
Wkp on Arch and Comp for Multithreading
Kanpur, December 2007Josep Torrellas, University of Illinois

Lessons Learned in Designing
Speculative Multithreading Hardware

Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

< 2 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

The Challenge for Architects

Design parallel architectures that make it easy to
write parallel code

for(i=0;i<n;i++) {
… = A[B[i]] …

…
A[C[i]] = …

}

Iteration J

… = A[4] …
…

A[5] = …

Iteration J+1

… = A[2] …
…

A[2] = …

Iteration J+2

… = A[5] …
…

A[6] = …

Compilers: no parallelization unless 100% safe:
– Hard-to-analyze access patterns

• Subscripted array subscripts
• Pointer accesses

< 3 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

for(i=0;i<n;i++){
… = A[B[i]] …

…
A[C[i]] = …

}

Speculative Multithreading (SM) or
Thread-Level Speculation (TLS)

Execute potentially-dependent tasks in parallel
– Assume no dependence across tasks will be violated
– HW tracks memory accesses; buffers unsafe state
– Detect any violation
– Squash offending tasks, repair polluted state, restart tasks

Iteration J

… = A[4] …
…

A[5] = …

Iteration J+1

… = A[2] …
…

A[2] = …

Iteration J+2

… = A[5] …
…

A[6] = …
RAW

< 4 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Hardware Provides Support to …

Checkpoint register state at the beginning of task
Buffer state being generated:
– Speculate on code long enough that state overflows into

cache hierarchy (or buffers)

Monitor communication across tasks to enforce
ordering (cache coherence protocol)
If dependence violation: fast undo side-effects of
speculative task (invalidate cache, restore regs)
If no dependence violation: task commit

Dependence
Violation Detection

State Buffering
And Undo

< 5 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Rest of the Talk: How we used TLS for 10 years for…

Performance
Software dependability
Hardware reliability
Performance revisited
… and what we learned

Wkp on Arch and Comp for Multithreading
Kanpur, December 2007Josep Torrellas, University of Illinois

Goal 1: Performance

< 7 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Speculative Chip-Multiprocessor (CMP)
[Krishnan ICS96]

L1 L1 L1 L1

L2

P0 P1 P2 P3

MDT
Memory

Disambiguation
Table (MDT)

Memory
Disambiguation
Table (MDT)

< 8 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Speculative Memory Accesses

L

S

P0 P1 P2 P3

1

P0 P1

P2P3

MDT

P1 P2 P3P0

< 9 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Write & Dependence Violation

MDT

P1

L

S

P0 P1 P2 P3

1
Premature read

of P2
Premature read

of P2

< 10 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Write & Dependence Violation

MDT

P2 P3

L

S

P0 P1 P2 P3

1

P2 and successors
are squashed

P2 and successors
are squashed

Load bit for P2
is cleared

Load bit for P2
is cleared

Store bit for P1
is set

Store bit for P1
is set

< 11 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Read & Value Forwarding

MDT

P2

L

S

P0 P1 P2 P3

1
Most recent

version in P1
Most recent

version in P1

< 12 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Read & Value Forwarding

MDT

P1 P2

L

S

P0 P1 P2 P3

1

1

Load bit for P2
is set

Load bit for P2
is set

P1 delivers
data

P1 delivers
data

MDT forwards
request

MDT forwards
request

< 13 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Scalable Multiprocessor [Cintra ISCA00]
P0 P1 P2 P3

MDT

P0 P1 P2 P3

MDT
N1N0

L

S

P0 P1 P2 P3

1

MDT
L

S

N0 N1

1

N0 < N1N0 < N1

P0 < P1 < P2 < P3P0 < P1 < P2 < P3 P0 < P1 < P2 < P3P0 < P1 < P2 < P3

< 14 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Removing Bottlenecks: Task Commit Serialization
[Prvulovic ISCA01]

C 0

C Commit

E 0 E 1 E 2 E 3

E Execute

E 4 E 5 E 6 E 7
C 1

C 2

C 3

C 4 Critical
Path

< 15 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Buffering Speculative State

Spec
Non
Spec

Caches

Main memory

Spec Spec Spec

X

X

< 16 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Merging of Task State: Architectural MM

Spec
Caches

Main memory

Spec Spec Spec

Architectural
State

Non
Spec

< 17 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Merging of Task State: Future MM

Spec
Non
Spec

Caches

Main memory

Spec Spec Spec

Future
State

Log

write

Log

< 18 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Taxonomy of Buffering Approaches
[Garzaran HPCA03]

Merging of
task state

Separation
of task state

Architectural
Main Memory

Future
Main
Memory

Multiple
Spec
Tasks

Single
Spec Task

Multiple
Versions

Single
Version

Single
Version

< 19 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Merging of
task state

Separation
of task state

Architectural
Main Memory

Future
Main
Memory

Eager Lazy

Multiple
Spec
Tasks

Single
Spec Task

Multiple
Versions

Single
Version

Single
Version

Hydra
Steffan
Cintra

Prvulovic Zhang

Multiscalar
(H-ARB) Multiscalar

(SVC)Super-
threaded

SUDS

Taxonomy of Buffering Approaches
[Garzaran HPCA03]

