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Future Architecture Trends: a new Era of Parallel Processing

Hardware building blocks for mainstream and high-performance
systems are varied and proliferating ...

Homogeneous Heterogeneous High Performance Clusters
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64-bit Power Architecture with VMX

Challenge: Develop new compiler technologies to support portable
parallel abstractions for future hardware
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X10 Background (x10.sf.net)

X10 language developed as part of IBM PERCS project in DARPA High Productivity
Computing Systems program

Unified abstractions of asynchrony and concurrency for use in
= Multi-core SMP Parallelism
= Messaging and Cluster Parallelism
Productivity
= High Level Language designed for portability and safety
= Build on sequential subset of Java language
= Target adoption by mainstream developers with Java/C/C++ skills
= X10 Development Toolkit for Eclipse
Performance
= Lightweight threads (activities) and synchronization

= Transparency — expert programmer should have controls to tune optimizations and
deployment

= Efficient foreign function interfaces for libraries written in Fortran and C/C++
“X10: An Object-Oriented Approach to Non-Uniform Cluster Computing”, OOPSLA 2005
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X10 Language and Computation Model

Activity creation and termination Places
= async [clocked(...)] Stm = Region --- set of points, e.g., region r = [1:N,1:M];
= Run Stm asynchronously at Place = Distribution --- mapping from region to places,
= foreach [clocked(...)] (point P : Reg) Stm e.g., dist d = block(r);
= Run Stm asynchronously for each " Activity alignment
point in region = here --- place at which current activity is
= finish Stm executing
= Execute Stm, wait for all asyncs to = async (Place) [clocked(...)] Stm
terminate =  Run Stm asynchronously at Place
= ateach [clocked(...)] ( point P : Dist) Stm
Activity coordination =  Run Stm asynchronously for each point
= atomic Stm in Dist, at its place
= Execute Stm atomically = Data Alignment
= next = new --- Allocate object at this place (here)
= suspend till all clocks that the current = new T[d] --- allocate array with distribution d

activity is registered with can advance

Deadlock safety: any X10 program written with async, atomic,
finish, foreach, ateach, and next can never deadlock )
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* Dynamic parallelism with a Partitioned Global Address Space
* Places encapsulate binding of activities and globally addressable mutable data
« Number of places currently fixed at launch time

* All concurrency is expressed as asynchronous activities — subsumes threads,
structured parallelism, messaging, DMA transfers, etc.

» Locality rule: all accesses to mutable data in an atomic section must be place-local

 Immutable data is place-independent and offers opportunity for single-assignment
parallelism



Comparison with other languages

= Single Program Multiple Data (SPMD) languages with Partition Global Address Space
(PGAS)

= Unified Parallel C, Co-Array Fortran, Titanium

= X10 generalizes PGAS to a “threaded-PGAS” model (beyond SPMD)
= Hierarchical fork-join parallelism

= Cilk (ultra-lightweight threads, work-stealing scheduling, ...)

= X10 generalizes Cilk by adding places, distributions, finish-async, ...

= X10 has similarities with other languages in DARPA HPCS program --- Chapel (Cray) and
Fortress (Sun) --- but there are also key differences

= Chapel allows object migration and data redistribution, which could makes it harder to
use for scalable parallelism

= [ortress is advancing the underlying sequential language in novel ways that are
orthogonal to parallelism




Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)
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X10 Dynamic Computation Dag
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@-’ Activity AO (Part 1);
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Activity Al
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Continue edge
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Dependence edge

>Activity A0

Activity AO (Part 3)

/ ————— - Activity A3

Activity A4

“Deadlock-Free
Scheduling of X10
Computations with

Bounded Resources”,

SPAA 2007.
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// X10 pseudo code
main(QQ{ 7/ implicit finish
Activity AO (Part 1);
async {Al; async A2;}
try {
finish {
Activity AO (Part 2);
async A3;
async A4;
}

catch (.) { .. }
Activity A0 (Part 3);



X10 Program Structure Tree (Static Representation)

» The PST for an X10 procedure 1s a rooted tree
with six types of nodes

» Root node --- represents entire procedure
= Async node --- represents an async statement
= Async node is annotated with i1ts destination place
expression

* Finish node --- represents a finish statement

= Atomic node --- represents an atomic statement

» Loop node --- represents a sequential loop

statement

= A parallel loop 1s modeled as a sequential loop with
an async body

» Other statement --- represents a leaf node In the
PST
» Parent relation 1n PST 1s determined by program
structure

» PST.parent(N) i1s the node that represents the
closest enclosing async/finish/atomic/loop

I~L statement (or root nodél 1T none)
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Optimization of Finish and Async Operations

