
University of Wisconsin-Madison© 2007 Multifacet Project

Performance Pathologies in
Hardware Transactional Memory

David A. Wood

Multifacet Project, Univ. of Wisconsin—Madison
December, 2007 @ IIT-Kanpur

“The distant threat has come to pass…
parallel computers are the inexorable next step
in the evolution of computers.”

— James Larus, Microsoft, & Ravi Rajwar, Intel
In Transactional Memory, Morgan/Claypool, 2007

212/15/2007 Wisconsin Multifacet Project

Why Locks are Hard

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0
Thread 1

• Coarse-grain locks
– Simple
– No deadlock
– Few data races
– Limited concurrency

• Fine-grain locks
– Greater concurrency
– Greater code complexity
– Potential deadlocks

• Not composable
– Potential data races

• Which lock to lock?

© 2007 Multifacet Project University of Wisconsin Madison

Transactional Memory (TM)

• Database systems are the parallel programming success story
– Declarative programming model (e.g., SQL)
– Transactions enforce ACID properties

• Serializability facilitates sequential reasoning
– Even naïve programmers (often) get correct parallel execution

• TM makes shared-memory synchronization declarative
– Programmer says

• “I want this atomic”
– TM system

• “Makes it so”

void move(T s, T d, Obj key){
atomic {

tmp = s.remove(key);
d.insert(key, tmp);

}
}

© 2007 Multifacet Project University of Wisconsin Madison

Some Transaction Terminology

Transaction: State transformation that is:
(1) Atomic (all or nothing)
(2) Consistent
(3) Isolated (serializable)
(4) Durable (permanent)

Transaction: State transformation that is:
(1) Atomic (all or nothing)
(2) Consistent
(3) Isolated (serializable)
(4) Durable (permanent)

Abort: Transaction fails & must restore initial stateAbort: Transaction fails & must restore initial state

Commit: Transaction successfully completesCommit: Transaction successfully completes

Conflict: Two concurrent transactions conflict if either’s
write set overlaps with the other’s read or write set

Conflict: Two concurrent transactions conflict if either’s
write set overlaps with the other’s read or write set

Read (Write) Set: Items read (written) by a transactionRead (Write) Set: Items read (written) by a transaction

© 2007 Multifacet Project University of Wisconsin Madison

Nested Transactions for Software Composition

• Modules expose interfaces, NOT implementations
• Example

– Insert() calls getID() from within a transaction
– The getID() transaction is nested inside the insert()

transaction

int getID() {
// child TX
atomic {

id = global_id++;
}
return id;

}

void insert(object o){
// parent TX
atomic {

t.insert(getID(), o);
}

}

© 2007 Multifacet Project University of Wisconsin Madison

Closed Nesting

• On Commit child transaction is merged with its parent

• Flat
– Nested transactions “flattened” into a single transaction
– Only outermost begins/commits are meaningful
– Any conflict aborts to outermost transaction

• Partial rollback
– Child transaction can be aborted independently
– Can avoid costly re-execution of parent transaction

Child transactions remain isolated until parent commits

© 2007 Multifacet Project University of Wisconsin Madison

Implementing TM: Software, Hardware, or Hybrid

• Software TM (STM) Implementations
– Exist today
– Currently slower than locks
– Always slower than hardware?

• Hybrid TM (HyTM) Implementations
– Software TM with best-effort hardware acceleration
– Next step, supported by Sun in the Rock processor

• Hardware TM (HTM) Implementations
– Fast, leverages cache coherence & speculative execution
– Likely long-run winner for performance reasons
– But finite hardware presents OS virtualization challenges

© 2007 Multifacet Project University of Wisconsin Madison

Implementing Transactional Memory

• (Data) Version Management
– Keep old values for abort AND new values for commit

– Eager: record old values “elsewhere”; update “in place”

– Lazy: update “elsewhere”; keep old values “in place”

• (Data) Conflict Detection
– Find read-write, write-read or write-write conflicts

among concurrent transactions

– Eager: detect conflict on every read/write

– Lazy: detect conflict at end (commit/abort)

Fast
commit

Less
wasted work

© 2007 Multifacet Project University of Wisconsin Madison

How Do Hardware TM Systems Differ?

Version Management

Lazy: buffer updates
& move on commit

Eager: update “in place”
after saving old values

Wisconsin LogTM

Herlihy/Moss TM

MIT LTM

Intel/Brown VTM

Like Databases with
Optimistic Conc. Ctrl.
Stanford TCC

Illinois Bulk
Like Databases with
Conservative C. Ctrl.
MIT UTM

No HTMs (yet)

Conflict Detection

Lazy: check
on commit

Eager: check
before read/write

Conflict Resolution: Ad Hoc

© 2007 Multifacet Project University of Wisconsin Madison

0

0.5

1

1.5

2

2.5

S
p

e
e
d

u
p

 N
o

rm
a
li

ze
d

 t
o

 E
E

Cholesky Radiosity Raytrace

EE
EL
LL
EE_HP
EL_T
LL_B

• Multiple Hardware Transactional Memory Designs
– Best Performance ?