Wkp on Arch and Comp for Multithreading
Kanpur, December 2007Josep Torrellas, University of Illinois

Goal 2: Performance in Other Environments

< 21 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Using TLS on Explicitly Parallel Codes

Enter Critical

Exit Critical

Enter Critical

Exit Critical

Thread 0 Thread 1

BarrierBarrier

Thread 0

Barrier

Thread 1 Thread 2

X =
= X

Advantages
– Faster parallel execution
– More Programmable: OK to write coarse critical sections

or put additional barriers

< 22 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Speculative Synchronization
[Martinez ASPLOS02]

Write code without fine-tuning synchronization….
– Coarse critical sections
– More barriers than potentially necessary

… And still attain high performance

Threads do not stall on Taken locks or Raised barriers

They simply continue, executing speculative tasks

Maintain 1 or more safe threads → forward progress
– Lock: owner
– Flag: producer
– Barrier: lagging threads

< 23 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Checkpointed Early Resource Recycling (Cherry)
[Martinez MICRO02]

Problem: Limited processor resources (registers,
LD/ST queue entries..)
Opportunity: Resources reserved until instruc
retirement
– registers
– LD/ST queue entries

Solution: recycle before retirement

Result: higher ILP with same resources

< 24 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Reuse Undo Support from TLS

Take register checkpoint before starting to recycle
early
Recycle a store queue entry:
– Update is sent to the cache speculatively

If exception on instruction with recycled
resources:
– Rollback state in registers and cache

Wkp on Arch and Comp for Multithreading
Kanpur, December 2007Josep Torrellas, University of Illinois

Goal 3: Software Dependability

< 26 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Repair Analysis

Instrument

Figure it out

Figured it out? No Re-run

Detection

Conventional Debugging

Run

Seems OK?Yes

No

Yes

Fix it

< 27 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Repair Analysis

Instrument

Figure it out

Figured it out? No Re-run

Detection

Enhancing Debugging with Speculation

Run

Seems OK?Yes

No

Yes

Fix it

Incremental undo
and re-execution

Re-execution is
deterministic

< 28 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

ReEnact: Using TLS to Debug Data Races
[Prvulovic ISCA03]

CPU

Cache

Memory

Break dynamic instructions into chunks

ST X
ST Y
ADD
…

X Y

A B
CA

ST A
ST B
ST A
…
ST A
ST C

< 29 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Undo Chunks

CPU

Cache

Memory

Dynamic Instructions

ST X
ST Y
ADD
…

X Y

A B
CA

ST A
ST B
ST A
…
ST A
ST C

Analysis requires a
rerun of these chunks

< 30 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Undo Chunks

CPU

Cache

Memory

Dynamic Instructions

ST X
ST Y
ADD
…

X Y

A B
CA

ST A
ST B
ST A
…
ST A
ST C

< 31 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Chunk Commit

CPU

Cache

Memory

Dynamic Instructions

ST X
ST Y
ADD
…

X Y

A B
CA

ST A
ST B
ST A
…
ST A
ST C

Need to displace
X from this chunk

< 32 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Chunk Ordering by Synchronization

Unlock L

Unlock L

Lock L
Lock L

Lock

Set F

Wait F

Flag

Barrier

Barrier

Barrier

< 33 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Data Race Detection

If we detect communication between…
– Ordered chunks: not a data race

– Unordered chunks: data race

< 34 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Data Race Detection Example: Missing Lock

LD A
ST A

lock(L)
LD A
ST A
unlock(L)

Thread X Thread Y

< 35 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

A

…
lock(L)
LD A

ST A
unlock(L)

Detection: Data Race

Thread X Thread Y

?

CPU

Memory

Cache

CPU

Cache

No order
between and

LD A

LD A

A

< 36 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Found Race Signature

LD A
ST A

LD A
ST A

Thread X Thread Y

Match against a library of races

< 37 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

IWatcher: Attaching a Monitor Function to an
Address [Zhou ISCA04]
Watch memory location and trigger monitoring function

when it is accessed
instr

instr
instr

*p = ...
instr

instr
instr

instr

Watch(addr, monitor_fn1)
data

Cache
Watched?

addr1

PC

Monitor_fn1 (Addr){
return(addr != 0)

}

Rest of Monitoring
FunctionProgram

Main
Thread

Program

< 38 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Significance: Where is the Bug?

