\ George R. Brown
A School of Engineering
% Computer Science

g piler Challenges for Multicore Parallel Systems

»

Vivek Sarkar
Rice University

vsarkar@rice.edu

| Vorkshop on Architectures and Compilers for Multithreading
: lIT Kanpur, December 13 - 15, 2007

o

Acknowledgments

= |BM X10 project (x10.sf.net)

= |BM Jalapeno project and Jikes Research Virtual Machine
(jikesrvm.org)

= |BM ASTI project
= |BM PTRAN Project

= Java Concurrency Utilities open source project
(gee.cs.oswego.edu/dl/concurrency-interest)

= Rice Co-Array Fortran project (www.hipersoft.rice.edu/caf)

= Rice COMP 635 Seminar on Heterogeneous Processors
(www.cs.rice.edu/~vsarkar/comp635)

= Rice Habanero project team members

Ef‘} RICE 2

)

Future Architecture Trends: a new Era of Parallel Processing

Hardware building blocks for mainstream and high-performance
systems are varied and proliferating ...

Homogeneous Heterogeneous High Performance Clusters
Multi-core Accelerators
PEs, SMP Node SMP Node
L1 $ y "r $ PEs, PEs, PEs, PEs,
vl .
L2 h T 500 T l =" T 0 oG T l
v A 4
PEs, | Memory | | Memory |
I ¢ ¢ n [] A 4
. . ! * v
[L2Cache | PGAS Interconnect
64-bit Power Architecture with VMX

Challenge: Develop new compiler technologies to support portable
parallel abstractions for future hardware

s RICE 3

X10 Background (x10.sf.net)

X10 language developed as part of IBM PERCS project in DARPA High Productivity
Computing Systems program

Unified abstractions of asynchrony and concurrency for use in
= Multi-core SMP Parallelism
= Messaging and Cluster Parallelism
Productivity
= High Level Language designed for portability and safety
= Build on sequential subset of Java language
= Target adoption by mainstream developers with Java/C/C++ skills
= X10 Development Toolkit for Eclipse
Performance
= Lightweight threads (activities) and synchronization

= Transparency — expert programmer should have controls to tune optimizations and
deployment

= Efficient foreign function interfaces for libraries written in Fortran and C/C++
“X10: An Object-Oriented Approach to Non-Uniform Cluster Computing”, OOPSLA 2005

V> RICE 4

X10 Language and Computation Model

Activity creation and termination Places
= async [clocked(...)] Stm = Region --- set of points, e.g., region r = [1:N,1:M];
= Run Stm asynchronously at Place = Distribution --- mapping from region to places,
= foreach [clocked(...)] (point P : Reg) Stm e.g., dist d = block(r);
= Run Stm asynchronously for each " Activity alignment
point in region = here --- place at which current activity is
= finish Stm executing
= Execute Stm, wait for all asyncs to = async (Place) [clocked(...)] Stm
terminate = Run Stm asynchronously at Place
= ateach [clocked(...)] (point P : Dist) Stm
Activity coordination = Run Stm asynchronously for each point
= atomic Stm in Dist, at its place
= Execute Stm atomically = Data Alignment
= next = new --- Allocate object at this place (here)
= suspend till all clocks that the current = new T[d] --- allocate array with distribution d

activity is registered with can advance

Deadlock safety: any X10 program written with async, atomic,
finish, foreach, ateach, and next can never deadlock)

' RICE :)

SNOUIYIUAS
lIE20T

4
4

>

B Partitoned
Global
Address
; 5 E Space
Inbound [0 0 (PGAS)
Activities Activities | | |-
Globally
Asynchronous

Place 0 - Place (MaxPlaces-1)

* Dynamic parallelism with a Partitioned Global Address Space
* Places encapsulate binding of activities and globally addressable mutable data
« Number of places currently fixed at launch time

* All concurrency is expressed as asynchronous activities — subsumes threads,
structured parallelism, messaging, DMA transfers, etc.

» Locality rule: all accesses to mutable data in an atomic section must be place-local

 Immutable data is place-independent and offers opportunity for single-assignment
parallelism

Comparison with other languages

= Single Program Multiple Data (SPMD) languages with Partition Global Address Space
(PGAS)

= Unified Parallel C, Co-Array Fortran, Titanium

= X10 generalizes PGAS to a “threaded-PGAS” model (beyond SPMD)
= Hierarchical fork-join parallelism

= Cilk (ultra-lightweight threads, work-stealing scheduling, ...)

