
STAPL:
A High Productivity Programming Infrastructure

for Parallel and Distributed Computing

Nancy Amato & Lawrence Rauchwerger
http://parasol.tamu.edu/stapl/

Parasol Lab, Dept of Computer Science, Texas A&M

http://parasol.tamu.edu/stapl/

Motivation

There is a growing need for parallel programs
– Large scale parallel machines getting larger
– small scale parallel machines (i.e., multicores) are

becoming ubiquitous

Challenges
– Parallel programming is specialized & costly
– portability
– Scalability & Efficiency is (usually) poor
– Composability and integration with other components

STAPL

STAPL: Parallel components library and
development environment
– Extensible & composable
– Parallel superset of STL
– Inter-operable with STL

Layered architecture: User – Developer - Specialist
– Extensible
– Portable (only lowest layer needs to be specialized once

at system installation)
High Productivity Environment
– components have (almost) sequential interfaces

Applications Using STAPL

Nuclear Eng. - Discrete Ordinates Particle
Transport
Bioinformatics - Protein Folding
Geophysics - Seismic Ray Tracing
Aerospace - Lattice Boltzman Method

Outline
• Motivation

• STAPL: Standard Template Adaptive Parallel Library
– Philosophy & Design Overview
– Components for Program Development

pContainers, Views, pRange, pAlgorithms

– Portability and Optimization
RTS & ARMI Communication Library
Adaptive Components, Adaptive Algorithm Selection

– Applications developed using STAPL

• Summary & Future Work

STAPL Specification
Adopts STL Philosophy: Generic Programming
– composable (unlike STL)
– Interoperable with other libraries and packages
Shared Object View
– User Layer: No explicit communication
– Machine Layer: Architecture dependent code
Distributed Objects
– no replication (visible to the user)
– no software coherence (visible to the user)
Portable efficiency
– Adaptation to environment
– Runtime System virtualizes underlying architecture
Compiles with any standard C++ compiler (GCC) (It’s a library –
not a language)

STL: Standard Template Library
Generic programming components using C++ templates.

Containers - collection of other objects
– vector, list, deque, set, multiset, map, multi_map, hash_map
– Templated by data type: vector<int> v(50);

Algorithms - manipulate the data stored in containers
– count(), reverse(), sort(), accumulate(), for_each(), reverse()

Iterators - Decouple algorithms from containers
– Provide generic elementary access to data in containers
– can define custom traversal of container (e.g., every other element)
– count(vector.begin(), vector.end(), 18);

Algorithm ContainerContainerIterator

STAPL: Standard Template Adaptive Parallel Library

STAPL: A library of parallel, generic
constructs based on the C++
Standard Template Library
(STL)

– Components for Program
Development

pAlgorithms, pContainers, Views,
pRange

– Portability and Optimization
STAPL RTS and Adaptive Remote
Method Invocation (ARMI)
Communication Library
Framework for Algorithm Selection
and Tuning (FAST)

Usage Model
Two Models:

Data and Task Parallelism co-exist
programmers can use library developer options, if
desired

Thread Safe Operations

Explicit CommunicationsImplicit Synchronizations

PGASShared Memory

MultithreadedSingle threaded

Library DeveloperApplication Programmer

Outline
• Motivation

• STAPL: Standard Template Adaptive Parallel Library
– Philosophy & Design Overview
– Components for Program Development

pContainers, Views, pRange, pAlgorithms

– Portability and Optimization
RTS & ARMI Communication Library
Adaptive Components, Adaptive Algorithm Selection

– Applications developed using STAPL

• Summary & Future Work

pContainers

Generic, distributed data structures with parallel methods
Usability

– Shared object view
– Generic access mechanism through Views
– Handle data distribution and remote data access internally
– Interface compatible with sequential counterpart

Extendability & Composability
– New (user defined) pContainers extend Base classes
– pContainers of pContainers

Efficiency & Adaptability
– OO design to optimize specific containers
– Optional user customization of each pContainer instance through

template parameters & traits
Enable/Disable Performance Monitoring, thread safety, …
Select Partition Strategies, consistency models, …

pContainers currently available in STAPL
– pVector, pList, pMap, pSet, pMultiMap, pMultiSet, pHashMap, pHashSet,

pArray, pGraph, pMatriix

Example: pArray
pArray is an ordered sequence of elements accessed using indices
The domain (unique identifiers of pContainer elements) is a range of
integers, e.g., [0,7]
STAPL provides common
– Logical Partitions of elements (e.g., Blocked, Balanced, BlockCyclic, …)
– PartitionMappers to map subdomains to locations (e.g., Blocked, Cyclic, …)
– Users can extend existing & implement new Partitions and Mappers