No need to insert invariant checks
Find it immediately

Watch(&x, &Monitor);
…
p = ...; /* a bug: p points to x incorrectly */
p = 5; / line A: a triggering access, bug detected with IWatcher*/
…
Assert (x==1 || x==0); /*line B: bug detected without IWatcher */

Wkp on Arch and Comp for Multithreading
Kanpur, December 2007Josep Torrellas, University of Illinois

Goal 3: Hardware Reliability

< 40 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Paceline: Single-Thread Reliability and Speed
[Greskamp PACT07]

Pair each core:

Leader:
– Overclocked, delivers high-performance
– May suffer errors

Use TLS-technology to buffer cache state in the Leader
until it can be compared to Checker

Checker:
– Gets data prefetches and branch hints from Leader
– Checks that there are no errors
– Executes fast thanks to Leader

Wkp on Arch and Comp for Multithreading
Kanpur, December 2007Josep Torrellas, University of Illinois

Goal 5: Performance Revisited
(Simplify Hardware)

< 42 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Proposal: Bulk Operations

Read

Write

R

W

Encode in HW the addresses accessed by thread
in signatures

< 43 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Proposal: Bulk Operations (II)

Support signature operations in FU hardware
– Process sets of addresses at once in bulk

Use signature operations as building blocks to:
– Monitor and enforce data dependences across threads
– Manage buffering of speculative state

Works for TLS and for Transactional Memory

< 44 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Bulk Address Disambiguation
[Ceze ISCA06, ISCA07]

commit W0

W0 = sig(B,C)
R0 = sig(X,Y)

W1 = sig(T)
R1 = sig(B,C)

(W0 ∩ R1) U (W0 ∩ W1)

Thread 0 Thread 1

ld X
st B
st C
ld Y

ld B
st T
ld C

Signature operations directly supported in HW

< 45 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Why Simpler Architecture?

Compact representation of sets of addresses
Well-defined operations that map directly into
hardware
No tight coupling with coherence protocol or
cache implementation

< 46 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

BulkSC: Bulk Enforcement of Sequential
Consistency (SC) [Ceze ISCA07]

➡Group instructions into Chunks, enforce SC only at Chunk granularity
Execute a chunk atomically and in isolation, like a single instruction
Support SC:

• At substantially low hardware complexity
• Keeping high performance
• Retaining programmability

P1 P2 P3 PN...

Memory

st D

st A

P1

ld C

st C ld D
st X

st A

P2

st C

Possible
Global Order

st X

st A

st A
ld C

st C
st D

st C

ld D

< 47 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Summary: What We Learned

Tremendous versatility of the speculative multithreading concepts
– Performance (implicit and explicit parallelism)
– Programmability, debuggability
– Hardware reliability

Speculation does not need to be power inefficient
Since programmability is crucial, we may soon see variations of
this technology in commercial hardware
Substantial ideas to mine in the multicore era

Wkp on Arch and Comp for Multithreading
Kanpur, December 2007Josep Torrellas, University of Illinois

Lessons Learned in Designing
Speculative Multithreading Hardware

Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

< 49 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Conclusions

Mechanisms of speculative multithreading
– Improve performance through parallelization of sequential codes
– Help performance in explicitly parallel codes & single threads
– Enhance software dependability
– Support hardware reliability
– Its hardware is amenable to simplification

We may soon see variations of it in commercial hardware
Substantial ideas to mine in the multicore era

< 50 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Bulk Disambiguation [Ceze ISCA06, ISCA07]

(WC ∩ RR ≠ ∅) U (WC ∩ WR ≠ ∅)

Set operations map directly to signature
operations
Encoding may cause unnecessary squashes

commit

Committing
(C)

WC

Receiving
(R)

< 51 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Sequential Consistency (SC)

Per-processor program order: memory operations from
individual processors maintain program order

P1 P2 P3 PN...

Memory

st A st C ld C ld A

P1

st A

ld C

st C

P2

st A

st C

ld D

Global Order
st A

ld C

st C

st A

st C

ld D

➡Simple machine model, intuitive behavior

Single sequential order: the memory operations from all
processors maintain a single sequential order

< 52 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Problems with SC Enforcement

Low Performance
– restrictions on performance-enhancing reordering of memory

operations

Or Complex Implementation
– buffer long history of speculative memory accesses
– check this history against coherence events and cache

displacements
– coupled with key structures (LSQ, ROB, reg file, $)
– typically fine-grain (instruction-level) undo

Most current systems do not support SC

➡We would like to change that!
➡Support SC with simple hardware and high performance

< 53 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Transactional Memory

See the previous talk

< 54 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Bulk Operations Pros & Cons

✓ Major conceptual and implementation simplicity

✕ Inexact operations (superset)

✓Correctness is guaranteed

✓Competitive performance compared to current
schemes

< 55 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Taxonomy of Buffering Approaches
[Garzaran HPCA03]

Separation
of task state

Multiple
Spec
Tasks
Per Proc

Single
Spec Task
Per Proc

Multiple
Versions

Single
Version

Single
Version

Merging of
task state

< 56 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

P2

ld X

ld Z

ld Xcommit

P1

st X
st Y

Chunk Execution:
Atomicity and Isolation

Atomicity: all updates in the chunk are made visible to
other processors at once (all or nothing)
Isolation: a chunk should not see “outside” state
changing during its execution

