
Parallel Programming models in the era
of multi-core processors:

Laxmikant Kale
http://charm.cs.uiuc.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

http://charm.cs.uiuc.edu/

12/15/2007 Multicore Workshop IIT Kanpur 2

Requirements
• Composibility
• Respect for locality
• Dealing with heterogeneity
• Dealing with the memory wall
• Dealing with dynamic resource variation

– Machine running 2 parallel apps on 64 cores, needs to run a third one
– Shrink and expand the sets of cores assigned to a job

• Dealing with Static resource variation : Fwd Scaling
– I.e. Parallel App should run unchanged on the next generation manycore

with twice as many cores

• Above all: Simplicity

12/15/2007 Multicore Workshop IIT Kanpur 3

Guidelines
• A guideline that appeals to me:

– Bottom-up, application-driven development of abstractions

• Aim at a good division of labor between the
programmer and System
– Automate what the system can do well
– Allow programmer to do what they can do best

12/15/2007 Multicore Workshop IIT Kanpur 4

Foundation: Adaptive Runtime System

User View

System implementation

Programmer: [Over] decomposition
into virtual processors

Runtime: Assigns VPs to processors

Enables adaptive runtime strategies

Implementations: Charm++, AMPI

• Software engineering
– Num. of VPs to match

application logic (not physical
cores)

– Separate VPs for different
modules

• Message driven execution
– Predictability :
– Asynchronous reductions

• Dynamic mapping
– Heterogeneity

• Vacate, adjust to speed, share
– Change set of processors used
– Dynamic load balancing

Benefits
For me, Based on Migratable Objects

12/15/2007 Multicore Workshop IIT Kanpur 5

What is the cost of
Processor Virtualization?

12/15/2007 Multicore Workshop IIT Kanpur 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of Chunks Per Processor

Ti
m

e
(S

ec
on

ds
) p

er
 It

er
at

io
n

• Fragmentation cost?
– Cache performance improves
– Adaptive overlap improves
– Difficult to see cost..

• Fixable Problems:
– Memory overhead: (larger ghost areas)
– Fine-grained messaging:

“Overhead” of Virtualization

)
)1(*

,max(

)1,max(

)1(1

P
g
vT

gT

P

T
gpT

g
vTT

p

+
=

=

+=

V: overhead per message

Tp: p processor completion time

G: grainsize (computation per message)

12/15/2007 Multicore Workshop IIT Kanpur 7

Modularity
and

Concurrent Composibility

12/15/2007 Multicore Workshop IIT Kanpur 8

Message Driven Execution

Scheduler Scheduler

Message Q Message Q

Virtualization leads to Message Driven Execution

Which leads to Automatic Adaptive overlap of computation and
communication

12/15/2007 Multicore Workshop IIT Kanpur 9

Adaptive overlap and modules

SPMD and Message-Driven Modules
(From A. Gursoy, Simplified expression of message-driven programs and
quantification of their impact on performance, Ph.D Thesis, Apr 1994.)

Modularity, Reuse, and Efficiency with Message-Driven Libraries: Proc. of the Seventh
SIAM Conference on Parallel Processing for Scientific Computing, San Fransisco, 1995

12/15/2007 Multicore Workshop IIT Kanpur 10

NAMD: A Production MD program

NAMD
• Fully featured program
• NIH-funded development
• Installed at NSF centers
• Large published simulations
• We were able to demonstrate

the utility of adaptive
overlap, and share the
Gordon Bell award in 2002

Collaboration with K. Schulten, R. Skeel, and coworkers

12/15/2007 Multicore Workshop IIT Kanpur 11

Integration Electrostatics PME/3DFFT

12/15/2007 Multicore Workshop IIT Kanpur 12

Modularization

• Logical Units decoupled from “Number of processors”
– E.G. Oct tree nodes for particle data
– No artificial restriction on the number of processors

• Cube of power of 2

• Modularity:
– Software engineering: cohesion and coupling
– MPI’s “are on the same processor” is a bad coupling principle
– Objects liberate you from that:

