
Compiler Challenges for Multicore Parallel SystemsCompiler Challenges for Multicore Parallel Systems

Vivek Sarkar
Rice University

vsarkar@rice.edu

Workshop on Architectures and Compilers for Multithreading
IIT Kanpur, December 13 - 15, 2007

Vivek Sarkar
Rice University

vsarkar@rice.edu

Workshop on Architectures and Compilers for Multithreading
IIT Kanpur, December 13 - 15, 2007

L3
 D

ire
ct

or
y/

C
on

tr
ol

L2 L2 L2

LSU LSUIFU
BXU

IDU IDU

IFU
BXU

FPU FPU

FX
U

FX
UISU ISU

2

AcknowledgmentsAcknowledgments

IBM X10 project (x10.sf.net)
IBM Jalapeno project and Jikes Research Virtual Machine
(jikesrvm.org)
IBM ASTI project
IBM PTRAN Project
Java Concurrency Utilities open source project
(gee.cs.oswego.edu/dl/concurrency-interest)
Rice Co-Array Fortran project (www.hipersoft.rice.edu/caf)
Rice COMP 635 Seminar on Heterogeneous Processors
(www.cs.rice.edu/~vsarkar/comp635)
Rice Habanero project team members

3

Future Architecture Trends: a new Era of Parallel ProcessingFuture Architecture Trends: a new Era of Parallel Processing

Challenge: Develop new compiler technologies to support portable
parallel abstractions for future hardware

Homogeneous
Multi-core

High Performance ClustersHeterogeneous
Accelerators

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

Memory

PEs,
SMP Node

PEs,

.

Memory

PEs,
SMP Node

PEs,

PGAS Interconnect

Hardware building blocks for mainstream and high-performance
systems are varied and proliferating …

4

X10 Background (x10.sf.net)X10 Background (x10.sf.net)
X10 language developed as part of IBM PERCS project in DARPA High Productivity
Computing Systems program
Unified abstractions of asynchrony and concurrency for use in

Multi-core SMP Parallelism
Messaging and Cluster Parallelism

Productivity
High Level Language designed for portability and safety

Build on sequential subset of Java language
Target adoption by mainstream developers with Java/C/C++ skills

X10 Development Toolkit for Eclipse
Performance

Lightweight threads (activities) and synchronization
Transparency – expert programmer should have controls to tune optimizations and
deployment
Efficient foreign function interfaces for libraries written in Fortran and C/C++

“X10: An Object-Oriented Approach to Non-Uniform Cluster Computing”, OOPSLA 2005

5

X10 Language and Computation ModelX10 Language and Computation Model
Activity creation and termination

async [clocked(…)] Stm
Run Stm asynchronously at Place

foreach [clocked(…)] (point P : Reg) Stm
Run Stm asynchronously for each
point in region

finish Stm
Execute Stm, wait for all asyncs to
terminate

Activity coordination
atomic Stm

Execute Stm atomically
next

suspend till all clocks that the current
activity is registered with can advance

Places
Region --- set of points, e.g., region r = [1:N,1:M];
Distribution --- mapping from region to places,
e.g., dist d = block(r);
Activity alignment

here --- place at which current activity is
executing
async (Place) [clocked(…)] Stm

Run Stm asynchronously at Place
ateach [clocked(…)] (point P : Dist) Stm

Run Stm asynchronously for each point
in Dist, at its place

Data Alignment
new --- Allocate object at this place (here)
new T[d] --- allocate array with distribution d

Deadlock safety: any X10 program written with async, atomic,
finish, foreach, ateach, and next can never deadlock

6

X10 placesX10 places

• Dynamic parallelism with a Partitioned Global Address Space
• Places encapsulate binding of activities and globally addressable mutable data

• Number of places currently fixed at launch time
• All concurrency is expressed as asynchronous activities – subsumes threads,
structured parallelism, messaging, DMA transfers, etc.
• Locality rule: all accesses to mutable data in an atomic section must be place-local
• Immutable data is place-independent and offers opportunity for single-assignment
parallelism