P1

st X
st Y

P2

ld T

ld Z

st W

!

re-execute
ld X

ld Z

ld X

P1

st X
st Y

P2

ld T

ld Z

st W

Speculative
Execution

commit
commit

Atomicity Isolation

< 57 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Write & Shielding

MDT

P0

L

S

P0 P1 P2 P3

1

1
Store bit for P1

shields P2
Store bit for P1

shields P2

Store bit for P0
is set

Store bit for P0
is set

1

< 58 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

The Challenge
Design parallel architectures that make it easy to write
parallel code
Application to explicitly parallel codes:
– Speculative Synchronization

Interesting support: ability to UNDO a speculative task
– Application to enhance ILP
– Application to debugging

< 59 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Multithreaded Core

Multithreading Basics: Helper Threads

Thread 0

Frequently
Missing Load

Hard to Predict
Branch

Thread 0

Helper
Thread 1Helper

Thread 2

Thread 1 Thread 2

< 60 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Multithreaded Core

Speculative Multithreading (SM)

Thread 0
Thread 1 Thread 2

Thread 0

Loop

Call F()

X=Squash

= X

= X

It0

Thread 1

It1

Thread 2

It2

< 61 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Different Reaction Modes

Reactions when a monitoring function returns FALSE
(indicating an error):
– ReportMode: report the error and continue
– BreakMode: pause right after the triggering access
– RollbackMode: rollback to the most recent checkpoint (need checkpoint

support)

< 62 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Detect Triggering Accesses

When to detect?
– Reads: during the read operation
– Stores: during the pre-touch operation

How to detect?
– Checking RWT in parallel with TLB lookup
– Checking WatchFlags in load/store queues
– Checking WatchFlags in the caches

When to trigger (executing the monitoring function)?
– At the retirement of the triggering access
– Use a Trigger bit in ROB

< 63 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

iWatcher: Main Idea

Associate a monitoring function with a watched
memory location
– At a triggering access to a watched location, the associated monitoring

function(s) are triggered by hardware and executed

Use SM to reduce overhead and support rollback
– Execute the main thread speculatively in parallel with monitoring

function(s)
– Use SM to buffer state for rollback in case of errors reported by

monitoring function(s)

< 64 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

iWatcher User Interface

Turn on/off monitoring for a memory location
– iWatcherOn (MemAddr, Length, WatchFlag, ReactMode, MonitorFunc,

Param1, Param2, …, ParamN)

– iWatcherOff (MemAddr, Length, WatchFlag, MonitorFunc)

– A global switch
• EnableiWatcher
• DisableiWatcher

< 65 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

iWatcher Design Overview

Hardware:
– Detecting triggering accesses
– Triggering the main monitoring function

Software
– Manage associations between watched locations and

monitoring functions
– Call the appropriate monitoring function upon a triggering

access

< 66 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Watch a Memory Region

Hardware
– Large region: allocate an RWT

entry
– Small region: set WatchFlags in

caches
Software
– Add monitoring function info to

check table

…
L1 cache

Victim WatchFlag
Table (VWT)

Main_check_function
Register

CPU

WatchFlag: 2 bits/word

…
 L2 cache …

…

WatchFlag Addr

Extra HW for
iWatcher

Orignal HW

Start End WatchFlag Valid

Range Watch Table (RWT)

< 67 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Repair: Pattern Matching

Analysis resulted in a detailed signature
– Instruction & data addresses, data values, timing, etc.

Pattern-match it with a library of common races:
– Suggest repair to programmer, or
– Download bug-specific patch, or
– Try to automatically re-introduce missing ordering

Squash chunks, re-execute with corrections

< 68 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Merging of Task State: Architectural MM

Spec
Caches

Main memory

Spec Spec Spec

Architectural
State

Non
Spec

< 69 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Merging of Task State: Future MM

Spec
Non
Spec

Caches

Main memory

Spec Spec Spec

Future
State

Log

write

Log

< 70 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Implementation Details

When entering the speculative section:
– Fence-type instruction that creates a checkpoint of the register state

While executing speculative section:
– Buffer all memory updates in the cache -- cannot update memory
– Mark cache lines read and written
– Monitor for errors or violations

If an error or violation occurs:
– Invalidate updated cache lines, reset marks, restore the register checkpoint

Successful end of speculation:
– Reset marks
– Allow updated cache lines to be displaced to memory

< 71 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Evaluation for Data Races [ISCA03]

4-processor chip multiprocessor
Splash2 applications

Want to know:
– Overhead
– Effectiveness

< 72 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

Main Results

Low overhead in error-free execution: 6% avg

Highly effective: Detect, Analyze & Correct race bugs
– Existing races

• Synchronization through plain variables
• Other existing data races

– Induced races
• Remove lock
• Remove barrier

< 73 #>Lessons Learned in Designing Speculative Multithreaded Machines
Josep Torrellas, University of Illinois

