
STAPL: 
A High Productivity Programming Infrastructure 

for Parallel and Distributed Computing

Nancy Amato & Lawrence Rauchwerger
http://parasol.tamu.edu/stapl/

Parasol Lab, Dept of Computer Science, Texas A&M

http://parasol.tamu.edu/stapl/


Motivation

There is a growing need for parallel programs
– Large scale parallel machines getting larger
– small scale parallel machines (i.e., multicores) are 

becoming ubiquitous

Challenges 
– Parallel programming is specialized & costly
– portability
– Scalability & Efficiency is (usually) poor
– Composability and integration with other components



STAPL

STAPL: Parallel components library and 
development environment
– Extensible & composable
– Parallel superset of STL 
– Inter-operable with STL

Layered architecture: User – Developer - Specialist
– Extensible
– Portable (only lowest layer needs to be specialized once 

at system installation)
High Productivity Environment
– components have (almost) sequential interfaces



Applications Using STAPL

Nuclear Eng. - Discrete Ordinates Particle 
Transport
Bioinformatics - Protein Folding
Geophysics - Seismic Ray Tracing
Aerospace - Lattice Boltzman Method 
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STAPL Specification
Adopts STL Philosophy: Generic Programming
– composable (unlike STL)
– Interoperable with other libraries and packages
Shared Object View
– User Layer: No explicit communication
– Machine Layer: Architecture dependent code
Distributed Objects
– no replication (visible to the user)
– no software coherence (visible to the user)
Portable efficiency
– Adaptation to environment
– Runtime System virtualizes underlying architecture
Compiles with any standard C++ compiler (GCC) (It’s a library –
not a language)



STL: Standard Template Library
Generic programming components using C++ templates.

Containers - collection of other objects
– vector, list, deque, set, multiset, map, multi_map, hash_map
– Templated by data type:   vector<int> v(50);

Algorithms - manipulate the data stored in containers
– count(), reverse(), sort(), accumulate(), for_each(), reverse()

Iterators - Decouple algorithms from containers
– Provide generic elementary access to data in containers
– can define custom traversal of container (e.g., every other element)
– count(vector.begin(), vector.end(), 18);

Algorithm  ContainerContainerIterator



STAPL: Standard Template Adaptive Parallel Library

STAPL: A library of parallel, generic 
constructs based on the C++ 
Standard Template Library 
(STL)

– Components for Program 
Development

pAlgorithms, pContainers, Views, 
pRange

– Portability and Optimization
STAPL RTS and Adaptive Remote 
Method Invocation (ARMI) 
Communication Library
Framework for Algorithm Selection 
and Tuning (FAST)



Usage Model
Two Models:

Data and Task Parallelism co-exist
programmers can use library developer options, if 
desired

Thread Safe Operations

Explicit CommunicationsImplicit Synchronizations

PGASShared Memory

MultithreadedSingle threaded

Library DeveloperApplication Programmer
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pContainers

Generic, distributed data structures with parallel methods
Usability

– Shared object view
– Generic access mechanism through Views
– Handle data distribution and remote data access internally
– Interface compatible with sequential counterpart

Extendability & Composability
– New (user defined) pContainers extend Base classes
– pContainers of pContainers

Efficiency & Adaptability
– OO design to optimize specific containers
– Optional user customization of each pContainer instance through 

template parameters & traits 
Enable/Disable Performance Monitoring, thread safety, …
Select Partition Strategies, consistency models, …

pContainers currently available in STAPL
– pVector, pList,  pMap, pSet, pMultiMap, pMultiSet, pHashMap, pHashSet, 

pArray, pGraph, pMatriix



Example: pArray
pArray is an ordered sequence of elements accessed using indices
The domain (unique identifiers of pContainer elements) is a range of 
integers, e.g.,  [0,7] 
STAPL provides common
– Logical Partitions of elements (e.g., Blocked, Balanced, BlockCyclic, …) 
– PartitionMappers to map subdomains to locations (e.g., Blocked, Cyclic, … )
– Users can extend existing & implement new Partitions and Mappers

76543210

10 54 32 76
Location 0 Location 1

Ex 1: Blocked Partition
Cyclic Mapper

40 51 62 73
Location 0 Location 1

Ex 2: Cyclic Partition
Blocked Mapper

pArray



Views
Views provide generic access mechanism for pContainer
– STAPL equivalent of STL iterator, extended to allow for efficient parallelism

– Focus on processing range of items, instead of single item

– Specify different partitions and data traversal for the data in a pContainer

– Hierarchically defined to control locality and granularity of parallelism

Two logical views - one 
(left) aligned with 
physical partition

subview subview

subview

view

View

Data Space

V4V3V2V1

V4

V3

V2

V1

L4L3L2L1

pContainer
Physical
partition



pAlgorithms

pAlgorithms in STAPL
– Parallel counterparts of STL algorithms
– Additional parallel algorithms

Common parallel algorithms: 
Prefix sums
List ranking

pContainer specific algorithms:
Strongly Connected Components (pGraph)
Euler Tour (pGraph)
Matrix multiplication (pMatrix)

– Composable
pAlgorithms may invoke pAlgorithms

– multiple algorithms exist for a particular operation (e.g., sorting) 
and STAPL adaptively selects which to use



pAlgorithms and Views
Views are inputs for pAlgorithms
– Input views specify parallelism the algorithm can exploit

