Performance Pathologies in
Hardware Transactional Memory
David A. Wood

Multifacet Project, Univ. of Wisconsin—Madison
December, 2007 @ IIT-Kanpur

“The distant threat has come to pass...
parallel computers are the inexorable next step

In the evolution of computers.”

— James Larus, Microsoft, & Ravi Rajwar, Intel
In Transactional Memory, Morgan/Claypool, 2007

© 2007 Multifacet Project University of Wisconsin-Madison

Why Locks are Hard

 Coarse-grain locks * Fine-grain locks
— Simple — Greater concurrency
— No deadlock — Greater code complexity
— Few data races — Potential deadlocks
— Limited concurrency « Not composable

— Potential data races
* Which lock to lock?
// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(Ss); Thread 0
LOCK(d): move(a, b, keyl); thread1
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

move(b, a, key2);

DEADLOCK!

12/15/2007 2 Wisconsin Multifacet Project

Transactional Memory (TM)

» Database systems are the parallel programming success story
— Declarative programming model (e.g., SQL)
— Transactions enforce ACID properties
» Serializablility facilitates sequential reasoning
— Even naive programmers (often) get correct parallel execution

 TM makes shared-memory synchronization declarative

— Programmer says void move(T s, T d, Obj key){
 “| want this atomic” atomic {
_ TM system tmp = s.remove(key);

. “Makes it So” d.insert(key, tmp);

}
}

© 2007 Multifacet Project University of Wisconsin Madison

Some Transaction Terminology

Transaction: State transformation that is:
(1) Atomic (all or nothing)

=2y—Consistent

(3) Isolated (serializable)

A _Durable oormanent—

Commit: Transaction successfully completes

Abort: Transaction fails & must restore initial state
Read (Write) Set: Items read (written) by a transaction

Conflict: Two concurrent transactions conflict if either’s
write set overlaps with the other’s read or write set

© 2007 Multifacet Project University of Wisconsin Madison

Nested Transactions for Software Composition

 Modules expose interfaces, NOT implementations

« Example
— Insert() calls getlD() from within a transaction
— The getlD() transaction is nested inside the insert()

transaction
void insert(object 0){ int getiD() {
// parent TX // child TX
atomic { atomic {
t_insert(getiD(), 0); id = global_id++;
} +
} return id;

}

© 2007 Multifacet Project University of Wisconsin Madison

Closed Nesting

Child transactions remain isolated until parent commits

 On Commit child transaction is merged with its parent

 Flat
— Nested transactions “flattened” into a single transaction
— Only outermost begins/commits are meaningful
— Any conflict aborts to outermost transaction

« Partial rollback
— Child transaction can be aborted independently
— Can avoid costly re-execution of parent transaction

© 2007 Multifacet Project University of Wisconsin Madison

Implementing TM: Software, Hardware, or Hybrid

o Software TM (STM) Implementations
— Exist today
— Currently slower than locks
— Always slower than hardware?

 Hybrid TM (HyTM) Implementations
— Software TM with best-effort hardware acceleration
— Next step, supported by Sun in the Rock processor

e Hardware TM (HTM) Implementations
— Fast, leverages cache coherence & speculative execution
— Likely long-run winner for performance reasons
— But finite hardware presents OS virtualization challenges

© 2007 Multifacet Project University of Wisconsin Madison

Implementing Transactional Memory

« (Data) Version Management
— Keep old values for abort AND new values for commit

— Eager: record old values “elsewhere”; update “in place” < Fasft
commit

— Lazy: update “elsewhere”; keep old values “in place”

e (Data) Conflict Detection

— Find read-write, write-read or write-write conflicts
among concurrent transactions

— Eager: detect conflict on every read/write < Less

wasted work
— Lazy: detect conflict at end (commit/abort)

© 2007 Multifacet Project University of Wisconsin Madison

How Do Hardware TM Systems Differ?

Version Management

Conflict Detection

Lazy: buffer updates
& move on commit

Eager: update “in place”
after saving old values

Lazy: check
on commit

Like Databases with
Optimistic Conc. Ctrl.

Stanford TCC &&

lllinois Bulk

No HTMs (yet)

Eager: check
before read/write

Herlihy/Moss TM

MIT LTM

EL

Intel/Brown VTM

Like Databases with
Conservative C. Citrl.

MIT UTM EE
Wisconsin LogTM

Conflict Resolution: Ad Hoc

© 2007 Multifacet Project

University of Wisconsin Madison

Executive Summary (1/2)

* Multiple Hardware Transactional Memory Designs
— Best Performance ?