How Good ReEnact is to:

~~~
Induced Bugs:
Removed Barrier

Induced Bugs: 
Removed Lock

No
Other Existing
Data Races

Sync through
plain variables

MatchAnalyzeRollbackDetect



< 74 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Spec Synchronization Evaluation [ASPLOS02] 

Mix of parallel codes
Parallelization:
– Compiler [16 processors] (applu)
– Annotated [16 processors] (mst, bisort)
– Hand [64 processors] (ocean, 2×barnes)



< 75 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Sync Time Reduction

Large reduction: 40%
Room for improvement



< 76 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Execution Time Reduction

Across-the-board reduction

Normalized
Exec Time



< 77 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Synchronization Unit

Extends cache 
controller
Simple hardware:
– 1 spec bit/line
– Some control logic



< 78 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

ReEnact: Overhead

0%

5%

10%

15%

0 20,000 40,000 60,000 80,000 100,000 120,000
Rollback Distance [Instructions per CPU]

O
ve

rh
ea

d

Better

Chosen
6%



< 79 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Lock Request

Processor side:
– Program SSU for speculative lock
– Checkpoint register file

SSU side:
– Initiate T&T&S loop on lock variable

Use caches as speculative buffer (like TLS)
– Set Speculative bit in lines accessed speculatively



< 80 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Lock Acquire

SSU acquires lock (T&S successful)
– Clears all Speculative bits → one-shot commit
– Becomes idle

Release (store) later by processor



< 81 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Release while Speculative

Processor issues release, SSU still active
– SSU intercepts release (store) by processor
– SSU toggles Release bit – “already done”

When lock becomes available later
– SSU:

• Does not perform T&S
• Clears all Speculative bits → one-shot commit



< 82 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Memory Access Conflict

External coherence actions
– Request to safe line: service normally
– Request to spec line: squash thread

• Invalidate lines marked Speculative+Dirty → one-shot squash
• Roll back & restart at sync point

Safe threads never squashed → forward progress
All safe-to-spec in-order dependences tolerated



< 83 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Flags and Barriers

Flag spin: Test only – no T&S
– Handle like “Release while Speculative” case

Barrier: leverage flag spin support
– Update thread counter
– If not last one, spin on flag speculatively



< 84 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

References
SPECULATIVE MULTITHREADING (THREAD LEVEL SPECULATION)
--------------------------------------------------------------------------------------------------

H. Akkary and M. Driscoll.
A Dynamic Multithreading Processor.
Intl. Symp. on Microarchitecture, pages 226--236, Dec. 1998.

M. Cintra, J. Martinez, and J. Torrellas.
Architectural Support for Scalable Speculative Parallelization in  Shared-Memory Multiprocessors.
Intl. Symp. on Computer Architecture, pages 13--24, June 2000.

R. Figueiredo and J. Fortes.
Hardware Support for Extracting Coarse-grain Speculative Parallelism  in Distributed Shared-memory Multiprocesors.
Proc. Intl. Conf. on Parallel Processing, September 2001.

M. Frank, W. Lee, and S. Amarasinghe.
A Software Framework for Supporting General Purpose Applications on Raw Computation Fabrics.
Tech. Rep., MIT/LCS Technical Memo MIT-LCS-TM-619, July 2001.

M. Franklin and G. Sohi.
ARB: A Hardware Mechanism for Dynamic Reordering of Memory References.
IEEE Trans. Computers, 45(5):552--571, May 1996.

M. Garzaran, M. Prvulovic, J. Llaberia, V. Vinals, L. Rauchwerger, and J. Torrellas.
Tradeoffs in Buffering Memory State for Thread-Level  Speculation in Multiprocessors.
International Symposium on High Performance Computer  Architecture, Feb. 2003.

M. Garzaran, M. Prvulovic, J. Llaberia, V. Vinals,  L. Rauchwerger, and J. Torrellas.
Using Software Logging to Support Multi-Version Buffering in Thread-Level Speculation.
International Conference on Parallel Architectures and  Compilation Techniques, Sept. 2003.



< 85 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

References
S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi.
Speculative Versioning Cache.
Intl. Symp. on High-Performance Computer Architecture, pages 195--205, February 1998.

M. Gupta and R. Nim.
Techniques for Speculative Run-Time Parallelization of Loops.
Proc. Supercomputing 1998}, November 1998.

L. Hammond, M. Willey, and K. Olukotun.
Data Speculation Support for a Chip Multiprocessor.
Intl. Conf. on Arch. Support for Prog. Lang. and Oper.  Systems, pages 58--69, October 1998.

T.Knight.
An Architecture for Mostly Functional Languages.
