
The Looming Software Crisis 
due to the Multicore Menace

Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology



Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance 
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between 
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent 

• This abstraction has provided a lot of freedom for Joe

• Parallel Programming is only practiced by a few experts

2



Joe the Parallel Programmer

• Moore’s law is not bringing 
anymore performance gains

• If Joe needs performance he 
has to deal with multicores
– Joe has to deal with performance
– Joe has to deal with parallelism

• Is there a better way?

3



4

Why Parallelism is Hard

• A huge increase in complexity and work for the programmer
– Programmer has to think about performance! 
– Parallelism has to be designed in at every level

• Humans are sequential beings 
– Deconstructing problems into parallel tasks is hard for many of us

• Parallelism is not easy to implement
– Parallelism cannot be abstracted or layered away
– Code and data has to be restructured in very different (non-intuitive) ways

• Parallel programs are very hard to debug
– Combinatorial explosion of possible execution orderings 
– Race condition and deadlock bugs are non-deterministic and illusive 
– Non-deterministic bugs go away in lab environment and with 

instrumentation



Compiler-Aware 
Language Design

The StreamIt Experience

Speaker

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3



6

• Graphics
• Cryptography
• Databases
• Object recognition
• Network processing 

and security 
• Scientific codes
• …

Stream Application Domain



7

StreamIt Project
• Language Semantics / Programmability 

– StreamIt Language (CC 02) 
– Programming Environment in Eclipse (P-PHEC 05)

• Optimizations / Code Generation
– Phased Scheduling (LCTES 03)
– Cache Aware Optimization (LCTES 05)

• Domain Specific Optimizations
– Linear Analysis and Optimization (PLDI 03)
– Optimizations for bit streaming (PLDI 05)
– Linear State Space Analysis (CASES 05)

• Parallelism
– Teleport Messaging (PPOPP 05)
– Compiling for Communication-Exposed 

Architectures (ASPLOS 02)
– Load-Balanced Rendering 

(Graphics Hardware 05)
• Applications

– SAR, DSP benchmarks, JPEG, 
– MPEG [IPDPS 06], DES and 

Serpent [PLDI 05], …

StreamIt Program

Front-end

Stream-Aware
Optimizations

Uniprocessor
backend

Cluster
backend

Raw
backend

IBM X10
backend

C C per tile +
msg code

Streaming
X10 runtime

Annotated Java

MPI-like
C



8

programmability

enable parallel execution

boost productivity, enable 
faster development and 
rapid prototyping

target multicores, clusters, 
tiled architectures, DSPs, 
graphics processors, …

Compiler-Aware Language 
Design



9

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference 
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference 
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

Streaming Application Design

• Structured block level 
diagram describes 
computation and flow 
of data

• Conceptually easy to 
understand
– Clean abstraction of 

functionality

MPEG-2 Decoder



10

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference 
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference 
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

StreamIt Philosophy

• Preserve program 
structure
– Natural for application 

developers to express

• Leverage program 
structure to discover 
parallelism and deliver 
high performance

• Programs remain clean
– Portable and malleable



11

StreamIt Philosophy

output to player

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference 
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference 
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {
split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream



12

programmability

enable parallel execution

boost productivity, enable 
faster development and 
rapid prototyping

target multicores, clusters, 
tiled architectures, DSPs, 
graphics processors, …

Compiler-Aware Language 
Design



13

Common Machine Languages

Common Properties
Single flow of control
Single memory image

Unicores:

Differences:
Register File

ISA

Functional Units

Register Allocation
Instruction Selection

Instruction Scheduling

Common Properties
Multiple flows of control
Multiple local memories

Multicores:

Differences:
Number and capabilities of cores

Communication Model

Synchronization Model

von-Neumann languages represent the 
common properties and abstract away 
the differences



14

Bridging the Abstraction layers

• StreamIt exposes the data movement
– Graph structure is architecture independent

• StreamIt exposes the parallelism
– Explicit task parallelism
– Implicit but inherent data and pipeline parallelism