• E.G. Solid and fluid modules in a rocket simulation

12/15/2007 Multicore Workshop IIT Kanpur 13

Rocket Simulation
• Large Collaboration headed Mike Heath

– DOE supported ASCI center

• Challenge:
– Multi-component code, with modules from independent

researchers
– MPI was common base

• AMPI: new wine in old bottle
– Easier to convert
– Can still run original codes on MPI, unchanged

12/15/2007 Multicore Workshop IIT Kanpur 14

Rocket Simulation Components in AMPI

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid

Rocflo

Rocface

Rocsolid
Rocface

Rocsolid

Rocface

Rocsolid

Rocface

Rocsolid
Rocface

Rocsolid

RocfloRocflo Rocflo Rocflo

12/15/2007 Multicore Workshop IIT Kanpur 15

AMPI and Roc* communications

Rocflo

Rocface

Rocsolid
Rocface

Rocsolid

Rocface

Rocsolid

Rocface

Rocsolid
Rocface

Rocsolid

RocfloRocflo Rocflo Rocflo

12/15/2007 Multicore Workshop IIT Kanpur 16

Automatic Adaptive
Runtime Optimizations

New Parallel Languages
and Enhancements
(MSA, Charisma, ..)

Applications
Especially,

dynamic, irregular and
difficult to parallelize ones

How to build
better parallel machines

Communication
Support (SW/HW)

Migratable Objects model

OS support
Memory

Mgmt
BigSimResource Management

On Computational Grids

12/15/2007 Multicore Workshop IIT Kanpur 17

Charm++/AMPI are mature systems
• Available on all parallel machines we know of

– Clusters, Vendor supported: IBM, SGI, HP (Q), BlueGene/L, …

• Tools:
– Performance analysis/visualization
– Debuggers
– Live visualization
– Libraries and frameworks

• Used by many applications
– 17,000+ installations
– NAMD , Rocket simulation, Quantum Chemistry, Space-time meshes,

animation graphics, Astronomy, ..

• It is C++, with message (event) driven execution
– So, a familiar model for desktop programmers

12/15/2007 Multicore Workshop IIT Kanpur 18

Parallel Objects,
Adaptive Runtime System

Libraries and Tools

The enabling CS technology of parallel objects and intelligent
Runtime systems has led to several collaborative applications in CSE

Crack Propagation

Space-time meshes

Computational Cosmology

Rocket Simulation

Protein Folding

Dendritic Growth

Quantum Chemistry
LeanCP

Develop abstractions in context of full-scale applications

NAMD: Molecular Dynamics

STM virus simulation

12/15/2007 Multicore Workshop IIT Kanpur 19

CSE to ManyCore

• The Charm++ model has succeeded in CSE/HPC

• Because:
– Resource management, …

• In spite of:
– Based on C++, not Fortran, message-driven model,..

• But is an even better fit for desktop programmers
– C++, event driven execution
– Predictability of data/code accesses

15% of cycles at NCSA,
20% at PSC, were used
on Charm++ apps, in a
one year period

12/15/2007 Multicore Workshop IIT Kanpur 20

Why is it suitable for Multi-cores

• Objects connote and promote locality
• Message-driven execution

– A strong principle of prediction for data and code use
– Much stronger than Principle of locality

• Can use to scale memory wall:
• Prefetching of needed data:

– into scratch pad memories, for example

Scheduler Scheduler
Message Q Message Q

12/15/2007 Multicore Workshop IIT Kanpur 21

Why Charm++ & Cell?
• Data Encapsulation / Locality

– Each message associated with…
• Code : Entry Method
• Data : Message & Chare Data

– Entry methods tend to access data
local to chare and message

• Virtualization (many chares per processor)
– Provides opportunity to overlap SPE computation with DMA transactions
– Helps ensure there is always useful work to do

• Message Queue Peek-Ahead / Predictability
– Peek-ahead in message queue to determine future work
– Fetch code and data before execution of entry method

S S
Q Q

12/15/2007 Multicore Workshop IIT Kanpur 22

System View on Cell

Work by David Kunzman (with
Gengbin Zheng, Eric Bohm,)

12/15/2007 Multicore Workshop IIT Kanpur 23

Charm++ on Cell Roadmap

12/15/2007 Multicore Workshop IIT Kanpur 24

So, I expect Charm++ to be a strong
contender for manycore models

BUT:
What about the quest for Simplicity?