2.5
2_
OEE
1.51 OEL
OLL

Livelock

Speedup Normalized to EE
"

o

Cholesky Radiosity Raytrace
 Depends!

© 2007 Multifacet Project University of Wisconsin Madison

Executive Summary (2/2)

« Why?
— Performance Pathologies paetholeoegy: any deviation
e \What to do? from a normal, healthy or
— Better Conflict Resolution efficient condition
2.5
2_
OEE
1.5 OEL
OLL

o
ol
Livelock

Speedup Normalized to EE
H
|
|

0 . .
Cholesky Radiosity Raytrace

4'@\ -
Performance Pathologies f Performance

© 2007 Multifacet Project University of Wisconsin Madison

Talk Outline

e Motivation
e Base HTM Results

« Performance Pathologies
« Enhanced HTM Systems

© 2007 Multifacet Project University of Wisconsin Madison

Motivation

e Which HTM system performs best?

« Different Assumptions
— Hardware

* Broadcast vs Directory Based
— Software:

e Continuous Transactions vs Critical Section
Transactions

« How to compare?

© 2007 Multifacet Project University of Wisconsin Madison

Experimental Setup

Base HTM Systems
- [LL
- EL
- EE

Common Hardware Platform
— 32 core CMP
— Directory-Based Coherence

Common TM Programming Model
— Ciritical Section Based Transactions

Common Workloads
— 5 SPLASH + 2 Microbenchmarks (Btree, LFUCache)

© 2007 Multifacet Project University of Wisconsin Madison

And the winner is...

Periormal 68Fa

=
2 l

Speedup Normalized to EE

Cholesky Radiosity Raytrace

N

 Low Contention: Similar
e High Contention: Depends

© 2007 Multifacet Project University of Wisconsin Madison

Talk Outline

e Motivation
e Base HTM Results

 Performance Pathologies
« Enhanced HTM Systems

© 2007 Multifacet Project University of Wisconsin Madison

Performance Pathologies

« StarvingElder /
} L

e SerializedCommit
 RestartConvoy

* FriendlyFire } E&,

\

e FutileStall

* DuelingUpgrades }
e StarvingWriter

© 2007 Multifacet Project University of Wisconsin Madison

LIL System

o Conflict Detection: Lazy
Detect conflicts at commit time (Validation)

 Version Management: Lazy

New value elsewhere, Update on commit
+ Abort
- Commit

e Conflict Resolution: Committer Wins

compare with TCC, Bulk

© 2007 Multifacet Project University of Wisconsin Madison

\ Lk T2

store Al

load A

StarvingElder

T3

ABORT;

load A

© 2007 Multifacet Project

store A l

. COMMITING

§ sTALLED
@ ABORTING

@

I
CAUSE
Committer Wins
EFFECT(S)

e Starvation

e Load Imbalance

FIX
Elder gets Priority ?

University of Wisconsin Madison

LIL Pathologies

« Pathology (% ExecutionTime)

LL

Starving | Serialized | Restart
Elder | Commit Convoy
Raytrace 45 27 5.2

e Enhancement
— Linear Backoff on Abort
— Eliminate RestartConvoys

© 2007 Multifacet Project

University of Wisconsin Madison

Enhanced LL (LLL [8)

« Pathology (% ExecutionTime)

LL

Starving | Serialized | Restart
Elder | Commit Convoy

Raytrace 45 27 2.2

2.5

e Performance

mLL
OLL B

Speedup Normalized to EE

Raytrace

© 2007 Multifacet Project University of Wisconsin Madison

Performance Pathologies

e SerializedCommit
 RestartConvoy

 FriendlyFire } E&,

e StarvingElder
} L

e FutileStall

 DuelingUpgrades
} EE
e StarvingWriter

© 2007 Multifacet Project University of Wisconsin Madison

Bl System

o Conflict Detection: Eager
— Detect conflicts immediately

 Version Management: Lazy

— New Value elsewhere, Update on commit
+ Abort
- Commit

e Conflict Resolution:

— Requester Wins
— Exponential Backoff on Abort

compare with HMTM, LTM

© 2007 Multifacet Project University of Wisconsin Madison

© 2007 Multifacet Project

FriendlyFire

13

ABORTS

CAUSE

Requester Wins
EFFECT(S)

* Unnecessary Aborts
e Livelock

FIX

Priority Based Conflict
Resolution ?