Storage
classes:
Activity-
local
Place-local
Partitioned
global
Immutable

7

Comparison with other languagesComparison with other languages

Single Program Multiple Data (SPMD) languages with Partition Global Address Space
(PGAS)

Unified Parallel C, Co-Array Fortran, Titanium
X10 generalizes PGAS to a “threaded-PGAS” model (beyond SPMD)

Hierarchical fork-join parallelism
Cilk (ultra-lightweight threads, work-stealing scheduling, …)
X10 generalizes Cilk by adding places, distributions, finish-async, …

X10 has similarities with other languages in DARPA HPCS program --- Chapel (Cray) and
Fortress (Sun) --- but there are also key differences

Chapel allows object migration and data redistribution, which could makes it harder to
use for scalable parallelism
Fortress is advancing the underlying sequential language in novel ways that are
orthogonal to parallelism

8

Selected Compiler ChallengesSelected Compiler Challenges

Optimization of parallel operations
Activity creativity and termination --- Async, Finish
Activity coordination --- Atomic, Clocks

Data and Computation Alignment --- Place-local analysis &
transformation
Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore
Language Extensions in support of Automatic Compiler
Parallelization
Parallel Intermediate Representation (PIR)

9

10

Activity A4

Activity A0 (Part 3)Activity A0 (Part 2)

X10 Dynamic Computation DagX10 Dynamic Computation Dag

Start-
finish Activity A0 (Part 1)

Activity A1

Activity A2
// X10 pseudo code
main(){ // implicit finish
Activity A0 (Part 1);
async {A1; async A2;}
try {

finish {
Activity A0 (Part 2);
async A3;
async A4;

}
catch (…) { … }
Activity A0 (Part 3);

}

Activity A3

Start-
finish

End-
finish

End-
finish

Spawn edge

Continue edge

Dependence edge

“Deadlock-Free
Scheduling of X10
Computations with
Bounded Resources”,
SPAA 2007.

11

X10 Program Structure Tree (Static Representation)X10 Program Structure Tree (Static Representation)
The PST for an X10 procedure is a rooted tree
with six types of nodes

Root node --- represents entire procedure
Async node --- represents an async statement

Async node is annotated with its destination place
expression

Finish node --- represents a finish statement
Atomic node --- represents an atomic statement
Loop node --- represents a sequential loop
statement

A parallel loop is modeled as a sequential loop with
an async body

Other statement --- represents a leaf node in the
PST

Parent relation in PST is determined by program
structure

PST.parent(N) is the node that represents the
closest enclosing async/finish/atomic/loop
statement (or root node if none)

12

13

Optimization of Finish and Async OperationsOptimization of Finish and Async Operations
Research Problems

Use PDG-style dependence/interference analysis to coarsen scope of finish nodes
and insert additional async nodes (additional automatic parallelization)
Program partitioning to extract useful parallelism from ideal parallelism
Reorder nodes to further increase finish-async parallelism e.g., “Instruction
Reordering for Fork-Join Parallelism”, PLDI 1990

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Without reordering:
A ;
finish {

async B; async C;
}
finish {

async D; async E;
}
F ;
// Completion time = 202

Without reordering:
A ;
C ;
finish {

async B; async E;
}
D ;
F ;

// Completion time = 104

Task Dependence Graph:

14

Selected Compiler ChallengesSelected Compiler Challenges

Optimization of parallel operations
Activity creativity and termination --- Async, Finish
Activity coordination --- Atomic, Clocks

Data and Computation Alignment --- Place-local analysis &
transformation
Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore
Language Extensions in support of Automatic Compiler
Parallelization
Parallel Intermediate Representation (PIR)

15

Optimization Opportunities for Atomic BlocksOptimization Opportunities for Atomic Blocks