Charm++ is powerful, but not
much simpler than, say, MPI

12/15/2007 Multicore Workshop IIT Kanpur 25

How to Get to Simple Parallel Programming Models?

• Parallel Programming is much too complex
– In part because of resource management issues :

• Handled by Adaptive Runtime Systems
– In a larger part, because of unintended non-determinacy

• Race conditions

• Clearly, we need simple models
– But what are willing to give up? (No free lunch)
– Give up “Completeness”!?!
– May be one can design a language that is simple to use, but not

expressive enough to capture all needs

12/15/2007 Multicore Workshop IIT Kanpur 26

Simplicity?

• A collection of “incomplete” languages, backed
by a (few) complete ones, will do the trick
– As long as they are interoperable

• Where does simplicity come from?
– Outlaw non-determinacy!
– Deterministic, Simple, parallel programming models

• With Marc Snir, Vikram Adve, ..
– Are there examples of such paradigms?

• Multiphase shared Arrays : [LCPC ‘04]
• Charisma++ : [LCR ’04]

12/15/2007 Multicore Workshop IIT Kanpur 27

Shared memory or not

• Smart people on both sides:
– Thesis, antithesis

• Clearly, needs a “synthesis”
• “Shared memory is easy to program” has

– Only a grain of truth
– But there exists that grain of truth

• We as a community, need to have this debate
– Put some armor on, drink friendship potion, but debate the issue

threadbare..
– What do we mean by SAS model and what we like and dislike

about it

12/15/2007 Multicore Workshop IIT Kanpur 28

Multiphase Shared Arrays
• Observations:

– General shared address space abstraction is complex
– Certain special cases are simple, and cover most uses

• Each array is in one mode at a time
– But its mode may change from phase to phase

• Modes
– Write-once
– Read-only
– Accumulate
– Owner-computes

• All workers sync, at end of each phase

12/15/2007 Multicore Workshop IIT Kanpur 29

MSA:
• In the simple model:
• A program consists of

– A collection of Charm threads, and
– Multiple collections of data-arrays

• Partitioned into pages
(user-specified)

• Execution begins in a
“main”
– Then all threads are fired in parallel

• More complex model
– Multiple collections of threads
– …

A
B

C CC C

12/15/2007 Multicore Workshop IIT Kanpur 30

MSA: Plimpton MD

for timestep = 0 to Tmax {
// Phase I : Force Computation: for a section of the interaction matrix
for i = i_start to i_end
for j = j_start to j_end
if (nbrlist[i][j]) { // nbrlist enters ReadOnly mode
force = calculateForce(coords[i], atominfo[i], coords[j], atominfo[j]);
forces[i] += force; // Accumulate mode
forces[j] += -force;

}
nbrlist.sync(); forces.sync(); coords.sync(); atominfo.sync();

for k = myAtomsbegin to myAtomsEnd // Phase II : Integration
coords[k] = integrate(atominfo[k], forces[k]); // WriteOnly mode

coords.sync(); atominfo.sync(); forces.sync();

if (timestep %8 == 0) { // Phase III: update neighbor list every 8 steps
for i = i_start to i_end

for j = j_start to j_end
nbrList[i][j] = distance(coords[i],coords[j]) < CUTOFF;

nbrList.sync(); coords.sync();
}

}

12/15/2007 Multicore Workshop IIT Kanpur 31

Extensions
• Need check for each access: is the page here?

