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Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance 
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between 
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent 

• This abstraction has provided a lot of freedom for Joe

• Parallel Programming is only practiced by a few experts
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Joe the Parallel Programmer

• Moore’s law is not bringing 
anymore performance gains

• If Joe needs performance he 
has to deal with multicores
– Joe has to deal with performance
– Joe has to deal with parallelism

• Is there a better way?
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Why Parallelism is Hard

• A huge increase in complexity and work for the programmer
– Programmer has to think about performance! 
– Parallelism has to be designed in at every level

• Humans are sequential beings 
– Deconstructing problems into parallel tasks is hard for many of us

• Parallelism is not easy to implement
– Parallelism cannot be abstracted or layered away
– Code and data has to be restructured in very different (non-intuitive) ways

• Parallel programs are very hard to debug
– Combinatorial explosion of possible execution orderings 
– Race condition and deadlock bugs are non-deterministic and illusive 
– Non-deterministic bugs go away in lab environment and with 

instrumentation



Compiler-Aware 
Language Design

The StreamIt Experience

Speaker

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3



6

• Graphics
• Cryptography
• Databases
• Object recognition
• Network processing 

and security 
• Scientific codes
• …

Stream Application Domain
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StreamIt Project
• Language Semantics / Programmability 

– StreamIt Language (CC 02) 
– Programming Environment in Eclipse (P-PHEC 05)

• Optimizations / Code Generation
– Phased Scheduling (LCTES 03)
– Cache Aware Optimization (LCTES 05)

• Domain Specific Optimizations
– Linear Analysis and Optimization (PLDI 03)
– Optimizations for bit streaming (PLDI 05)
– Linear State Space Analysis (CASES 05)

• Parallelism
– Teleport Messaging (PPOPP 05)
– Compiling for Communication-Exposed 

Architectures (ASPLOS 02)
– Load-Balanced Rendering 

(Graphics Hardware 05)
• Applications

– SAR, DSP benchmarks, JPEG, 
– MPEG [IPDPS 06], DES and 

Serpent [PLDI 05], …

StreamIt Program

Front-end

Stream-Aware
Optimizations

Uniprocessor
backend

Cluster
backend

Raw
backend

IBM X10
backend

C C per tile +
msg code

Streaming
X10 runtime

Annotated Java

MPI-like
C
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programmability

enable parallel execution

boost productivity, enable 
faster development and 
rapid prototyping

target multicores, clusters, 
tiled architectures, DSPs, 
graphics processors, …

Compiler-Aware Language 
Design
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Picture Reorder

joiner

joiner
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reference 
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference 
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

Streaming Application Design

• Structured block level 
diagram describes 
computation and flow 
of data

• Conceptually easy to 
understand
– Clean abstraction of 

functionality

MPEG-2 Decoder
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Repeat
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<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

StreamIt Philosophy

• Preserve program 
structure
– Natural for application 

developers to express

• Leverage program 
structure to discover 
parallelism and deliver 
high performance

• Programs remain clean
– Portable and malleable
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StreamIt Philosophy

output to player
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Repeat
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<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {
split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream
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programmability

enable parallel execution

boost productivity, enable 
faster development and 
rapid prototyping

target multicores, clusters, 
tiled architectures, DSPs, 
graphics processors, …

Compiler-Aware Language 
Design
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Common Machine Languages

Common Properties
Single flow of control
Single memory image

Unicores:

Differences:
Register File

ISA

Functional Units

Register Allocation
Instruction Selection

Instruction Scheduling

Common Properties
Multiple flows of control
Multiple local memories

Multicores:

Differences:
Number and capabilities of cores

Communication Model

Synchronization Model

von-Neumann languages represent the 
common properties and abstract away 
the differences
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Bridging the Abstraction layers

• StreamIt exposes the data movement
– Graph structure is architecture independent

• StreamIt exposes the parallelism
– Explicit task parallelism
– Implicit but inherent data and pipeline parallelism

• Each multicore is different in granularity and topology
– Communication is exposed to the compiler

• The compiler needs to efficiently bridge the abstraction
– Map the computation and communication pattern of the program 

to the cores, memory and the communication substrate
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Types of Parallelism

Task Parallelism (traditionally thread fork/join)
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

