

Different requirements for different environments
- QVGA 320x240p (30 fps)
- DVD 720x480p
- HD DVD 1280x720p (60-75 fps)

18

Sequential code
from ffmpeg
void h264decode(){

int stage = S_NAL;
while (!eof()){

createdOutput = 0; stallFromInterPred = 0;
case (stage){

S_NAL: try_NAL();
if (createdOutput) stage = S_Parse; break;

S_Parse: try_Parse();
stage=(createdOutput) ? S_IQIT: S_NAL; break;

S_IQIT: try_IQIT();
stage=(createdOutput) ? S_Parse:S_Inter; break;

S_Inter: try_Inter();
stage=(createdOutput) ? S_IQIT:S_Intra;
if (stallFromInterPred) stage=S_Deblock; break;

S_Intra: try_Intra();
stage=(createdOutput) ? S_Inter:S_Deblock; break;

S_Deblock: try_deblock(); stage= S_Intra; break } } }

Parse

NAL

IQ/IT

Inter-
Predict

Intra-
Predict

Deblock
ing

20K Lines of C
out of 200K

19

Parallelizing the C code

Control structure is totally over
specified and unscrambling it is beyond
the capability of current compiler
techniques
Program structure is difficult to
understand
Packets are kept and modified in a
global heap
Thread-level data parallelism?

20

P Threads: can be used to introduce
different type of threads

A (p)thread of each block

But there is no control over mapping

int main(){
pthread_create(NAL);
phtread_create(Parse);
pthread_create(IQIT);
pthread_create(Interpred);
pthread_create(Intrapred);
pthread_create(Deblock);}

NAL
thread

Parse
thread

DeBlk
thread

Intrapr
thread

Sleeping
IQ/IT thread
Interpredict thread

Processors

21

StreamIT
a more natural expression using filters

bit -> frame pipeline H264Decode {
add; NAL();
add; Parse();
add; IQIT();
add; feedbacloop{

join roundrobin;
body pipeline{

add; InterPredict();
add; IntraPredict();
add; Deblock();}

split roundrobin;}}

Parse

NAL

IQ/IT

Inter-
Predict

Intra-
Predict

Deblock
ing

Gives the required rates StreamIt compiler
can do a great job of generating efficient code
but not easy to express or compile feed-back

22

Functional languages (pH)
do_H264 :: Stream Chunk -> Stream Frame
do_H264 = let

fMem :: IStructFrameMem MacroBlock
fMem = makeIStructureMemory
nalStream = nal inputStream
parseStream = parse nalStream
iqitStream = iqit parseStream
interStream = inter iqitStream fMem
intraStream = intra interStream
deblockStream = deblock intraStream fMem

in
deblockStream

Natural expression of all parallelism but very difficult to
compile efficiently without domain specific information

23

Bluespec
module mkH264(IH264)
// Instantiate the modules

Nal nal <- mkNalUnwrap();
...
DeblockFilter deblock <- mkDeblockFilter();
FrameMemory frameB <- mkFrameMemoryBuffer();

//Connect the modules
mkConnection(nal.out, parse.in);
mkConnection(parse.out, iqit.in);
…
mkConnection(deblock.mem_client, frameB.mem_writer);
mkConnection(inter_pred.mem_client, frameB.mem_reader);

interface in = nal.in; //Input goes straight to NAL
interface out = deblock.out; // Output from deblock
endmodule

24

H.264 Decoder in Bluespec

Lines of
Bluespec

Total 9309

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Scale /
YUV2RGB

Ref
Frames

171 2871 838

817

2789

996
136

Misc 691

Synthesis results
12/15/06
Decodes 720p@75fps
Critical path 50Mz
Area 5.5 mm sq

Baseline profile

Any module can be implemented in
software
Each module can be refined separately
Behaviors of modules are composable

Good source code for multicores

25

Takeaway
Parallel programming should be based
on well defined modules and parallel
composition of such modules
Modules must embody a notion of
resources, and consequently, sharing
and time-multiplexed reuse
Guarded Atomic Actions and Modules
with guarded interfaces provide a solid
foundation for doing so

Thanks

	Plan for this talk
	Only reason for parallel programming used to be performance
	Implicit Parallelism
	If parallelism can’t be detected automatically ...
	Fully Parallel, Multithreaded Model
	Functional Languages (Id) / Dataflow (Monsoon) Experience
	My unrealized dream
	Has the situation changed?
	SoC Trajectory:�multicores, heterogeneous, regular, ...
	now ...�Cell phone
	New Goals�Synthesis as opposed to Decomposition
	A hardware inspired methodology for “synthesizing” parallel programs
	GCD Hardware Module
	Bluespec: State and Rules organized into modules
	Parallel Programming can be easier than sequential programming
	Example: �H.264 Video Decoder
	Sequential code �from ffmpeg
	Parallelizing the C code
	P Threads: can be used to introduce different type of threads
	StreamIT�a more natural expression using filters
	Functional languages (pH)
	Bluespec
	H.264 Decoder in Bluespec
	Takeaway

