
Parallel Programming models in the era 
of multi-core processors:

Laxmikant Kale
http://charm.cs.uiuc.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

http://charm.cs.uiuc.edu/


12/15/2007 Multicore Workshop IIT Kanpur 2

Requirements
• Composibility
• Respect for locality
• Dealing with heterogeneity
• Dealing with the memory wall
• Dealing with dynamic resource variation

– Machine running 2 parallel apps on 64 cores, needs to run a third one
– Shrink and expand the sets of cores assigned to a job

• Dealing with Static resource variation : Fwd Scaling
– I.e. Parallel App should run unchanged on the next generation manycore 

with twice as many cores

• Above all: Simplicity 
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Guidelines
• A guideline that appeals to me: 

– Bottom-up, application-driven development of abstractions 

• Aim at a good division of labor between the 
programmer and System
– Automate what the system can do well
– Allow programmer to do what they can do best
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Foundation: Adaptive Runtime System

User View

System implementation

Programmer: [Over] decomposition 
into virtual processors

Runtime: Assigns VPs to processors

Enables adaptive runtime strategies

Implementations: Charm++, AMPI

• Software engineering
– Num. of VPs to match 

application logic (not physical 
cores)

– Separate VPs for different 
modules

• Message driven execution
– Predictability : 
– Asynchronous reductions

• Dynamic mapping
– Heterogeneity

• Vacate, adjust to speed, share
– Change set of processors used
– Dynamic load balancing

Benefits
For me, Based on Migratable Objects
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What is the cost of 
Processor Virtualization?
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• Fragmentation cost?
– Cache performance improves
– Adaptive overlap improves
– Difficult to see cost..

• Fixable Problems:
– Memory overhead: (larger ghost areas)
– Fine-grained messaging:

“Overhead” of Virtualization
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V: overhead per message

Tp: p processor completion time

G: grainsize (computation per message)
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Modularity 
and 

Concurrent Composibility
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Message Driven Execution

Scheduler Scheduler

Message Q Message Q

Virtualization leads to Message Driven Execution

Which leads to Automatic Adaptive overlap of computation and 
communication
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Adaptive overlap and modules

SPMD and Message-Driven Modules 
(From A. Gursoy, Simplified expression of message-driven programs and 
quantification of their impact on performance, Ph.D Thesis, Apr 1994.)

Modularity, Reuse, and Efficiency with Message-Driven Libraries: Proc. of the Seventh 
SIAM Conference on Parallel Processing for Scientific Computing, San Fransisco, 1995 
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NAMD: A Production MD program

NAMD
• Fully featured program
• NIH-funded development
• Installed at NSF centers
• Large published simulations
• We were able to demonstrate 

the utility of adaptive 
overlap, and share the 
Gordon Bell award in 2002

Collaboration with K. Schulten, R. Skeel, and coworkers
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Integration Electrostatics PME/3DFFT
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Modularization

• Logical Units decoupled from “Number of processors”
– E.G. Oct tree nodes for particle data
– No artificial restriction on the number of processors

• Cube of power of 2

• Modularity:
– Software engineering: cohesion and coupling
– MPI’s “are on the same processor” is a bad coupling principle
– Objects liberate you from that:

• E.G. Solid and fluid modules in a rocket simulation
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Rocket Simulation
• Large Collaboration headed Mike Heath

– DOE supported ASCI center

• Challenge:
– Multi-component code, with modules from independent 

researchers
– MPI was common base

• AMPI: new wine in old bottle
– Easier to convert
– Can still run original codes on MPI, unchanged
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Rocket Simulation Components in AMPI
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AMPI and Roc* communications
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Automatic Adaptive
Runtime Optimizations

New Parallel Languages
and Enhancements
(MSA, Charisma, ..)

Applications
Especially,

dynamic, irregular and 
difficult to parallelize ones

How to build 
better parallel machines

Communication 
Support (SW/HW)

Migratable Objects model

OS support
Memory 

Mgmt
BigSimResource Management 

On Computational Grids
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Charm++/AMPI are mature systems
• Available on all parallel machines we know of

– Clusters, Vendor supported: IBM, SGI, HP (Q), BlueGene/L, …

• Tools: 
– Performance analysis/visualization
– Debuggers
– Live visualization
– Libraries and frameworks

• Used by many applications
– 17,000+ installations 
– NAMD , Rocket simulation, Quantum Chemistry, Space-time meshes, 

animation graphics, Astronomy, ..