Data Parallelism
– Peel iterations of filter, place within 

scatter/gather pair (fission)
– parallelize filters with state

Pipeline Parallelism
– Between producers and consumers
– Stateful filters can be parallelized

Scatter

Gather

Task
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Types of Parallelism

Task Parallelism (traditionally thread fork/join)
– Parallelism explicit in algorithm
– Between filters without producer/consumer 

relationship

Data Parallelism (traditionally data parallel loops)
– Between iterations of a stateless filter 
– Place within scatter/gather pair (fission)
– Can’t parallelize filters with state

Pipeline Parallelism (traditionally in hardware)
– Between producers and consumers
– Statefull filters can be parallelized

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Data Parallel
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Problem Statement

Given: 
– Stream graph with compute and communication estimate 

for each filter
– Computation and communication resources of the target 

machine

Find:
– Schedule of execution for the filters that best utilizes the 

available parallelism to fit the machine resources
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Baseline 1: Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

• Inherent task parallelism between 
two processing pipelines

• Task Parallel Model:
– Only parallelize explicit task 

parallelism 
– Fork/join parallelism

• Execute this on a 2 core machine 
~2x speedup over single core

• What about 4, 16, 1024, … cores?
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Evaluation: Task Parallelism
Raw Microprocessor

16 inorder, single-issue cores with D$ and I$
16 memory banks, each bank with DMA

Cycle accurate simulator

Parallelism: Not matched to target!
Synchronization: Not matched to target! 
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Baseline 2: Fine-Grained 
Data Parallelism
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• Each of the filters in the 
example are stateless

• Fine-grained Data Parallel 
Model:
– Fiss each stateless filter N

ways (N is number of cores)
– Remove scatter/gather if 
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Evaluation: Fine-Grained Data Parallelism
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Fine-Grained Data

Good Parallelism!
Too Much Synchronization!
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Phase 1: Coarsen the Stream Graph
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• Before data-parallelism is 
exploited

• Fuse stateless pipelines as 
much as possible without 
introducing state
– Don’t fuse stateless with 

stateful
– Don’t fuse a peeking filter with 

anything upstreamPeek Peek

PeekPeek

Adder
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Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

• Before data-parallelism is 
exploited

• Fuse stateless pipelines as 
much as possible without 
introducing state
– Don’t fuse stateless with 

stateful
– Don’t fuse a peeking filter with 

anything upstream

• Benefits:
– Reduces global communication 

and synchronization
– Exposes inter-node 

optimization opportunities

Phase 1: Coarsen the Stream Graph
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Phase 2: Data Parallelize
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Fiss 4 ways, to occupy entire chip

Data Parallelize for 4 cores
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Phase 2: Data Parallelize
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BandStop BandStop

Phase 2: Data Parallelize
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Task parallelism, each filter does equal work
Fiss each filter 2 times to occupy entire chip

• Task-conscious data 
parallelization
– Preserve task parallelism

• Benefits:
– Reduces global communication 

and synchronization

Data Parallelize for 4 cores
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Evaluation: 
Coarse-Grained Data Parallelism
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Simplified Vocoder
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Data Parallelize
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Data + Task Parallel Execution
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We Can Do Better!
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Phase 3: Coarse-Grained 
Software Pipelining

RectPolar
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Prologue

New 
Steady
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• New steady-state is free of 
dependencies

• Schedule new steady-state 
using a greedy partitioning
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Greedy Partitioning

Target 4 core machine

Time 16

CoresTo Schedule:
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Best Parallelism!
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Next: Scalable Stream 
Representation

4 tiles 16 tiles

Data parallelism

Pipeline parallelism

64 tiles
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Conclusions
• Computer Architecture is at a cross roads

– Once in a lifetime opportunity to redesign from scratch 
– How to use the Moore’s law gains to improve the programmability?

• Switching to multicores without losing the gains in programmer 
productivity may be the Grandest of the Grand Challenges
– Half a century of work ⇒ still no winning solution
– Will affect everyone! 

• Streaming programming model
– Can break the von Neumann bottleneck 
– A natural fit for a large class of applications
– An ideal machine language for multicores. 

• Compiler can extract explicit and inherent parallelism
– Parallelism is abstracted away from architectural details of multicores
– Sustainable Speedups (5x to 19x on the 16 core Raw)

– Increased abstraction does not have to sacrifice performance

http://cag.csail.mit.edu/commit/
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