Research Problems

= Use PDG-style dependence/interference analysis to coarsen scope of finish nodes
and insert additional async nodes (additional automatic parallelization)

= Program partitioning to extract useful parallelism from ideal parallelism

= Reorder nodes to further increase finish-async parallelism e.g., “Instruction
Reordering for Fork-Join Parallelism”, PLDI 1990

Task Dependence Graph: Without reordering: Without reordering:
A: A;
finish { C;
async B; async C; finish {
} async B; async E;
e B e finish { }
are needed to see this picture. asynC D, asynC E, D :
} F;
=

/I Completion time =202  // Completion time = 104 .,
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Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)

V> RICE 14



Optimization Opportunities for Atomic Blocks

= Move as much code out of atomic as possible

= Use nonblocking operations for selected atomic
statements

= Optimization of Transactional Memory operations for
atomic

= TX_BEGIN, TX_COMMIT, TX_ABORT, TX_VALIDATE,
TX_ACCESS, TX_ACQUIRE, TX_READ, TX_WRITE,
TX_EXPIRE
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Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)
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X10 Clock Extensions

= Allow activity to be registered on clock for wait, notify, or
both

= Clock can now be used for one-way synchronizations and for
barriers

= next = walit for wait-only activity, notify for notify-only activity,
and wait + notify for both

= Allow next statement to have an optional “single”
statement

o RICE 18 §)



Optimization Opportunities for Clocks

= Split-phase barriers

= Replace next by notify & wait, and insert local computations in between
them

= Distributed barriers

= Replace single clock by multiple clocks with fine-grained synchronization
= Use of single with next

= e.g., replace two next operations in the following code fragment ...

next;
if (id==0)

if (1= k) { t = col_k[I]; col_k[I] = col_K[k]; col_K[k] = t: )}
next;

= ... by one next operation with a single computation
next { if (I '= k) { t = col_K[l]; col_K[I] = col_k[k]; col k[k]=1;} }

E,‘} RICE 19
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Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)
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Place-local analysis & transformation

= Locality Analysis

= Augment with place type declarations by user, and augment with type
inference

= “Type Inference for Locality Analysis of Distributed Data Structures™,
PPoPP 2008 (to appear)

= Automatic selection of data and computation mappings e.g.,

// Implicit and explicit versions of remote fetch-and-op
a) a.x = f(a.x, b.y) ;
b) async (b) {
final Int v = b.y;
async (a) a.x = f(a.x,v);

+
s RICE .




Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)
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Portable Parallel Programming via X10 Deployments

| X10 Data Structures
X10 language defines l

mapping from X10 objects =<
& activities to X10 places

i X10 Places
X10 deployment defines < l
mapping from virtual X10
places to physical & Physical PEs
proceSSingeIGy \
Homogeneous Heterogeneous
Multi-core Accelerators Clusters
HHHHHHHH
m [j 2 — I? I$
ff 1 v v
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Possible X10 Deployment on Nvidia G80
(with extensions to support hierarchies of places)

Host Device (hierarchy of places)
Device (Place 0)
Grid 1
Multiprocessor N
. Kernel »  Block Block Block
. 1 (0, 0) (1, 0) (2, 0)
Multiprocessor 2

Multiprocessor 1 Block-” | Block ' Block

oYy @&y i @

j

7’ /
/’ . 4
l | Grid 2
d ’
/’ ll
. ,' /
Instruction

: Kernel -~ b |
Unit 2 ot /
Processor 1| |Processor2| " ** |Processor M o ,"

?

- Block (1, 1)




Possible X10 Deployment for Cell

Place 1 Place2 Place3 Place4 Place5 Place6 Place7 Place8 u BagcApmnadr
SPU ISPU ISPU SPU SPU SPU SPU SPU .
s J(ITsxo | Isxo ) (s s | sxo i sxo |([Csxo = map 9 places on to PPE + eight
v v v ¢ v ¢ ¢ ¢
LS LS LS LS LS LS LS LS SPEs

= Use finish & async's as high-

[ smr [ _smr [ _smr |l sme {{[ sme [ smr ]I sme || smE | :
e level representation of DMAS
EIB (up to 96B/cycle) - Cha”engeSZ
PPE LeBloycle 16B/cycle 16B/cycle (2x) . Weak PPE : .
y = S|MDization is critical
PPU mic BIC = Lack of hardware support for
coherence
< L1 _ ;
Brople msilc?exu I l I l I = Limited memory on SPE's
Dual FlexIO™ = Limited performance of code
L Place 0 - XDR™ : .
_ with frequent conditional or
64-bit Power Architecture with VMX indirect branches
= Different ISA's for PPE and
SPE.
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Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Places