76543210

10 54 32 76
Location 0 Location 1

Ex 1: Blocked Partition
Cyclic Mapper

40 51 62 73
Location 0 Location 1

Ex 2: Cyclic Partition
Blocked Mapper

pArray

Views
Views provide generic access mechanism for pContainer
– STAPL equivalent of STL iterator, extended to allow for efficient parallelism

– Focus on processing range of items, instead of single item

– Specify different partitions and data traversal for the data in a pContainer

– Hierarchically defined to control locality and granularity of parallelism

Two logical views - one
(left) aligned with
physical partition

subview subview

subview

view

View

Data Space

V4V3V2V1

V4

V3

V2

V1

L4L3L2L1

pContainer
Physical
partition

pAlgorithms

pAlgorithms in STAPL
– Parallel counterparts of STL algorithms
– Additional parallel algorithms

Common parallel algorithms:
Prefix sums
List ranking

pContainer specific algorithms:
Strongly Connected Components (pGraph)
Euler Tour (pGraph)
Matrix multiplication (pMatrix)

– Composable
pAlgorithms may invoke pAlgorithms

– multiple algorithms exist for a particular operation (e.g., sorting)
and STAPL adaptively selects which to use

pAlgorithms and Views
Views are inputs for pAlgorithms
– Input views specify parallelism the algorithm can exploit

A pAlgorithm may operate on views before
beginning to optimize the computation
– Refining (subdividing) a sub-view may increase

parallelism and locality
Views may be adjusted to match data boundary
Different views may be adjusted differently to allow easier
algorithm specification

Optimized access methods when all the data of a
sub-view is local and contiguous

pRange - Task Graphs in STAPL
Task
– Work function
– Data to process

Task dependencies
– Expressed in Task Dependence

Graph (TDG)
– TDG queried to find tasks ready for

execution

Task

View

Work Function

901345675628

View

pRange: Simple Dependence Specification

Goal: Developer expresses dependencies
concisely
– If needed, full enumeration of dependencies is supported

Common patterns supported in pRange
– Sequential – sources depend on sinks
– Independent – no new dependencies needed in

composed graph
– Pipelined – dependencies follow a regular pattern

Wave front, tree-based reductions, etc.

Scalability of pAlgorithms

Results obtained on an IBM P3 machine at NERSC
– Strong scaling: same problem size as increase #procs

Results show scalability relative to 64 processors

– Weak scaling: increase problem size as increase #procs, keep work
per processor constant

strong scaling weak scaling

Outline
• Motivation

• STAPL: Standard Template Adaptive Parallel Library
– Philosophy & Design Overview
– Components for Program Development

pContainers, Views, pRange, pAlgorithms

– Portability and Optimization
RTS & ARMI Communication Library
Framework for Algorithm Selection and Tuning (FAST)

• Applications developed using STAPL
• Summary & Future Work

Run Time System

Application Specific Parameters

Smart Application

STAPL RTS

ARMI Executor

e.g., K42 User-Level

Dispatcher

Kernel Scheduler
(no custom scheduling, e.g. NPTL)Operating System

Memory ManagerAdvanced stageAdvanced stage

Experimental stage: Experimental stage:
multithreadingmultithreading

ARMI Executor

Comm. Thread

RMI Thread

Task Thread

Custom schedulingCustom scheduling

Kernel schedulingKernel scheduling

STAPL RTS

– Adaptive Remote Method Invocation (ARMI)
Communication Library

Synchronous and Asynchronous RMI
Support for message aggregation
Synchronization primitives

Fence, Global Distributed Locks, Group-Based Synchronization

– Executor/Scheduler - execute pRange tasks
Customized task scheduling & load balancing for every pRange instance
RTS selects default policy, but can be user specified

– Performance monitor for feedback to the user and the
adaptive framework

– Multithreaded RTS
RMI servers, Task executors, Comm. threads, …

RTS Consistency Models
Processor Consistency (default)

– Accesses from a processor on another’s memory are sequential
– Requires in-order processing of RMIs

Limited parallelism
Object Consistency

– Accesses to different objects can happen out of order
– Uncovers fine-grained parallelism

Accesses to different objects are concurrent
Potential gain in scalability

– Can be made default for specific computational phases
Mixed Consistency

– Use Object Consistency on select objects
Selection of objects fit for this model can be:

Elective – the application can specify that an object’s state does not depend on
others’ states.
Detected – if it is possible to assert the absence of such dependencies

– Use Processor Consistency on the rest

Outline
• Motivation

• STAPL: Standard Template Adaptive Parallel Library
– Philosophy & Design Overview
– Components for Program Development

pContainers, Views, pRange, pAlgorithms

– Portability and Optimization
RTS & ARMI Communication Library
Adaptive Components, Adaptive Algorithm Selection

– Applications developed using STAPL

• Summary & Future Work

Support for Adaptivity in STAPL

– pAlgorithms
Algorithm Selection and Tuning (FAST)
Parametric Algorithms

– pContainers
Consistency model may vary for each instance, or even over time
for the same instance
Data distribution can be selected/modified at runtime