= X10 generalizes Cilk by adding places, distributions, finish-async, ...

= X10 has similarities with other languages in DARPA HPCS program --- Chapel (Cray) and
Fortress (Sun) --- but there are also key differences

= Chapel allows object migration and data redistribution, which could makes it harder to
use for scalable parallelism

= [ortress is advancing the underlying sequential language in novel ways that are
orthogonal to parallelism

Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)

V> RICE :

%}\ RICE 9

X10 Dynamic Computation Dag

tart- .
@-’ Activity AO (Part 1);

(Part 2)

Activity Al

Activity A2

Continue edge

v

Spawn edge

»

Dependence edge

>Activity A0

Activity AO (Part 3)

/ ————— - Activity A3

Activity A4

“Deadlock-Free
Scheduling of X10
Computations with

Bounded Resources”,

SPAA 2007.

10

// X10 pseudo code
main(QQ{ 7/ implicit finish
Activity AO (Part 1);
async {Al; async A2;}
try {
finish {
Activity AO (Part 2);
async A3;
async A4;
}

catch (.) { .. }
Activity A0 (Part 3);

X10 Program Structure Tree (Static Representation)

» The PST for an X10 procedure 1s a rooted tree
with six types of nodes

» Root node --- represents entire procedure
= Async node --- represents an async statement
= Async node is annotated with i1ts destination place
expression

* Finish node --- represents a finish statement

= Atomic node --- represents an atomic statement

» Loop node --- represents a sequential loop

statement

= A parallel loop 1s modeled as a sequential loop with
an async body

» Other statement --- represents a leaf node In the
PST
» Parent relation 1n PST 1s determined by program
structure

» PST.parent(N) i1s the node that represents the
closest enclosing async/finish/atomic/loop

I~L statement (or root nodél 1T none)

> RICE 1

Optimization of Finish and Async Operations

Research Problems

= Use PDG-style dependence/interference analysis to coarsen scope of finish nodes
and insert additional async nodes (additional automatic parallelization)

= Program partitioning to extract useful parallelism from ideal parallelism

= Reorder nodes to further increase finish-async parallelism e.g., “Instruction
Reordering for Fork-Join Parallelism”, PLDI 1990

Task Dependence Graph: Without reordering: Without reordering:
A: A;
finish { C;
async B; async C; finish {
} async B; async E;
e B e finish { }
are needed to see this picture. asynC D, asynC E, D :
} F;
=

/I Completion time =202 // Completion time = 104 .,

AN 13 §)

Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)

V> RICE 14

Optimization Opportunities for Atomic Blocks

= Move as much code out of atomic as possible

= Use nonblocking operations for selected atomic
statements

= Optimization of Transactional Memory operations for
atomic

= TX_BEGIN, TX_COMMIT, TX_ABORT, TX_VALIDATE,
TX_ACCESS, TX_ACQUIRE, TX_READ, TX_WRITE,
TX_EXPIRE

E’b RICE 15

)

Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)

V> RICE 16

> RICE 17

X10 Clock Extensions

= Allow activity to be registered on clock for wait, notify, or
both

= Clock can now be used for one-way synchronizations and for
barriers

= next = walit for wait-only activity, notify for notify-only activity,
and wait + notify for both

= Allow next statement to have an optional “single”
statement

o RICE 18 §)

Optimization Opportunities for Clocks

= Split-phase barriers

= Replace next by notify & wait, and insert local computations in between
them

= Distributed barriers

= Replace single clock by multiple clocks with fine-grained synchronization
= Use of single with next

= e.g., replace two next operations in the following code fragment ...

next;
if (id==0)

if (1= k) { t = col_k[I]; col_k[I] = col_K[k]; col_K[k] = t:)}
next;

= ... by one next operation with a single computation
next { if (I '= k) { t = col_K[l]; col_K[I] = col_k[k]; col k[k]=1;} }

E,‘} RICE 19

)

Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)

V> RICE 2

Place-local analysis & transformation

= Locality Analysis

= Augment with place type declarations by user, and augment with type
inference

= “Type Inference for Locality Analysis of Distributed Data Structures™,
PPoPP 2008 (to appear)

= Automatic selection of data and computation mappings e.g.,

// Implicit and explicit versions of remote fetch-and-op
a) a.x = f(a.x, b.y) ;
b) async (b) {
final Int v = b.y;
async (a) a.x = f(a.x,v);

+
s RICE .

Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Place-local analysis &
transformation

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)

V> RICE 2

Portable Parallel Programming via X10 Deployments

| X10 Data Structures
X10 language defines l

mapping from X10 objects =<
& activities to X10 places

i X10 Places
X10 deployment defines < l
mapping from virtual X10
places to physical & Physical PEs
proceSSingeIGy \
Homogeneous Heterogeneous
Multi-core Accelerators Clusters
HHHHHHHH
m [j 2 — I? I$
ff 1 v v

s RICE -

%}\ RICE 24

Possible X10 Deployment on Nvidia G80
(with extensions to support hierarchies of places)

Host Device (hierarchy of places)
Device (Place 0)
Grid 1
Multiprocessor N
. Kernel » Block Block Block
. 1 (0, 0) (1, 0) (2, 0)
Multiprocessor 2

Multiprocessor 1 Block-” | Block ' Block

oYy @&y i @

j

7’ /
/’ . 4
l | Grid 2
d ’
/’ ll
. ,' /
Instruction

: Kernel -~ b |
Unit 2 ot /
Processor 1| |Processor2| " ** |Processor M o ,"

?

- Block (1, 1)

Possible X10 Deployment for Cell

Place 1 Place2 Place3 Place4 Place5 Place6 Place7 Place8 u BagcApmnadr
SPU ISPU ISPU SPU SPU SPU SPU SPU .
s J(ITsxo | Isxo) (s s | sxo i sxo |([Csxo = map 9 places on to PPE + eight
v v v ¢ v ¢ ¢ ¢
LS LS LS LS LS LS LS LS SPEs

= Use finish & async's as high-

[smr [_smr [_smr |l sme {{[sme [smr]I sme || smE | :
e level representation of DMAS
EIB (up to 96B/cycle) - Cha”engeSZ
PPE LeBloycle 16B/cycle 16B/cycle (2x) . Weak PPE : .
y = S|MDization is critical
PPU mic BIC = Lack of hardware support for
coherence
< L1 _ ;
Brople msilc?exu I l I l I = Limited memory on SPE's
Dual FlexIO™ = Limited performance of code
L Place 0 - XDR™ : .
_ with frequent conditional or
64-bit Power Architecture with VMX indirect branches
= Different ISA's for PPE and
SPE.

s RICE ”

Selected Compiler Challenges

= Optimization of parallel operations
= Activity creativity and termination --- Async, Finish
= Activity coordination --- Atomic, Clocks

= Data and Computation Alignment --- Places

= Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore

= |anguage Extensions in support of Automatic Compiler
Parallelization

= Parallel Intermediate Representation (PIR)

V> RICE)7

Language Extensions in Support of Compiler Parallelization (LCPC 2007)

Language features that aid in automatic
parallelization of high productivity

languages:
= Already in X10
multidimensional arrays, points, "\

regions, dependent types
= Proposed extensions

array views

parameter intents
retained (non-escaping) arrays

and objects

pure methods
exception-free code regions
gather/reduce computations

s RICE

>

/,

Sequential ﬂg@ge_)
X10 extensions
l + Parallel
constructs
Parallel
X10
l Fine grained
_ Synchronization
X10RUNIME | —

Extended
Seq X10

v

Automatic
Parallelization

Y

Extended
X10 Runtime

+ SPMD extensions

| Hand 1

All declarations are annotations are checked for safety e.g.,
Compiler inserts dynamic check for “m !1=0"in “j/ m”
Programmer inserts dynamic check using a type cast

28

operator

. int (:nonzero) m = (int(:nonzero)) n; // Cast to nonzero

Compiler performs static checks of dependent types
. int (:nonzero) m = n; // Need to declare n as nonzero

Case Study: Java Grande Forum Benchmarks

Series | Sparse* | SOR | Crypt | LUFact | FFT | Euler | MolDyn | Ray* | Monte*
Multi-dim arrays| x X X X
Regions, Points X X X X X X
Array views X X
In/Out/InOut X
Disjoint X X X
Retained X X X
Pure method X X
NonNull X X X X X X X X X X
Region Dep-type X X X X X
Nonzero X
Exception free X X X X X X
Reduction X X X X

* Sparse: SparseMatmult, Ray: RayTracer, Monte: MonteCarlo

s RICE ”

P

erformance ot X10 Sel

rlal and X10 Hand-Pez

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

arallel relative to JGF Sel

Rice Habanero Multicore Software Project

< Parallel Applications >

(subsets)
X10 Fortress

~

- 2),3) 4wl be
| developed first for
! X10 subset

< Multicore Hardware =~

s RICE

<4———%» SeqJava, C, Fortran, ...