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)
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Language Extensions in Support of Compiler Parallelization (LCPC 2007)

Language features that aid in automatic
parallelization of high productivity

languages:
=  Already in X10
multidimensional arrays, points, "\

regions, dependent types
=  Proposed extensions

array views

parameter intents
retained (non-escaping) arrays

and objects

pure methods
exception-free code regions
gather/reduce computations

s RICE
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Sequential ﬂg@ge_)
X10 extensions
l + Parallel
constructs
Parallel
X10
l Fine grained
_ Synchronization
X10RUNIME | —

Extended
Seq X10

v

Automatic
Parallelization

Y

Extended
X10 Runtime

+ SPMD extensions

| Hand 1

All declarations are annotations are checked for safety e.g.,
Compiler inserts dynamic check for “m !1=0"in “j/ m”
Programmer inserts dynamic check using a type cast

28

operator

. int (:nonzero) m = (int(:nonzero)) n; // Cast to nonzero

Compiler performs static checks of dependent types
. int (:nonzero) m = n; // Need to declare n as nonzero




Case Study: Java Grande Forum Benchmarks

Series | Sparse* | SOR | Crypt | LUFact | FFT | Euler | MolDyn | Ray* | Monte*
Multi-dim arrays| x X X X
Regions, Points X X X X X X
Array views X X
In/Out/InOut X
Disjoint X X X
Retained X X X
Pure method X X
NonNull X X X X X X X X X X
Region Dep-type X X X X X
Nonzero X
Exception free X X X X X X
Reduction X X X X

* Sparse: SparseMatmult, Ray: RayTracer, Monte: MonteCarlo
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rlal and X10 Hand-Pez

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

arallel relative to JGF Sel



Rice Habanero Multicore Software Project

< Parallel Applications >

(subsets)
X10 Fortress

~

- 2),3) 4wl be
| developed first for
! X10 subset

< Multicore Hardware =~

s RICE
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Vendor tools

_ Java
Eclipse standard
Platform libraries

Vendor Platform
Compilers & Libraries

Multicore OS
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Habanero Research Topics

1) Language Research (builds on X10)

= Explicit parallelism: hierarchical places for multicore

= |mplicit deterministic parallelism: array views, parameter intents, HPF-style forall, Sisal-style loops and
arrays

= Implicit non-deterministic parallelism: unordered iterators, partially ordered statement blocks

2) Compiler research (focus of this talk!)

= Parallel Intermediate Representation (PIR)
= Optimization of parallel operations

= Activity creativity and termination

= Activity coordination

= Data and Computation Alignment

= Deployment and Code Generation

= Language Extensions in support of Automatic Compiler Parallelization

3) Virtual machine research (builds on Jikes RVM)

= VM support for work-stealing scheduling algorithms with extensions for places, transactions, task groups
= Integration and exploitation of lightweight profiling in VM scheduler and memory management system

4) Concurrency library (builds on JUC and DSTM2 libraries)

=  Fine-grained signal/wait, efficient transactions, new nonblocking data structures

5) Toolkit research (builds on Rice HPCtoolkit & Eclipse PTP)

=  Program analysis for common parallel software errors

b~ Performance attribution of loops and inlined code using static and dynamic calling context




Habanero Target Applications and Platforms

Applications:

1) Parallel Benchmarks

= SSCA's #1, #2, #3 from DARPA HPCS program

= NAS Parallel Benchmarks

= Java Grande Forum benchmarks

2) Signal Processing and Medical Imaging

= Back-end processing for Compressive Sensing
(www.dsp.ece.rice.edu/cs)

= Contacts: Rich Baraniuk (Rice), Jason Cong (UCLA)

3) Seismic Data Processing

= Rice Inversion project (www.trip.caam.rice.edu)
=  Contact: Bill Symes (Rice)

4) Computer Graphics and Visualization

= Mathematical modeling and smoothing of meshes

= Contact: Joe Warren (Rice)
5) Fock Matrix Construction

=  Contacts: David Bernholdt, Wael Elwasif, Robert

Harrison, Annirudha Shet (ORNL)

33

Platforms:

. AMD Barcelona Quad-Core Opteron
. Clearspeed Advance X620
. DRC Coprocessor Module w/ Xilinx Virtex

FPGA
= IBM Power6
. nVidia GeForce 8800GTX
. STI Cell

. Sun Niagara 2

Additional suggestions welcome!




Habanero Team

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested
In a PhD, postdoc, research scientist, or programmer position
in the Habanero project, or in collaborating with us!
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