Move as much code out of atomic as possible
Use nonblocking operations for selected atomic
statements
Optimization of Transactional Memory operations for
atomic

TX_BEGIN, TX_COMMIT, TX_ABORT, TX_VALIDATE,
TX_ACCESS, TX_ACQUIRE, TX_READ, TX_WRITE,
TX_EXPIRE

16

Selected Compiler ChallengesSelected Compiler Challenges

Optimization of parallel operations
Activity creativity and termination --- Async, Finish
Activity coordination --- Atomic, Clocks

Data and Computation Alignment --- Place-local analysis &
transformation
Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore
Language Extensions in support of Automatic Compiler
Parallelization
Parallel Intermediate Representation (PIR)

17

18

X10 Clock ExtensionsX10 Clock Extensions

Allow activity to be registered on clock for wait, notify, or
both

Clock can now be used for one-way synchronizations and for
barriers
next = wait for wait-only activity, notify for notify-only activity,
and wait + notify for both

Allow next statement to have an optional “single”
statement

19

Optimization Opportunities for ClocksOptimization Opportunities for Clocks

Split-phase barriers
Replace next by notify & wait, and insert local computations in between
them

Distributed barriers
Replace single clock by multiple clocks with fine-grained synchronization

Use of single with next
e.g., replace two next operations in the following code fragment …

next;
if (id == 0)

if (l != k) { t = col_k[l]; col_k[l] = col_k[k]; col_k[k] = t; }
next;

… by one next operation with a single computation
next { if (l != k) { t = col_k[l]; col_k[l] = col_k[k]; col_k[k] = t; } }

20

Selected Compiler ChallengesSelected Compiler Challenges

Optimization of parallel operations
Activity creativity and termination --- Async, Finish
Activity coordination --- Atomic, Clocks

Data and Computation Alignment --- Place-local analysis &
transformation
Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore
Language Extensions in support of Automatic Compiler
Parallelization
Parallel Intermediate Representation (PIR)

21

Place-local analysis & transformationPlace-local analysis & transformation

Locality Analysis

Augment with place type declarations by user, and augment with type
inference

“Type Inference for Locality Analysis of Distributed Data Structures”,
PPoPP 2008 (to appear)

Automatic selection of data and computation mappings e.g.,

// Implicit and explicit versions of remote fetch-and-op
a) a.x = f(a.x, b.y) ;
b) async (b) {

final int v = b.y;
async (a) a.x = f(a.x,v);

}

22

Selected Compiler ChallengesSelected Compiler Challenges

Optimization of parallel operations
Activity creativity and termination --- Async, Finish
Activity coordination --- Atomic, Clocks

Data and Computation Alignment --- Place-local analysis &
transformation
Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore
Language Extensions in support of Automatic Compiler
Parallelization
Parallel Intermediate Representation (PIR)

23

Portable Parallel Programming via X10 DeploymentsPortable Parallel Programming via X10 Deployments

X10 Places

Physical PEs

X10 language defines
mapping from X10 objects
& activities to X10 places

X10 Data Structures

X10 deployment defines
mapping from virtual X10

places to physical
processing elements

Homogeneous
Multi-core ClustersHeterogeneous

Accelerators

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

Memory

PEs,
SMP Node

PEs,

.

Memory

PEs,
SMP Node

PEs,

Interconnect

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .
L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .
L2 Cache

PEs,
L1 $
PEs,
L1 $

PEs,
L1 $
PEs,
L1 $. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .
L2 Cache

PEs,
L1 $
PEs,
L1 $

PEs,
L1 $
PEs,
L1 $

. . .

Memory

PEs,
SMP Node

PEs,

.

Memory

PEs,
SMP Node

PEs,

Interconnect

. . .

Memory

PEs,
SMP Node

PEs,

. . .

Memory

PEs,PEs,
SMP Node

PEs,PEs,

.

Memory

PEs,
SMP Node

PEs,

. . .