ACM Lisp and Functional Programming Conf., pages 500--519,  August 1986.

V. Krishnan and J. Torrellas.
A Chip-Multiprocessor Architecture with Speculative Multithreading.
IEEE Trans. on Computers, pages 866--880, September 1999.

P. Marcuello and A. Gonzalez.
Clustered Speculative Multithreaded Processors.
Proc. 1999 Intl. Conf. on Supercomputing, pages 365--372,  June 1999.

M. Prvulovic, , M. Garzaran, L. Rauchwerger, and J.Torrellas.
Removing Architectural Bottlenecks to the Scalability of Speculative Parallelization.
Intl. Symp. on Computer Architecture, pages 204--215, July 2001.

L. Rauchwerger and D.Padua.
The LRPD Test: Speculative Run-Time Parallelization of Loops with  Privatization and Reduction Parallelization.
Conf. on Prog. Lang. Design and  Implementation, pages 218--232, June 1995.



< 86 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

References
P. Rundberg and P. Stenstrom.
Low-Cost Thread-Level Data Dependence Speculation on Multiprocessors.
4th Workshop on Multithreaded Execution, Architecture and Compilation, December 2000.

G. Sohi, S. Breach, and T. Vijaykumar.
Multiscalar Processors.
Intl. Symp. on Computer Architecture  pages 414--425, June 1995.

J. Steffan, C. Colohan, A. Zhai, and T. Mowry.
A Scalable Approach to Thread-Level Speculation.
Annual Intl. Symp. on Computer Architecture, pages 1--12, June 2000.

J.Steffan, C. Colohan, and T. Mowry.
Architectural Support for Thread-Level Data Speculation.
Tech. Rep., CMU-CS-97-188, Carnegie Mellon University, November 1997.

M. Tremblay.
MAJC: Microprocessor Architecture for Java Computing.
Hot Chips, August 1999.

J. Tsai, J. Huang, C. Amlo, D. Lilja, and P. Yew.
The Superthreaded Processor Architecture.
IEEE Trans. on Computers, 48(9):881--902, September 1999.

Y. Zhang.
Hardware for Speculative Run-Time Parallelization in DSM Multiprocessors.
Ph.D. Thesis, Dept. of Elec. and Comp. Engineering, Univ. of Illinois at Urbana-Champaign, May 1999.

Y. Zhang, L. Rauchwerger, and J.Torrellas.
Hardware for Speculative Parallelization of Partially-Parallel Loops  in DSM Multiprocessors.
Intl. Symp. on High-Performance Computer Architecture, pages 135--139, January 1999.



< 87 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

References
SPECULATIVE SYNCHRONIZATION
-----------------------------------------------------

J. Martinez and J. Torrellas.
Speculative Synchronization: Applying Thread-Level Speculation  to Parallel Applications
International Conference on Architectural Support for Programming Languages and Operating Systems, October 2002.

CHERRY
-------------

J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas,
Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors
International Symposium on Microarchitecture, November 2002.

REENACT
---------------

M. Prvulovic and J. Torrellas.
ReEnact: Using Thread-Level Speculation to Debug Data Races in Multithreaded Codes.
International Symposium on Computer Architecture, June 2003.

IWATCHER
------------------

P. Zhou, F. Qin, W. Liu, Y. Zhou and J. Torrellas.
iWatcher: Efficient Architectural Support for Software Debugging
International Symposium on Computer Architecture, June 2004.



Wkp on Arch and Comp for Multithreading 
Kanpur, December 2007Josep Torrellas, University of Illinois

Boosting Machine Performance with
Speculative Multithreading

Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu



< 89 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

B

How Speedups are Possible

A A A
B

B
B

Sequential

T
i
m
e

SM (No Violation)

T
i
m
e

SM (Violation)

T
i
m
e



< 90 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Different Reaction Modes

Reactions when a monitoring function returns FALSE 
(indicating an error):
– ReportMode: report the error and continue
– BreakMode: pause right after the triggering access 
– RollbackMode: rollback to the most recent checkpoint (need checkpoint 

support)



< 91 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

L

S

P0   P1   P2   P3

1
P0   P1   P2   P3

1TAG
WORD 0 WORD 1

0x1234

Memory Disambiguation Table (MDT)

P1 has read
Word 0

P1 has read
Word 0

P2 has modified
Word 0

P2 has modified
Word 0

P0 P1

P2P3



< 92 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Important Features

Concurrency possible even if conflicts
– All in-order safe-to-spec conflicts tolerated

No order among spec threads → simpler HW
No programming effort
– Retargetted macros/directives

Can coexist with conventional sync at run-time



< 93 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Re-execute those tasks only

TLS: Primitive for Software Debugging

CPU

Memory

Cache

CPU

Cache

T1 T2

Undo group of tasks (window of buggy code, hopefully)

Re-execution of tasks is deterministic even under parallelism
Bonus: detect bugs that appear as communication (e.g. Data 