– ARMI Communication Library
Message passing and\or shared memory communication modes
Aggregation of messages to tolerate latency

Adaptive Algorithm Selection
(ICS 00, IWACT 01, PPoPP 05)

Overview of Approach

Given
Multiple algorithmic choices for the
same high level operation

At STAPL installation (& refine later)
Analyze each pAlgorithm’s
performance on system and create a
selection model

Program execution
Gather parameters, query model,
and select pAlgorithm to use

Installation Benchmarks

Architecture &
Environment

Algorithm
Performance

Model

User
Code Parallel Algorithm Choices

Data Characteristics Runtime Tests

Selected Algorithm

Data Repository

STAPL

Adaptive Executable

Model

Parallel Sorting - Relative Performance

Relative performance of parallel sorting algorithms on SGI Altix
Adaptive algorithm selection model obtains 99.7% of the possible performance.
Next best algorithm (sample sort) provides only 90.4%.

0.2

0.4

0.6

0.8

1

2 4 8 16 32

Processors

Relative Speedup

Sample

Column
Radix

Random

Adaptive

Best

Parallel Sorting - performance penalty

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32

Processors

R
el

at
iv

e
Er

ro
r(

%
) Sample

Column

Radix

Random

Adaptive

Best

Relative performance penalty of parallel sorting algorithms on SGI Altix
Adaptive algorithm selection model incurs 12% average penalty on
misprediction
Next best algorithm (sample sort) averages 132% penalty

Outline
• Motivation

• STAPL: Standard Template Adaptive Parallel Library
– Philosophy & Design Overview
– Components for Program Development

pContainers, Views, pRange, pAlgorithms

– Portability and Optimization
Adaptive Remote Method Invocation (ARMI) Communication
Library
Adaptive Components, Adaptive Algorithm Selection

– Applications developed using STAPL

• Summary & Future Work

Discrete Ordinates Particle
Transport Computation

Important application for DOE
– E.g., Sweep3D and UMT2K
– Large, on-going DOE project at TAMU to develop application

in STAPL (TAXI)
Spatial sweep for each direction of particle transport, each
represented by a pRange where the sweep is encoded in the
pRange’s TDG (task dependence graph)

One sweep

Eight
simultaneous
sweeps

Related work

NYNYNNYViews

V,H,QAAMV,LVA,V,L,G,
M

Data Structures
(Array, Vector,List, Graph, Matrix)

YYNNYNYReuse Seq Containers
YNNNNNYFramework for

pContainers

N

N

Y/Y

SPMD/
MPMD

Shared/
Part

Lang

Titanium

N

N

Y/Y

MPMD

Shared

Lib

TBB

N

Y

Y/N

SPMD

Shared

Lib

POOMA

NNYYAdaptive

YNYY/YData Partition/
Mapping

Y/NY/YY/NY/YGeneric Data Type/
Generic Algorithms

SPMDSPMDMPMDSPMD/
MPMD

Programming Model

SharedSharedShared/
Part

SharedMemory Address
Space

Lib

HTA

LibLangLibLanguage/Library

PSTLCharm++STAPLFeatures\Project

Conclusion
STAPL has been used successfully on several large-scale,
complex applications
– STAPL has influenced Intel’s TBB

We plan to release a version soon to friendly users
More info at http://parasol.tamu.edu/stapl/
STAPL Team:
– Faculty: Lawrence Rauchwerger (PI), Nancy Amato, Bjarne

Stroustrup
– Postdoc: Mauro Bianco
– Students: Antal Buss, Olga Pearce, Antoniu Pop, Ioannis

Papadopoulos, Timmie Smith, Gabriel Tanase, Nathan Thomas
– Sponsors: DOE, NSF, IBM, Intel, HP

http://parasol.tamu.edu/stapl/

	STAPL: �A High Productivity Programming Infrastructure �for Parallel and Distributed Computing
	Motivation	
	STAPL
	Applications Using STAPL
	Outline
	STAPL Specification
	STL: Standard Template Library
	STAPL: Standard Template Adaptive Parallel Library
	Usage Model
	Outline
	pContainers
	Example: pArray
	Views
	pAlgorithms
	pAlgorithms and Views
	pRange - Task Graphs in STAPL
	pRange: Simple Dependence Specification
	Scalability of pAlgorithms
	Outline
	Run Time System
	STAPL RTS
	RTS Consistency Models
	Outline
	Support for Adaptivity in STAPL
	Adaptive Algorithm Selection�(ICS 00, IWACT 01, PPoPP 05)
	Parallel Sorting - Relative Performance
	Parallel Sorting - performance penalty
	Outline
	Discrete Ordinates Particle Transport Computation
	Related work
	Conclusion