• Each multicore is different in granularity and topology
– Communication is exposed to the compiler

• The compiler needs to efficiently bridge the abstraction
– Map the computation and communication pattern of the program 

to the cores, memory and the communication substrate



15

Types of Parallelism

Task Parallelism (traditionally thread fork/join)
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

Data Parallelism
– Peel iterations of filter, place within 

scatter/gather pair (fission)
– parallelize filters with state

Pipeline Parallelism
– Between producers and consumers
– Stateful filters can be parallelized

Scatter

Gather

Task



16

Types of Parallelism

Task Parallelism (traditionally thread fork/join)
– Parallelism explicit in algorithm
– Between filters without producer/consumer 

relationship

Data Parallelism (traditionally data parallel loops)
– Between iterations of a stateless filter 
– Place within scatter/gather pair (fission)
– Can’t parallelize filters with state

Pipeline Parallelism (traditionally in hardware)
– Between producers and consumers
– Statefull filters can be parallelized

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Data Parallel



17

Problem Statement

Given: 
– Stream graph with compute and communication estimate 

for each filter
– Computation and communication resources of the target 

machine

Find:
– Schedule of execution for the filters that best utilizes the 

available parallelism to fit the machine resources



18

Baseline 1: Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

• Inherent task parallelism between 
two processing pipelines

• Task Parallel Model:
– Only parallelize explicit task 

parallelism 
– Fork/join parallelism

• Execute this on a 2 core machine 
~2x speedup over single core

• What about 4, 16, 1024, … cores?



19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er

DCT

DES

FFT

Filte
rba

nk

FMRad
io

Ser
pe

nt

TDE
MPEG2D

ec
od

er

Voc
od

er

Rad
ar

Geo
metr

ic 
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e 
C

or
e 

St
re

am
It

Evaluation: Task Parallelism
Raw Microprocessor

16 inorder, single-issue cores with D$ and I$
16 memory banks, each bank with DMA

Cycle accurate simulator

Parallelism: Not matched to target!
Synchronization: Not matched to target! 



20

Baseline 2: Fine-Grained 
Data Parallelism

Adder

Splitter

Joiner

• Each of the filters in the 
example are stateless

• Fine-grained Data Parallel 
Model:
– Fiss each stateless filter N

ways (N is number of cores)
– Remove scatter/gather if 

possible

• We can introduce data 
parallelism
– Example: 4 cores

• Each fission group occupies 
entire machineBandStopBandStopBandStopAdder

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner



21

Evaluation: Fine-Grained Data Parallelism

0

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

Bito
nic

Sort
Cha

nne
lVoc

od
er

DCT

DES

FFT

Filte
rban

k

FMRad
io

Serp
en

t

TDE
MPEG2Deco

der

Voc
od

er

Rad
ar

Geo
metr

ic 
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e 
C

or
e 

St
re

am
It

Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!



22

Phase 1: Coarsen the Stream Graph
Splitter

Joiner

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

• Before data-parallelism is 
exploited

• Fuse stateless pipelines as 
much as possible without 
introducing state
– Don’t fuse stateless with 

stateful
– Don’t fuse a peeking filter with 

anything upstreamPeek Peek

PeekPeek

Adder



23

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

• Before data-parallelism is 
exploited

• Fuse stateless pipelines as 
much as possible without 
introducing state
– Don’t fuse stateless with 

stateful
– Don’t fuse a peeking filter with 

anything upstream

• Benefits:
– Reduces global communication 

and synchronization
– Exposes inter-node 

optimization opportunities

Phase 1: Coarsen the Stream Graph



24

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Fiss 4 ways, to occupy entire chip

Data Parallelize for 4 cores



25

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Task parallelism!
Each fused filter does equal work
Fiss each filter 2 times to occupy entire chip

Data Parallelize for 4 cores



26

BandStop BandStop

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

Splitter

Joiner

BandStop

Splitter

Joiner

BandStop

Splitter

Joiner

Task parallelism, each filter does equal work
Fiss each filter 2 times to occupy entire chip

• Task-conscious data 
parallelization
– Preserve task parallelism

• Benefits:
– Reduces global communication 

and synchronization

Data Parallelize for 4 cores



27

Evaluation: 
Coarse-Grained Data Parallelism

0
1
2

3
4
5
6
7

8
9

10
11

12
13
14
15
16

17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic 

Mean

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e 

C
or

e 
St

re
am

It

Task
Fine-Grained Data
Coarse-Grained Task + Data

Good Parallelism!
Low Synchronization!