Races)  

invalidation



< 94 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Breaking Code into Chunks

New chunk begins ⇒ save register state
Undo (squash) recent chunks if needed
– Invalidate cache lines, restore saved register state
– Enables rollback of chunk

Commit old chunks
– Allow displacement from cache, free saved register state
– Makes room for buffering more recent chunks
– Cannot undo committed chunks



< 95 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Luis Ceze Bulk Disambiguation                  June 
2006

Composed Operation: Signature 
Expansion

Select lines in the cache that belong to the 
signature

– used in bulk invalidations



< 96 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Luis Ceze Bulk Disambiguation                  June 
2006

Bulk Invalidation

Used in the receiver cache to:
– invalidate lines written by the committing 

thread (using committing thread’s signature 
WC) 

– if thread squash, discard speculative state 
(using local write signature WR)

SignatureSignature Signature
Expansion
Signature
Expansion

Invalidate
Lines

Invalidate
Lines

commit

Committing
(C)

WC

Receiving
(R)

X

X

R Cache

WC

R Cache

WR



< 97 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Luis Ceze Bulk Disambiguation                  June 
2006

Bulk Disambiguation Module

Multiple 
Speculative 
Threads in 
Processor

Standard
Interface



< 98 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Monitoring Functions
Triggered by hardware 
Executed in parallel with main program by TLS (optionally)
Can have  any side-effects

th
re

ad
 0

triggering access

th
re

ad
 1 Monitoring function

th
re

ad
 0

Commit speculation

Monitored
program



< 99 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Luis Ceze Bulk Disambiguation                  June 
2006

Commit Process

Bulk invalidation of 
cache using WR

Bulk invalidation of 
cache using WR

Bulk disambiguation
WC ∩ RR ≠ ∅ ∨ WC ∩ WR ≠ ∅

Bulk disambiguation
WC ∩ RR ≠ ∅ ∨ WC ∩ WR ≠ ∅

Squash ?Squash ?

Send out WC

Set  WC = RC= ∅
Send out WC

Set  WC = RC= ∅

Set  WR = RR= ∅Set  WR = RR= ∅

Y

Bulk invalidation of 
cache using WC

Bulk invalidation of 
cache using WC

N

commit

Committing
(C)

WC

Receiving
(R)

Thread C commitsThread C commits

Committing Thread (C)

Thread R receives WCThread R receives WC

Receiving Thread (R)

All B
ulk-based 

operations



< 100 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Lock

ACQUIRE

RELEASE

A B C D E

Safe
Speculative



< 101 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Lock

A

B C D E
ACQUIRE

RELEASE

Safe
Speculative



< 102 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Lock

A B

C D

E

ACQUIRE

RELEASE

Safe
Speculative



< 103 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Lock

A B C

D

E
RELEASE

ACQUIRE

Safe
Speculative



< 104 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Lock

A

B C

D

E
RELEASE

ACQUIRE

Safe
Speculative



< 105 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

A A

Analysis: Find Race Signature

Thread X Thread Y
CPU

Memory

Cache

CPU

Cache

1. Rollback

2. Put a watchpoint on accesses to data address A

3. Re-execute assuming order: after 

LD A
ST A

LD A
ST A



< 106 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Significance: Where is the Bug?

No need to insert invariant checks
Find it immediately

int x, *p;       /* invariant: x=1 or x=0*/
Watch(&x, &Monitor);
…
p = ...;   /* a bug: p points to x incorrectly */
*p = 5;   /* line A: a triggering access, bug detected with IWatcher*/
…
Assert (x==1 || x==0);    /*line B: bug detected without IWatcher */

bool Monitor (int *x) {
return(*x==1|| *x==0)

} 



< 107 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Monitoring Functions

Triggered by hardware 
Executed in parallel with main program by TLS 
(optionally)
Can have  any side-effects



< 108 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Barrier

BARRIER
A B C

Safe
Speculative



< 109 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Barrier

A B

C

BARRIER

Safe
Speculative



< 110 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Barrier

A

B

C

BARRIER

Safe
Speculative



< 111 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Barrier

A B C

BARRIER

Safe
Speculative



< 112 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

IWatcher Hardware

… L1 cache

Victim WatchFlag
Table (VWT)

Main_check_function
Register

CPU

WatchFlag: 2 bits/word

… L2 cache … …

WatchFlagAddr

Extra HW for 
IWatcher

Start End WatchFlag Valid
Range Watch Table (RWT)



< 113 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Chunk Commit

CPU

Cache

Memory
X

Dynamic Instructions

ST X
ST Y
ADD
…

Y

A B
CA

ST A
ST B
ST A 
…
ST A
ST C