A pAlgorithm may operate on views before 
beginning to optimize the computation
– Refining (subdividing) a sub-view may increase 

parallelism and locality
Views may be adjusted to match data boundary
Different views may be adjusted differently to allow easier 
algorithm specification

Optimized access methods when all the data of a 
sub-view is local and contiguous



pRange - Task Graphs in STAPL
Task
– Work function
– Data to process

Task dependencies
– Expressed in Task Dependence 

Graph (TDG)
– TDG queried to find tasks ready for 

execution

Task

View

Work Function

901345675628

View



pRange: Simple Dependence Specification

Goal: Developer expresses dependencies 
concisely
– If needed, full enumeration of dependencies is supported

Common patterns supported in pRange
– Sequential – sources depend on sinks
– Independent – no new dependencies needed in 

composed graph
– Pipelined – dependencies follow a regular pattern

Wave front, tree-based reductions, etc.



Scalability of pAlgorithms

Results obtained on an IBM P3 machine at NERSC
– Strong scaling: same problem size as increase #procs

Results show scalability relative to 64 processors

– Weak scaling: increase problem size as increase #procs,  keep work 
per processor constant

strong scaling weak scaling
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Run Time System

Application Specific Parameters

Smart Application

STAPL RTS

ARMI Executor

e.g., K42 User-Level

Dispatcher

Kernel Scheduler
(no custom scheduling, e.g. NPTL)Operating System 

Memory ManagerAdvanced stageAdvanced stage

Experimental stage: Experimental stage: 
multithreadingmultithreading

ARMI Executor

Comm. Thread

RMI Thread

Task Thread

Custom schedulingCustom scheduling

Kernel schedulingKernel scheduling



STAPL RTS

– Adaptive Remote Method Invocation (ARMI) 
Communication Library

Synchronous and Asynchronous RMI
Support for message aggregation 
Synchronization primitives

Fence, Global Distributed Locks, Group-Based Synchronization

– Executor/Scheduler - execute pRange tasks
Customized task scheduling & load balancing for every pRange instance
RTS selects default policy, but can be user specified

– Performance monitor for feedback to the user and the 
adaptive framework

– Multithreaded RTS
RMI servers, Task executors, Comm. threads, …



RTS Consistency Models
Processor Consistency (default)

– Accesses from a processor on another’s memory are sequential
– Requires in-order processing of RMIs

Limited parallelism
Object Consistency

– Accesses to different objects can happen out of order
– Uncovers fine-grained parallelism

Accesses to different objects are concurrent
Potential gain in scalability

– Can be made default for specific computational phases
Mixed Consistency

– Use Object Consistency on select objects
Selection of objects fit for this model can be:

Elective – the application can specify that an object’s state does not depend on 
others’ states.
Detected – if it is possible to assert the absence of such dependencies

– Use Processor Consistency on the rest
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Support for Adaptivity in STAPL

– pAlgorithms
Algorithm Selection and Tuning (FAST) 
Parametric Algorithms

– pContainers
Consistency model may vary for each instance, or even over time 
for the same instance
Data distribution can be selected/modified at runtime

– ARMI Communication Library
Message passing and\or shared memory communication modes
Aggregation of messages to tolerate latency



Adaptive Algorithm Selection
(ICS 00, IWACT 01, PPoPP 05)

Overview of Approach

Given
Multiple algorithmic choices for the 
same high level operation

At STAPL installation (& refine later)
Analyze each pAlgorithm’s 
performance on system and create a 
selection model

Program execution
Gather parameters, query model,  
and select pAlgorithm to use

Installation Benchmarks

Architecture &
Environment

Algorithm
Performance

Model

User
Code Parallel Algorithm Choices

Data Characteristics Runtime Tests

Selected Algorithm

Data Repository

STAPL

Adaptive Executable

Model



Parallel Sorting - Relative Performance

Relative performance of parallel sorting algorithms on SGI Altix
Adaptive algorithm selection model obtains 99.7% of the possible performance.
Next best algorithm (sample sort) provides only 90.4%.
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Parallel Sorting - performance penalty
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Relative performance penalty of parallel sorting algorithms on SGI Altix
Adaptive algorithm selection model incurs 12% average penalty on
misprediction
Next best algorithm (sample sort)  averages 132% penalty
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Discrete Ordinates Particle 
Transport Computation

Important application for DOE
– E.g., Sweep3D and UMT2K
– Large, on-going DOE project at TAMU to develop application 

in STAPL (TAXI)
Spatial sweep for each direction of particle transport, each 
represented by a pRange where the sweep is encoded in the 
pRange’s TDG (task dependence graph)

One sweep

Eight 
simultaneous 
sweeps
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Conclusion
STAPL has been used successfully on several large-scale, 
complex applications 
– STAPL has influenced Intel’s TBB

We plan to release a version soon to friendly users
More info at http://parasol.tamu.edu/stapl/
STAPL Team:
– Faculty: Lawrence Rauchwerger (PI), Nancy Amato, Bjarne 

Stroustrup
– Postdoc: Mauro Bianco
– Students: Antal Buss, Olga Pearce, Antoniu Pop, Ioannis

Papadopoulos, Timmie Smith, Gabriel Tanase, Nathan Thomas
– Sponsors: DOE, NSF, IBM, Intel, HP

http://parasol.tamu.edu/stapl/
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