Vendor tools

_ Java
Eclipse standard
Platform libraries

Vendor Platform
Compilers & Libraries

Multicore OS

I

N

)

Habanero Research Topics

1) Language Research (builds on X10)

= Explicit parallelism: hierarchical places for multicore

= |mplicit deterministic parallelism: array views, parameter intents, HPF-style forall, Sisal-style loops and
arrays

= Implicit non-deterministic parallelism: unordered iterators, partially ordered statement blocks

2) Compiler research (focus of this talk!)

= Parallel Intermediate Representation (PIR)
= Optimization of parallel operations

= Activity creativity and termination

= Activity coordination

= Data and Computation Alignment

= Deployment and Code Generation

= Language Extensions in support of Automatic Compiler Parallelization

3) Virtual machine research (builds on Jikes RVM)

= VM support for work-stealing scheduling algorithms with extensions for places, transactions, task groups
= Integration and exploitation of lightweight profiling in VM scheduler and memory management system

4) Concurrency library (builds on JUC and DSTM2 libraries)

= Fine-grained signal/wait, efficient transactions, new nonblocking data structures

5) Toolkit research (builds on Rice HPCtoolkit & Eclipse PTP)

= Program analysis for common parallel software errors

b~ Performance attribution of loops and inlined code using static and dynamic calling context

Habanero Target Applications and Platforms

Applications:

1) Parallel Benchmarks

= SSCA's #1, #2, #3 from DARPA HPCS program

= NAS Parallel Benchmarks

= Java Grande Forum benchmarks

2) Signal Processing and Medical Imaging

= Back-end processing for Compressive Sensing
(www.dsp.ece.rice.edu/cs)

= Contacts: Rich Baraniuk (Rice), Jason Cong (UCLA)

3) Seismic Data Processing

= Rice Inversion project (www.trip.caam.rice.edu)
= Contact: Bill Symes (Rice)

4) Computer Graphics and Visualization

= Mathematical modeling and smoothing of meshes

= Contact: Joe Warren (Rice)
5) Fock Matrix Construction

= Contacts: David Bernholdt, Wael Elwasif, Robert

Harrison, Annirudha Shet (ORNL)

33

Platforms:

. AMD Barcelona Quad-Core Opteron
. Clearspeed Advance X620
. DRC Coprocessor Module w/ Xilinx Virtex

FPGA
= IBM Power6
. nVidia GeForce 8800GTX
. STI Cell

. Sun Niagara 2

Additional suggestions welcome!

Habanero Team

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested
In a PhD, postdoc, research scientist, or programmer position
in the Habanero project, or in collaborating with us!

mailto:vsarkar@rice.edu

#
T

Y

SPE

s S AA AR AT I FER

EIB (up to 96B/cycle)

,
= T [T

PGAS Interconnect

	Compiler Challenges for Multicore Parallel Systems
	Acknowledgments
	Future Architecture Trends: a new Era of Parallel Processing
	X10 Background (x10.sf.net)
	X10 Language and Computation Model
	X10 places
	Comparison with other languages
	Selected Compiler Challenges
	X10 Dynamic Computation Dag
	X10 Program Structure Tree (Static Representation)
	Optimization of Finish and Async Operations
	Selected Compiler Challenges
	Optimization Opportunities for Atomic Blocks
	Selected Compiler Challenges
	X10 Clock Extensions
	Optimization Opportunities for Clocks
	Selected Compiler Challenges
	Place-local analysis & transformation
	Selected Compiler Challenges
	Portable Parallel Programming via X10 Deployments
	Possible X10 Deployment on Nvidia G80 �(with extensions to support hierarchies of places)
	Possible X10 Deployment for Cell
	Selected Compiler Challenges
	Language Extensions in Support of Compiler Parallelization (LCPC 2007)
	Case Study: Java Grande Forum Benchmarks
	Performance of X10 Serial and X10 Hand-Parallel relative to JGF Serial
	Rice Habanero Multicore Software Project
	Habanero Research Topics
	Habanero Target Applications and Platforms
	Habanero Team
	Conclusion