• It is C++, with message (event) driven execution
– So, a familiar model for desktop programmers
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Parallel Objects,
Adaptive Runtime System 

Libraries and Tools

The enabling CS technology of parallel objects and intelligent 
Runtime systems has led to several collaborative applications in CSE

Crack Propagation

Space-time meshes

Computational Cosmology

Rocket Simulation

Protein Folding

Dendritic Growth

Quantum Chemistry 
LeanCP

Develop abstractions in context of full-scale applications

NAMD: Molecular Dynamics

STM virus simulation
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CSE to ManyCore

• The Charm++ model has succeeded in CSE/HPC

• Because:
– Resource management, …

• In spite of:
– Based on C++, not Fortran, message-driven model,..

• But is an even better fit for desktop programmers
– C++, event driven execution
– Predictability of data/code accesses

15% of cycles at NCSA, 
20% at PSC, were used 
on Charm++ apps, in a 
one year period
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Why is it suitable for Multi-cores

• Objects connote and promote locality
• Message-driven execution

– A strong principle of prediction for data and code use
– Much stronger than Principle of locality

• Can use to scale memory wall:
• Prefetching of needed data: 

– into scratch pad memories, for example

Scheduler Scheduler
Message Q Message Q
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Why Charm++ & Cell?
• Data Encapsulation / Locality

– Each message associated with…
• Code : Entry Method
• Data : Message & Chare Data

– Entry methods tend to access data
local to chare and message

• Virtualization (many chares per processor)
– Provides opportunity to overlap SPE computation with DMA transactions
– Helps ensure there is always useful work to do

• Message Queue Peek-Ahead / Predictability
– Peek-ahead in message queue to determine future work
– Fetch code and data before execution of entry method

S S
Q Q
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System View on Cell

Work by David Kunzman (with 
Gengbin Zheng, Eric Bohm, )



12/15/2007 Multicore Workshop IIT Kanpur 23

Charm++ on Cell Roadmap
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So, I expect Charm++ to be a strong 
contender for manycore models

BUT: 
What about the quest for Simplicity?

Charm++ is powerful, but not 
much simpler than, say, MPI



12/15/2007 Multicore Workshop IIT Kanpur 25

How to Get to Simple Parallel Programming Models?

• Parallel Programming is much too complex
– In part because of resource management issues :

• Handled by Adaptive Runtime Systems
– In a larger part, because of unintended non-determinacy

• Race conditions

• Clearly, we need simple models
– But what are willing to give up? (No free lunch)
– Give up “Completeness”!?!
– May be one can design a language that is simple to use,  but not

expressive enough to capture all needs
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Simplicity?

• A collection of “incomplete” languages, backed 
by a (few) complete ones, will do the trick
– As long as they are interoperable

• Where does simplicity come from?
– Outlaw non-determinacy!
– Deterministic, Simple, parallel programming models

• With Marc Snir, Vikram Adve, ..
– Are there examples of such paradigms?

• Multiphase shared Arrays : [LCPC ‘04]
• Charisma++ :  [LCR ’04]
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Shared memory or not

• Smart people on both sides: 
– Thesis, antithesis

• Clearly, needs a “synthesis”
• “Shared memory is easy to program” has

– Only a grain of truth
– But there exists that grain of truth

• We as a community, need to have this debate
– Put some armor on, drink friendship potion, but debate the issue

threadbare.. 
– What do we mean by SAS model and what we like and dislike 

about it
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Multiphase Shared Arrays
• Observations:

– General shared address space abstraction is complex
– Certain special cases are simple, and cover most uses

• Each array is in one mode at a time
– But its mode may change from phase to phase

• Modes
– Write-once
– Read-only
– Accumulate
– Owner-computes

• All workers sync, at end of each phase
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MSA: 
• In the simple model:
• A program consists of 

– A collection of Charm threads, and 
– Multiple collections of data-arrays

• Partitioned into pages          
(user-specified)