– Pre-fetching, and known-local accesses

• A Twist on ACCUMULATE
– Each array element can be a set
– Set Union operation is a valid accumulate operation.
– Example:

• Appending a list of (x,y) points

12/15/2007 Multicore Workshop IIT Kanpur 32

MSA: Graph Partition
// Phase I: EtoN: RO, NtoE: Accumulate
for i=1 to EtoN.length()

for j=1 to EtoN[i].length() {
n = EtoN[i][j];
NtoE[n] += i; // Accumulate

}
EtoN.sync(); NtoE.sync();

// Phase II: NtoE: RO, EtoE: Accumulate
for j = my section of j

//foreach pair e1, e2 elementof NtoE[j]
for i1 = 1 to NtoE[j].length()

for i2 = i1 + 1 to NtoE[j].length() {
e1 = NtoE[j][i1];
e2 = NtoE[j][i2];
EtoE[e1] += e2; // Accumulate
EtoE[e2] += e1;

}
EtoN.sync(); NtoE.sync();

12/15/2007 Multicore Workshop IIT Kanpur 33

Charisma: Motivation

• Rocket simulation example under traditional MPI vs.
Charm++/AMPI framework

– Benefit: load balance, communication optimizations, modularity
– Problem: flow of control buried in asynchronous method

invocations

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

12/15/2007 Multicore Workshop IIT Kanpur 34

Motivation: Car-Parrinello Ab Initio Molecular Dynamics (CPMD)

Charisma presentation

12/15/2007 Multicore Workshop IIT Kanpur 35

Charisma++ example (Simple)

Jacobi 1D
begin
forall i in J
<lb[i],rb[i]> := J[i].init();

end-forall
while (e > threshold)
forall i in J
<+e, lb[i], rb[i]> := J[i].compute(rb[i-1],lb[i+1]);

end-forall
end-while

end

12/15/2007 Multicore Workshop IIT Kanpur 36

Mol. Dynamics with Spatial Decomposition

foreach i,j,k in cells
<atoms[i,j,k]>:= cells[i,j,k].produceAtoms();

end-foreach
for iter := 0 to MAX_ITER

foreach i1,j1,k1,i2,j2,k2 in cellpairs
<+forces[i1,j1,k1]> :=

cellpairs[i1,j1,k1,i2,j2,k2].computeCoulombForces(
atoms[i1,j1,k1],atoms[i2,j2,k2]);

end-foreach

foreach … for bonded forces.. Uses atoms and add to forces

foreach i,j,k in cells
<atoms[i,j,k]> := cells[i,j,k].integrate(forces[i,j,k]);

end-foreach
end-for

12/15/2007 Multicore Workshop IIT Kanpur 37

Charm++

TCharm

AMPI

MSA
Charisma

Multimodule Application

Other Abstractions:
GA, CAF, UPC, PPL1

A set of “incomplete” but elegant/simple languages,

backed by a low-level complete one

12/15/2007 Multicore Workshop IIT Kanpur 38

Lets play together

• Multiple programming models need to be
investigated
– “Survival of the fittest” doesn’t lead to a single species, it leads

to an eco-system.

• Different ones may be good for different
algorithms/domains/…

• Allow them to interoperate in a multi-paradigm
environment

12/15/2007 Multicore Workshop IIT Kanpur 39

Summary

• It is necessary to raise the level of abstraction
– Foundation: adaptive runtime system, based on migratable objects

• Automate resource management
• Composibility
• Interoperability

– Design new Models that avoid data races, and promote locality
– Incorporate good aspects of shared memory model

More info on my group’s work:
http://charm.cs.uiuc.edu

	Parallel Programming models in the era of multi-core processors:
	Requirements
	Guidelines
	Foundation: Adaptive Runtime System
	“Overhead” of Virtualization
	Message Driven Execution
	Adaptive overlap and modules
	NAMD: A Production MD program
	Modularization
	Rocket Simulation
	Rocket Simulation Components in AMPI
	AMPI and Roc* communications
	Charm++/AMPI are mature systems
	CSE to ManyCore
	Why is it suitable for Multi-cores
	Why Charm++ & Cell?
	System View on Cell
	Charm++ on Cell Roadmap
	How to Get to Simple Parallel Programming Models?
	Simplicity?
	Shared memory or not
	Multiphase Shared Arrays
	MSA:
	MSA: Plimpton MD
	Extensions
	MSA: Graph Partition
	Charisma: Motivation
	Motivation: Car-Parrinello Ab Initio Molecular Dynamics (CPMD)�
	Charisma++ example (Simple)
	Mol. Dynamics with Spatial Decomposition
	Lets play together
	Summary