University of Wisconsin Madison

=L, Pathologies

« Pathology (% ExecutionTime)

EL

Friendly
Fire

Raytrace 73

 Enhancement
— Timestamp Based Conflict Resolution
— Eliminate FriendlyFire

© 2007 Multifacet Project University of Wisconsin Madison

Enhanced EL (EL T)

« Pathology (% ExecutionTime)

ElL

Friendly
Fire

Raytrace 73

2.5

e Performance

1.5 ——

mEL
OEL_T

Speedup Normalized to EE

Raytrace

© 2007 Multifacet Project University of Wisconsin Madison

Performance Pathologies

——SertalizedCommit—
e RestartConvoy

* FriendlyFire } E&,

e StarvingElder

Caatsl
—e—FutieStall

 DuelingUpgrades
} EE

e StarvingWriter

© 2007 Multifacet Project University of Wisconsin Madison

BE System

e Conflict Detection: Eager
— Detect conflicts immediately

 Version Management: Eager
— New Value in-place, Restore on Abort
- Abort
+ Commit

e Conflict Resolution

— Stall Requester
— Abort Requester on possible deadlock
(Conservative Deadlock Avoidance)

compare with LogTM

© 2007 Multifacet Project

University of Wisconsin Madison

T

load A

load A
store A

load A

store A

© 2007 Multifacet Project

T2

P
|+St°<reA; ~

DuelingUpgrades

CAUSE

Avoidance
EFFECT(S)

e Unnecessary Stall
e Unnecessary Abort
FIX

Acquire Store
Permissions Early ?

University of Wisconsin Madison

Conservative Deadlock

=

= Pathologies

« Pathology (% ExecutionTime)

EE

% Execution Time Aborts
/Transaction
FutileStall | Starving Dueling
Writer Upgrades
Raytrace 1.0 4.6 4.2

e Enhancements

— DuelingUpgrades: Store-Set Predictor

— StarvingWriter: Writer Aborts Readers immediately

© 2007 Multifacet Project

University of Wisconsin Madison

Enhanced EE (EE [P)

« Pathology (% ExecutionTime)

EE

% Execution Time Aborts
/Transaction
FutileStall | Starving Dueling
Writer Upgrades
Raytrace 1.0 4.6 4.2
2.5
L
« Performance % > S
%1.5 — (mEeE
s OEE_HP
205 S
7]
0
© 2007 Multifacet Project Raytrace

University of Wisconsin Madison

Caveats / FutureWork

LL

LL B

Restart | Starving | Serialized | Restart | Starving | Serialized
Convoy | Elder Commit Convoy | Elder Commit
Mp3d 21 36 30 9.0 28 25

 High Contention Scenarios
— Better Conflict Resolution

— Unidentified Pathologies

e Better TM Workloads

© 2007 Multifacet Project

University of Wisconsin Madison

Executive Summary

e TM promises to simplify parallel programming
» But, Performance Pathologies exist (&%
 Enhanced HTM systems help

&

2.5
LL
LL
o 2-
= OEE
N 1.5 OEL
T mLL
Y — o OEE_HP
= <7 | [B OEL_T
o © OLL B
051 2 —
O -

Q
p)

0 . .
_ ~ Cholesky Radiosity Raytrace
© 2007 Multifacet Project University of Wisconsin Madison

Future Work

e Pathologies exist in emerging TM systems
— Represent performance bugs on given platform

e TM converts correctness bugs to performance bugs
— Large transactions eliminate data races
— But serialize execution

 Need automatic performance debugger tools
— Hard for programmers to analyze
— Leverage machine learning techniques to find bugs
— Work for emerging systems (Sun’s Rock)
— Work better for future systems (Wisconsin’'s LogTM)

© 2007 Multifacet Project University of Wisconsin Madison

Questions?

e For more information:
— http://Iwww.cs.wisc.edu/multifacet

— Email to david@cs.wisc.edu

© 2007 Multifacet Project University of Wisconsin Madison

http://www.cs.wisc.edu/multifacet
mailto:david@cs.wisc.edu

	Performance Pathologies in Hardware Transactional Memory
	Why Locks are Hard
	Transactional Memory (TM)
	Some Transaction Terminology
	Nested Transactions for Software Composition
	Closed Nesting
	Implementing TM: Software, Hardware, or Hybrid
	Implementing Transactional Memory
	How Do Hardware TM Systems Differ?
	Executive Summary (1/2)
	Executive Summary (2/2)
	Talk Outline
	Motivation
	Experimental Setup
	And the winner is…
	Talk Outline
	Performance Pathologies
	System
	StarvingElder
	Pathologies
	Enhanced LL ()
	Performance Pathologies
	System
	FriendlyFire
	 Pathologies
	Enhanced EL ()
	Performance Pathologies
	System
	DuelingUpgrades
	Pathologies
	Enhanced EE ()
	Caveats / FutureWork
	Executive Summary
	Future Work
	Questions?