• Execution begins in a 
“main”
– Then all threads are fired in parallel

• More complex model
– Multiple collections of threads
– …

A
B

C CC C
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MSA: Plimpton MD

for  timestep = 0 to Tmax {
// Phase I : Force Computation: for a section of the interaction matrix
for i = i_start to i_end
for j = j_start to j_end
if (nbrlist[i][j]) { // nbrlist enters ReadOnly mode
force = calculateForce(coords[i], atominfo[i], coords[j], atominfo[j]);
forces[i] += force; // Accumulate mode
forces[j] += -force;

}
nbrlist.sync(); forces.sync();  coords.sync(); atominfo.sync();

for k = myAtomsbegin to myAtomsEnd // Phase II : Integration 
coords[k] = integrate(atominfo[k], forces[k]); // WriteOnly mode

coords.sync(); atominfo.sync(); forces.sync();

if  (timestep %8 == 0) { // Phase III: update neighbor list every 8 steps
for i = i_start to i_end

for j = j_start to j_end
nbrList[i][j] = distance( coords[i],coords[j]) < CUTOFF;

nbrList.sync(); coords.sync();
}

}
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Extensions
• Need check for each access: is the page here?

– Pre-fetching,  and known-local accesses

• A Twist on ACCUMULATE 
– Each array element can be a set
– Set Union operation is a valid accumulate operation.
– Example:

• Appending a list of (x,y) points
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MSA: Graph Partition
// Phase I: EtoN: RO, NtoE: Accumulate
for i=1 to EtoN.length()

for j=1 to EtoN[i].length() {
n = EtoN[i][j];
NtoE[n] += i; // Accumulate

}
EtoN.sync(); NtoE.sync();

// Phase II: NtoE: RO, EtoE: Accumulate
for j = my section of j

//foreach pair e1, e2 elementof NtoE[j]
for i1 = 1 to NtoE[j].length()

for i2 = i1 + 1 to NtoE[j].length() {
e1 = NtoE[j][i1];
e2 = NtoE[j][i2];
EtoE[e1] += e2; // Accumulate
EtoE[e2] += e1;

}
EtoN.sync(); NtoE.sync();
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Charisma: Motivation

• Rocket simulation example under traditional MPI vs. 
Charm++/AMPI framework

– Benefit: load balance, communication optimizations, modularity
– Problem: flow of control buried in asynchronous method 

invocations

Solid

Fluid

Solid
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Motivation: Car-Parrinello Ab Initio Molecular Dynamics (CPMD)

Charisma presentation
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Charisma++ example (Simple)

Jacobi 1D
begin
forall i in J
<lb[i],rb[i]> := J[i].init();

end-forall
while (e > threshold)
forall i in J
<+e, lb[i], rb[i]> :=  J[i].compute(rb[i-1],lb[i+1]);

end-forall
end-while

end
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Mol. Dynamics with Spatial Decomposition

foreach i,j,k in cells
<atoms[i,j,k]>:= cells[i,j,k].produceAtoms();

end-foreach
for iter := 0 to MAX_ITER

foreach i1,j1,k1,i2,j2,k2 in cellpairs
<+forces[i1,j1,k1]> :=

cellpairs[i1,j1,k1,i2,j2,k2].computeCoulombForces(
atoms[i1,j1,k1],atoms[i2,j2,k2]);

end-foreach

foreach … for bonded forces.. Uses atoms and add to forces

foreach i,j,k in cells
<atoms[i,j,k]> :=  cells[i,j,k].integrate(forces[i,j,k]);

end-foreach
end-for
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Charm++

TCharm

AMPI

MSA
Charisma

Multimodule Application

Other Abstractions: 
GA, CAF, UPC, PPL1

A set of “incomplete” but elegant/simple languages, 

backed by a low-level complete one
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Lets play together

• Multiple programming models need to be 
investigated
– “Survival of the fittest” doesn’t lead to a single species, it leads 

to an eco-system.

• Different ones may be good for different 
algorithms/domains/…

• Allow them to interoperate in a multi-paradigm 
environment
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Summary

• It is necessary to raise the level of abstraction
– Foundation: adaptive runtime system, based on migratable objects

• Automate resource management
• Composibility
• Interoperability

– Design new Models that avoid data races, and promote locality
– Incorporate good aspects of shared memory model

More info on my group’s work: 
http://charm.cs.uiuc.edu
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