Memory

PEs,PEs,
SMP Node

PEs,PEs,

Interconnect

24

25

Possible X10 Deployment on Nvidia G80
(with extensions to support hierarchies of places)
Possible X10 Deployment on Nvidia G80
(with extensions to support hierarchies of places)

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Host
(Place 0)

Kernel
1

Kernel
2

Device (hierarchy of places)

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

26

Basic Approach:
map 9 places on to PPE + eight
SPEs
Use finish & async’s as high-
level representation of DMAs

Challenges:
Weak PPE
SIMDization is critical
Lack of hardware support for
coherence
Limited memory on SPE's
Limited performance of code
with frequent conditional or
indirect branches
Different ISA's for PPE and
SPE.

Possible X10 Deployment for CellPossible X10 Deployment for Cell

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

Place 1 Place 2 Place 3 Place 4 Place 5 Place 6 Place 7 Place 8

Place 0

27

Selected Compiler ChallengesSelected Compiler Challenges

Optimization of parallel operations
Activity creativity and termination --- Async, Finish
Activity coordination --- Atomic, Clocks

Data and Computation Alignment --- Places
Deployment and Code Generation --- Homogeneous &
Heterogeneous Multicore
Language Extensions in support of Automatic Compiler
Parallelization
Parallel Intermediate Representation (PIR)

28

Language Extensions in Support of Compiler Parallelization (LCPC 2007)Language Extensions in Support of Compiler Parallelization (LCPC 2007)

Language features that aid in automatic
parallelization of high productivity
languages:
Already in X10

multidimensional arrays, points,
regions, dependent types

Proposed extensions
array views
parameter intents
retained (non-escaping) arrays
and objects
pure methods
exception-free code regions
gather/reduce computations

All declarations are annotations are checked for safety e.g.,
Compiler inserts dynamic check for “m != 0” in “j / m”
Programmer inserts dynamic check using a type cast
operator

int (:nonzero) m = (int(:nonzero)) n; // Cast to nonzero
Compiler performs static checks of dependent types

int (:nonzero) m = n; // Need to declare n as nonzero

29

Case Study: Java Grande Forum BenchmarksCase Study: Java Grande Forum Benchmarks

Series Sparse* SOR Crypt LUFact FFT Euler MolDyn Ray* Monte*
Multi-dim arrays x x x x
Regions, Points x x x x x x
Array views x x
In/Out/InOut x
Disjoint x x x
Retained x x x
Pure method x x
NonNull x x x x x x x x x x

Region Dep-type x x x x x
Nonzero x

Exception free x x x x x x
Reduction x x x x

* Sparse: SparseMatmult, Ray: RayTracer, Monte: MonteCarlo

30

Performance of X10 Serial and X10 Hand-Parallel relative to JGF SerialPerformance of X10 Serial and X10 Hand-Parallel relative to JGF Serial

X10 serial is 1.2x faster than JGF serial on average
X10 hand-parallel is 11.9x faster than X10 serial and
14.3x faster than JGF serial on average
Future work: build a compiler that can automatically
achieve X10 hand-parallel performance

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

31

Rice Habanero Multicore Software ProjectRice Habanero Multicore Software Project

1) Habanero
Programming

Language

5) Habanero
Toolkit

Seq Java, C, Fortran, …
Habanero
Foreign
Function
Interface

Eclipse
Platform

Parallel Applications

Multicore Hardware

Multicore OS

Vendor Platform
Compilers & Libraries

Java
standard
libraries

Vendor tools
2) Habanero

Static
Compiler

3) Habanero
Virtual

Machine

4) Habanero
Concurrency

Library

X10 Fortress …
(subsets)

2), 3), 4) will be
developed first for
X10 subset

32

Habanero Research TopicsHabanero Research Topics
1) Language Research (builds on X10)

Explicit parallelism: hierarchical places for multicore
Implicit deterministic parallelism: array views, parameter intents, HPF-style forall, Sisal-style loops and
arrays
Implicit non-deterministic parallelism: unordered iterators, partially ordered statement blocks