• Depends !

Li
ve

lo
ck

Executive Summary (1/2)

© 2007 Multifacet Project University of Wisconsin Madison

0

0.5

1

1.5

2

2.5

S
p

e
e
d

u
p

 N
o

rm
a
li
ze

d
 t

o
 E

E

Cholesky Radiosity Raytrace

EE
EL
LL
EE_HP
EL_T
LL_B

• Why?
– Performance Pathologies

• What to do?
– Better Conflict Resolution

Performance Pathologies Performance

Executive Summary (2/2)

Li
ve

lo
ck

pa●thol●o●gy: any deviation
from a normal, healthy or
efficient condition

© 2007 Multifacet Project University of Wisconsin Madison

Talk Outline

• Motivation
• Base HTM Results

• Performance Pathologies
• Enhanced HTM Systems

© 2007 Multifacet Project University of Wisconsin Madison

Motivation

• Which HTM system performs best?

• Different Assumptions
– Hardware

• Broadcast vs Directory Based
– Software:

• Continuous Transactions vs Critical Section
Transactions

• How to compare?

© 2007 Multifacet Project University of Wisconsin Madison

Experimental Setup

• Base HTM Systems
–
–
–

• Common Hardware Platform
– 32 core CMP
– Directory-Based Coherence

• Common TM Programming Model
– Critical Section Based Transactions

• Common Workloads
– 5 SPLASH + 2 Microbenchmarks (Btree, LFUCache)

© 2007 Multifacet Project University of Wisconsin Madison

And the winner is…

• Low Contention: Similar
• High Contention: Depends

0

0.2

0.4

0.6

0.8

1

1.2
S

p
e
e
d

u
p

 N
o

rm
a
li
ze

d
 t

o
 E

E

Cholesky Radiosity Raytrace

EE
EL
LL

Li
ve

lo
ck

© 2007 Multifacet Project University of Wisconsin Madison

Talk Outline

• Motivation
• Base HTM Results

• Performance Pathologies
• Enhanced HTM Systems

© 2007 Multifacet Project University of Wisconsin Madison

Performance Pathologies

• StarvingElder
• SerializedCommit
• RestartConvoy

• FriendlyFire

• DuelingUpgrades
• FutileStall
• StarvingWriter

© 2007 Multifacet Project University of Wisconsin Madison

System

• Conflict Detection: Lazy
Detect conflicts at commit time (Validation)

• Version Management: Lazy
New value elsewhere, Update on commit
+ Abort
- Commit

• Conflict Resolution: Committer Wins

compare with TCC, Bulk

© 2007 Multifacet Project University of Wisconsin Madison

COMMITING
STALLED
ABORTING

CAUSE

Committer Wins

EFFECT(S)

• Starvation

• Load Imbalance

FIX

Elder gets Priority ?

StarvingElder

store A

load A

ABORT

store A
load A

ABORT

store A
load A

ABORT

Ti
m

e

© 2007 Multifacet Project University of Wisconsin Madison

Pathologies

• Pathology (% ExecutionTime)

• Enhancement
– Linear Backoff on Abort
– Eliminate RestartConvoys

Starving
Elder

Serialized
Commit

Restart
Convoy

Starving
Elder

Serialized
Commit

Restart
Convoy

5.2 1.0Raytrace 45 27 0.1 0.3

© 2007 Multifacet Project University of Wisconsin Madison

0

0.5

1

1.5

2

2.5

Raytrace

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 E

E

LL
LL_B

• Pathology (% ExecutionTime)

• Performance

Enhanced LL ()

Starving
Elder

Serialized
Commit

Restart
Convoy

Starving
Elder

Serialized
Commit

Restart
Convoy

5.2 1.0Raytrace 45 27 0.1 0.3

© 2007 Multifacet Project University of Wisconsin Madison

Performance Pathologies

• StarvingElder
• SerializedCommit
• RestartConvoy

• FriendlyFire

• DuelingUpgrades
• FutileStall
• StarvingWriter

© 2007 Multifacet Project University of Wisconsin Madison

System

• Conflict Detection: Eager
– Detect conflicts immediately

• Version Management: Lazy
– New Value elsewhere, Update on commit
+ Abort
- Commit

• Conflict Resolution:
– Requester Wins
– Exponential Backoff on Abort

compare with HMTM, LTM

© 2007 Multifacet Project University of Wisconsin Madison

FriendlyFire

load A
store A

load A

store A

ABORT
ABORT

load A

store A

load A

store A

ABORT

ABORT

ABORT

CAUSE

Requester Wins

EFFECT(S)

• Unnecessary Aborts

• Livelock

FIX

Priority Based Conflict
Resolution ?