28

Simplified Vocoder

RectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

Joiner

PolarRect

66

20

1 

2

1 

1 

1

20

2

1 

1 

Data Parallel

Data Parallel

Target a 4 core machine

Data Parallel, but too little work!



29

Data Parallelize

RectPolarRectPolarRectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

RectPolar

Splitter

Joiner

RectPolarRectPolarRectPolarPolarRect

Splitter

Joiner

Joiner

20

2

1 

1 

1

20

66

2

1 

1 

1 

5

5

Target a 4 core machine



30

Data + Task Parallel Execution

Time

Cores

21

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1 

1 

1 

2

1 

1 

1

5

5



31

We Can Do Better!

Time

Cores

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1 

1 

1 

2

1 

1 

1

5

5

16



32

Phase 3: Coarse-Grained 
Software Pipelining

RectPolar

RectPolar

RectPolar

RectPolar

Prologue

New 
Steady

State

• New steady-state is free of 
dependencies

• Schedule new steady-state 
using a greedy partitioning



33

Greedy Partitioning

Target 4 core machine

Time 16

CoresTo Schedule:



34

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic 

Mean
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e 
C

or
e 

St
re

am
It

Task Fine-Grained Data
Coarse-Grained Task + Data Coarse-Grained Task + Data + Software Pipeline

Evaluation: Coarse-Grained 
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!



Next: Scalable Stream 
Representation

4 tiles 16 tiles

Data parallelism

Pipeline parallelism

64 tiles



36

Conclusions
• Computer Architecture is at a cross roads

– Once in a lifetime opportunity to redesign from scratch 
– How to use the Moore’s law gains to improve the programmability?

• Switching to multicores without losing the gains in programmer 
productivity may be the Grandest of the Grand Challenges
– Half a century of work ⇒ still no winning solution
– Will affect everyone! 

• Streaming programming model
– Can break the von Neumann bottleneck 
– A natural fit for a large class of applications
– An ideal machine language for multicores. 

• Compiler can extract explicit and inherent parallelism
– Parallelism is abstracted away from architectural details of multicores
– Sustainable Speedups (5x to 19x on the 16 core Raw)

– Increased abstraction does not have to sacrifice performance

http://cag.csail.mit.edu/commit/


	The Looming Software Crisis �due to the Multicore Menace
	Today: The Happily Oblivious�Average Joe Programmer
	Joe the Parallel Programmer
	Why Parallelism is Hard
	Compiler-Aware �Language Design
	Stream Application Domain
	StreamIt Project
	Compiler-Aware Language Design
	Streaming Application Design
	StreamIt Philosophy
	StreamIt Philosophy
	Compiler-Aware Language Design
	Common Machine Languages
	Bridging the Abstraction layers
	Types of Parallelism
	Types of Parallelism
	Problem Statement
	Baseline 1: Task Parallelism
	Evaluation: Task Parallelism
	Baseline 2: Fine-Grained �Data Parallelism
	Evaluation: Fine-Grained Data Parallelism
	Phase 1: Coarsen the Stream Graph
	Phase 1: Coarsen the Stream Graph
	Phase 2: Data Parallelize
	Phase 2: Data Parallelize
	Phase 2: Data Parallelize
	Evaluation: �Coarse-Grained Data Parallelism
	Simplified Vocoder
	Data Parallelize
	Data + Task Parallel Execution
	We Can Do Better!
	Phase 3: Coarse-Grained �Software Pipelining
	Greedy Partitioning
	Evaluation: Coarse-Grained �Task + Data + Software Pipelining
	Next: Scalable Stream Representation
	Conclusions