2) Compiler research (focus of this talk!)
Parallel Intermediate Representation (PIR)
Optimization of parallel operations

Activity creativity and termination
Activity coordination
Data and Computation Alignment
Deployment and Code Generation

Language Extensions in support of Automatic Compiler Parallelization
3) Virtual machine research (builds on Jikes RVM)

VM support for work-stealing scheduling algorithms with extensions for places, transactions, task groups
Integration and exploitation of lightweight profiling in VM scheduler and memory management system

4) Concurrency library (builds on JUC and DSTM2 libraries)
Fine-grained signal/wait, efficient transactions, new nonblocking data structures

5) Toolkit research (builds on Rice HPCtoolkit & Eclipse PTP)
Program analysis for common parallel software errors
Performance attribution of loops and inlined code using static and dynamic calling context

33

Habanero Target Applications and PlatformsHabanero Target Applications and Platforms
Applications:

1) Parallel Benchmarks
SSCA’s #1, #2, #3 from DARPA HPCS program
NAS Parallel Benchmarks
Java Grande Forum benchmarks

2) Signal Processing and Medical Imaging
Back-end processing for Compressive Sensing
(www.dsp.ece.rice.edu/cs)
Contacts: Rich Baraniuk (Rice), Jason Cong (UCLA)

3) Seismic Data Processing
Rice Inversion project (www.trip.caam.rice.edu)
Contact: Bill Symes (Rice)

4) Computer Graphics and Visualization
Mathematical modeling and smoothing of meshes
Contact: Joe Warren (Rice)

5) Fock Matrix Construction
Contacts: David Bernholdt, Wael Elwasif, Robert
Harrison, Annirudha Shet (ORNL)

Platforms:

AMD Barcelona Quad-Core Opteron
Clearspeed Advance X620
DRC Coprocessor Module w/ Xilinx Virtex
FPGA
IBM Power6
nVidia GeForce 8800GTX
STI Cell
Sun Niagara 2
. . .

Additional suggestions welcome!

34

Habanero TeamHabanero Team

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested
in a PhD, postdoc, research scientist, or programmer position

in the Habanero project, or in collaborating with us!

mailto:vsarkar@rice.edu

35

ConclusionConclusion

Advances in compilers are necessary to address the
programming challenges of mainstream computing

Homogeneous
Multi-core

High Performance
Clusters

Heterogeneous
Accelerators

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

Memory

PEs,
SMP Node

PEs,

.

Memory

PEs,
SMP Node

PEs,

PGAS Interconnect

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
?

	Compiler Challenges for Multicore Parallel Systems
	Acknowledgments
	Future Architecture Trends: a new Era of Parallel Processing
	X10 Background (x10.sf.net)
	X10 Language and Computation Model
	X10 places
	Comparison with other languages
	Selected Compiler Challenges
	X10 Dynamic Computation Dag
	X10 Program Structure Tree (Static Representation)
	Optimization of Finish and Async Operations
	Selected Compiler Challenges
	Optimization Opportunities for Atomic Blocks
	Selected Compiler Challenges
	X10 Clock Extensions
	Optimization Opportunities for Clocks
	Selected Compiler Challenges
	Place-local analysis & transformation
	Selected Compiler Challenges
	Portable Parallel Programming via X10 Deployments
	Possible X10 Deployment on Nvidia G80 �(with extensions to support hierarchies of places)
	Possible X10 Deployment for Cell
	Selected Compiler Challenges
	Language Extensions in Support of Compiler Parallelization (LCPC 2007)
	Case Study: Java Grande Forum Benchmarks
	Performance of X10 Serial and X10 Hand-Parallel relative to JGF Serial
	Rice Habanero Multicore Software Project
	Habanero Research Topics
	Habanero Target Applications and Platforms
	Habanero Team
	Conclusion