© 2007 Multifacet Project University of Wisconsin Madison

Pathologies

• Pathology (% ExecutionTime)

• Enhancement
– Timestamp Based Conflict Resolution
– Eliminate FriendlyFire

Friendly
Fire

Friendly
Fire

Raytrace 73 0.2

© 2007 Multifacet Project University of Wisconsin Madison

Enhanced EL ()

• Pathology (% ExecutionTime)

• Performance

0

0.5

1

1.5

2

2.5

Raytrace

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 E

E

EL
EL_T

Friendly
Fire

Friendly
Fire

Raytrace 73 0.2

© 2007 Multifacet Project University of Wisconsin Madison

Performance Pathologies

• StarvingElder
• SerializedCommit
• RestartConvoy

• FriendlyFire

• DuelingUpgrades
• FutileStall
• StarvingWriter

© 2007 Multifacet Project University of Wisconsin Madison

System

• Conflict Detection: Eager
– Detect conflicts immediately

• Version Management: Eager
– New Value in-place, Restore on Abort
- Abort
+ Commit

• Conflict Resolution
– Stall Requester
– Abort Requester on possible deadlock

(Conservative Deadlock Avoidance)

compare with LogTM

© 2007 Multifacet Project University of Wisconsin Madison

DuelingUpgrades

load A

load A
store A

store A

load A

store A

STALL

ABORT

CAUSE

Conservative Deadlock
Avoidance

EFFECT(S)

• Unnecessary Stall

• Unnecessary Abort

FIX

Acquire Store
Permissions Early ?

© 2007 Multifacet Project University of Wisconsin Madison

Pathologies

• Pathology (% ExecutionTime)

• Enhancements
– DuelingUpgrades: Store-Set Predictor
– StarvingWriter: Writer Aborts Readers immediately

% Execution Time Aborts
/Transaction

% Execution Time Aborts
/Transaction

FutileStall Starving
Writer

Dueling
Upgrades

Futile
Stall

Starving
Writer

4.6 0.3

Dueling
Upgrades

4.2 <0.1Raytrace 1.0 <0.1

© 2007 Multifacet Project University of Wisconsin Madison

Enhanced EE ()

• Pathology (% ExecutionTime)

• Performance

0

0.5

1

1.5

2

2.5

Raytrace

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 E

E

EE
EE_HP

% Execution Time Aborts
/Transaction

% Execution Time Aborts
/Transaction

FutileStall Starving
Writer

Dueling
Upgrades

Futile
Stall

Starving
Writer

4.6 0.3

Dueling
Upgrades

4.2 <0.1Raytrace 1.0 <0.1

© 2007 Multifacet Project University of Wisconsin Madison

Caveats / FutureWork

• High Contention Scenarios
– Better Conflict Resolution
– Unidentified Pathologies

• Better TM Workloads

Restart
Convoy

Starving
Elder

Serialized
Commit

Restart
Convoy

Starving
Elder

Serialized
Commit

Mp3d 21 36 30 9.0 28 25

© 2007 Multifacet Project University of Wisconsin Madison

0

0.5

1

1.5

2

2.5

S
p

e
e
d

u
p

 N
o

rm
a
li
ze

d
 t

o
 E

E

Cholesky Radiosity Raytrace

EE
EL
LL
EE_HP
EL_T
LL_B

• TM promises to simplify parallel programming
• But, Performance Pathologies exist
• Enhanced HTM systems help

Executive Summary

Li
ve

lo
ck

© 2007 Multifacet Project University of Wisconsin Madison

Future Work

• Pathologies exist in emerging TM systems
– Represent performance bugs on given platform

• TM converts correctness bugs to performance bugs
– Large transactions eliminate data races
– But serialize execution

• Need automatic performance debugger tools
– Hard for programmers to analyze
– Leverage machine learning techniques to find bugs
– Work for emerging systems (Sun’s Rock)
– Work better for future systems (Wisconsin’s LogTM)

© 2007 Multifacet Project University of Wisconsin Madison

Questions?

• For more information:
– http://www.cs.wisc.edu/multifacet

– Email to david@cs.wisc.edu

http://www.cs.wisc.edu/multifacet
mailto:david@cs.wisc.edu

	Performance Pathologies in Hardware Transactional Memory
	Why Locks are Hard
	Transactional Memory (TM)
	Some Transaction Terminology
	Nested Transactions for Software Composition
	Closed Nesting
	Implementing TM: Software, Hardware, or Hybrid
	Implementing Transactional Memory
	How Do Hardware TM Systems Differ?
	Executive Summary (1/2)
	Executive Summary (2/2)
	Talk Outline
	Motivation
	Experimental Setup
	And the winner is…
	Talk Outline
	Performance Pathologies
	System
	StarvingElder
	Pathologies
	Enhanced LL ()
	Performance Pathologies
	System
	FriendlyFire
	 Pathologies
	Enhanced EL ()
	Performance Pathologies
	System
	DuelingUpgrades
	Pathologies
	Enhanced EE ()
	Caveats / FutureWork
	Executive Summary
	Future Work
	Questions?