< 114 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Ordering Chunks

CPU

Bus, Memory, Etc.

CPU

Cache Cache
A B

ST A
ST B
…

Z W

ST Z
ST W
…

Chunk “happens before” chunk 

CA
LD A
LD C
…



< 115 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Advantages

On the fly – debug each problem as it is found
Always on – usable in production runs
– Low overhead in bug-free execution

Debug multi-threaded code
– Forces deterministic re-execution



< 116 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Speculative Synchronization

If a data collision is detected, speculative task is:
– Squashed
– Rolled back to the synch point

Maintain 1 or more safe threads → forward progress
– Lock: owner
– Flag: producer
– Barrier: lagging threads



< 117 #>Lessons Learned in Designing Speculative Multithreaded Machines 
Josep Torrellas, University of Illinois

Significance: Where is the Bug?

No need to insert invariant checks
Find it immediately

Watch(&x, &Monitor);
…
p = ...;   /* a bug: p points to x incorrectly */
*p = 5;   /* line A: a triggering access, bug detected with IWatcher*/
…
Assert (x==1 || x==0);    /*line B: bug detected without IWatcher */


	Lessons Learned  in Designing�Speculative Multithreading Hardware
	The Challenge for Architects
	Speculative Multithreading (SM)  or �Thread-Level Speculation (TLS)
	Hardware Provides Support to …
	Rest of the Talk: How we used TLS for 10 years for… 
	Goal 1: Performance
	Speculative Chip-Multiprocessor (CMP)�[Krishnan ICS96]
	Speculative Memory Accesses
	Write & Dependence Violation
	Write & Dependence Violation
	Read & Value Forwarding
	Read & Value Forwarding
	Scalable Multiprocessor  [Cintra ISCA00]
	Removing Bottlenecks: Task Commit Serialization [Prvulovic ISCA01]
	Buffering Speculative State
	Merging of Task State: Architectural MM
	Merging of Task State: Future  MM
	Taxonomy of Buffering Approaches [Garzaran HPCA03]
	Taxonomy of Buffering Approaches [Garzaran HPCA03]
	Goal 2: Performance in Other Environments
	Using TLS on Explicitly Parallel Codes
	Speculative Synchronization �[Martinez ASPLOS02]
	Checkpointed Early Resource Recycling (Cherry) [Martinez MICRO02]
	Reuse Undo Support from TLS 
	Goal 3: Software Dependability
	Conventional Debugging
	Enhancing Debugging  with Speculation 
	ReEnact: Using TLS to Debug Data Races [Prvulovic ISCA03]
	Undo Chunks
	Undo Chunks
	Chunk Commit
	Chunk Ordering by Synchronization
	Data Race Detection
	Data Race Detection Example: Missing Lock
	Detection: Data Race
	Found Race Signature
	IWatcher: Attaching a Monitor Function to an Address  [Zhou ISCA04]
	Significance: Where is the Bug?
	Goal 3: Hardware Reliability
	Paceline: Single-Thread Reliability and Speed�[Greskamp PACT07]
	Goal 5: Performance Revisited�(Simplify Hardware)
	Proposal: Bulk Operations
	Proposal: Bulk Operations (II)
	Bulk Address Disambiguation �[Ceze ISCA06, ISCA07]
	Why Simpler Architecture?
	BulkSC: Bulk Enforcement of Sequential Consistency (SC) [Ceze ISCA07] 
	Summary: What We Learned
	Lessons Learned  in Designing�Speculative Multithreading Hardware
	Conclusions
	Bulk Disambiguation [Ceze ISCA06, ISCA07]
	Sequential Consistency (SC)
	Problems with SC Enforcement 
	Transactional Memory
	Bulk Operations Pros & Cons
	Taxonomy of Buffering Approaches [Garzaran HPCA03]
	Chunk Execution: �Atomicity and Isolation
	Write & Shielding
	The Challenge
	Multithreading Basics:  Helper Threads
	Speculative Multithreading (SM)
	Different Reaction Modes
	Detect Triggering Accesses
	iWatcher: Main Idea
	iWatcher User Interface
	iWatcher Design Overview
	Watch a Memory Region
	Repair: Pattern Matching
	Merging of Task State: Architectural MM
	Merging of Task State: Future  MM
	Implementation Details
	Evaluation for Data Races [ISCA03]
	Main Results
	How Good ReEnact is to:
	Spec Synchronization Evaluation [ASPLOS02] 
	Sync Time Reduction
	Execution Time Reduction
	Speculative Synchronization Unit
	ReEnact: Overhead
	Speculative Lock Request
	Lock Acquire
	Release while Speculative
	Memory Access Conflict
	Speculative Flags and Barriers
	References
	References
	References
	References
	Boosting Machine Performance with�Speculative Multithreading
	How Speedups are Possible
	Different Reaction Modes
	Memory Disambiguation Table (MDT)
	Important Features
	TLS: Primitive for Software Debugging
	Breaking Code into Chunks
	Composed Operation: Signature Expansion
	Bulk Invalidation
	Bulk Disambiguation Module
	Monitoring Functions
	Commit Process
	Speculative Lock
	Speculative Lock
	Speculative Lock
	Speculative Lock
	Speculative Lock
	Analysis: Find Race Signature
	Significance: Where is the Bug?
	Monitoring Functions
	Speculative Barrier
	Speculative Barrier
	Speculative Barrier
	Speculative Barrier
	IWatcher Hardware
	Chunk Commit
	Ordering Chunks
	Advantages
	Speculative Synchronization
	Significance: Where is the Bug?

