The Looming Software Crisis
due to the Multicore Menace

Saman Amarasinghe

Computer Science and Atrtificial Intelligence Laboratory
Massachusetts Institute of Technology

i g

CSAIL

mir Today: The Happily Oblivious
Average Joe Programmer

« Joe is oblivious about the processor

— Moore’s law bring Joe performance
— Sufficient for Joe’s requirements

e Joe has built a solid boundary between
Hardware and Software

— High level languages abstract away the processors
— Ex: Java bytecode is machine independent

e This abstraction has provided a lot of freedom for Joe

o Parallel Programming is only practiced by a few experts

 Moore’s law is not bringing
anymore performance gains

« |If Joe needs performance he
has to deal with multicores
— Joe has to deal with performance
— Joe has to deal with parallelism

e |s there a better way?

Joe the Parallel Programmer -

a5

*C’™MON, JOEY. TFYOU WANNA SEE
xg}'f’);&@wﬂra YOU GOTTA PUT UP

% ﬂfa'[re 4 1

Hhir Why Parallelism is Hard

* A huge increase in complexity and work for the programmer
— Programmer has to think about performance!
— Parallelism has to be designed in at every level

« Humans are sequential beings
— Deconstructing problems into parallel tasks is hard for many of us

« Parallelism is not easy to implement
— Parallelism cannot be abstracted or layered away
— Code and data has to be restructured in very different (non-intuitive) ways

« Parallel programs are very hard to debug
— Combinatorial explosion of possible execution orderings
— Race condition and deadlock bugs are non-deterministic and illusive

— Non-deterministic bugs go away in lab environment and with
Instrumentation

Compiler-Aware
Language Design

The Streamlt Experience

FMDemod
@

Scatter

AN

I H Galt;er Fﬁ%
U = i

Speaker CSAIL

S
-
| |
000 (00
| O
000 (00
w
—

AL

Stream Application Domain

» Graphics

» Cryptography

e Databases

e Object recognition

* Network processing
and security

e Scientific codes

i Streamlt Project

Language Semantics / Programmability

— Streamlt Language (CC 02)

— Programming Environment in Eclipse (P-PHEC 05)
Optimizations / Code Generation

— Phased Scheduling (LCTES 03)

— Cache Aware Optimization (LCTES 05) Front-end
« Domain Specific Optimizations
— Linear Analysis and Optimization (PLDI 03)]
— Optimizations for bit streaming (PLDI 05) @@
— Linear State Space Analysis (CASES 05)
e Parallelism !

— Teleport Messaging (PPOPP 05)

C iing for C cation-E q Stream-Aware
— Compiling for Communication-Expose N
Architectures (ASPLOS 02) Optimizations

— Load-Balanced Rendering
(Graphics Hardware 05)

App“catlons Uniprocessor Cluster Raw IBM X10
— SAR, DSP benchmarks, JPEG, backend backend backend backend

— MPEG [IPDPS 06], DES and
Serpent [PLDI 05], ...
C per tile + Streaming
e

Uty Compiler-Aware Language
Design

boost productivity, enable
faster development and
rapid prototyping

programmability

enable parallel execution

target multicores, clusters,
tiled architectures, DSPs,
graphics processors, ...

MPEG bit stream
picture type
I——:::::::[VLD]
I guantization coefficients
I <Q >
<P¥1, PT2>

. macroblocks, motion vectors

(splitter)

frequency encoded
macroblocks

differentially coded
motion vectors

[ZigZag

[Motion Vector Decoqje

'

]
%QC> IQuantization]
]

[IDCT [Repeat]
v
[Saturation]
spatially encoded macroblocks motion vectors
(joiner)

v
(splitter
Y ¥ ————or

Motion Compensation |[Motion Compensation| [Motion Compensation|
<PT1> | reference’|| <pr1> | referenceil | <py1> | reference

_picture___; _picture __ _picture __
v v
\wlUpsample][Channel Upsample]
Yo
(joiner =)

i recovered picture

[<PT2> Picture Reorder]

v

[Color Space Conversio]n

MPEG-2 Decoder

Streaming Application Design

Wl
CSAIL

e Structured block level
diagram describes
computation and flow
of data

* Conceptually easy to
understand

— Clean abstraction of
functionality

MPEG bit stream

picture type
== =—====== VLD]

guantization coefficients

. macroblocks, motion vectors

|
| <QC> (splitter]

frequency encoded differentially coded
< >
P¥1' PT2 macroblocks motior%/ vectors

[ZigZag

[Motion Vector Decoqje

'

]
kec> iQuantization |
]
]

[IDCT [Repeat]
v
[Saturation
spatially encoded macroblocks motion vectors
(joiner)

v

(splitter
Y o ——or

Motion Compensation |[Motion Compensation| [Motion Compensation|
<PT1> | reference’|| <pr1> | referenceil | <py1> | reference

_picture___; _picture __ _picture __
v v
\wlUpsample][Channel Upsample]
Yo
(joiner =)

i recovered picture

[<PT2> Picture Reorder]

v

[Color Space Conversio]n

Streamlt Philosophy

Preserve program
structure

— Natural for application
developers to express

Leverage program
structure to discover
parallelism and deliver
high performance

Programs remain clean
— Portable and malleable

picture type

Streamlt Philosophy

MPEG bit stream

—=—m====== vVvLD

)

guantization coefficients

i macroblocks, motion vectors

(splitter

)

I
|
I <Qg>

<P¥1 pT2> frequency encoded

macroblocks

[ZigZag

]

%QC> IQu:ntization]
]

]

=

v

[Saturation

spatially encoded macroblocks

differentially coded
motion vectors

[Motion Vector Decoﬂje

'

[Repeat]

motion vectors

(joiner

)

J

(splitter

)

Y

¢Cb Cr

Motion Compensation |[Motion Compensation| [Motion Compensation|

_picture , _picture

v v

[Channel

Upsample][Channel Upsample]

4

(joiner =

)

i recovered picture

[<PT2> Pic

ture Reorder]

v

[Color Space Conversio]n

output to player

add VLD(QC, PT1, PT2);
add splitjoin {
split roundrobin(N*B, V);

add pipeline {
add zigzZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

add pipeline {
add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);

add splitjoin {
split roundrobin(4*(B+V), B+V, B+V);

add MotionCompensation(4+(B+V)) to PT1;
for (int 1 = 0; 1 < 2; i++) {
add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}

-

join roundrobin(l, 1, 1);
}
add PictureReorder(3xW«H) to PT2;

add ColorSpaceConversion(3*W=H) ;

Uty Compiler-Aware Language
Design

boost productivity, enable
faster development and
rapid prototyping

programmability

enable parallel execution

target multicores, clusters,
tiled architectures, DSPs,
graphics processors, ...

CCCCC

Common Machine Languages

Unicores: Multicores:
Common Properties Common Properties
Single flow of control Multiple flows of control
Single memory image Multiple local memories
Differences: Differences:
< Register File) Register Allocatiioyumber and capabilities of cores

ISA)|Instruction Selection Communication Model
Functional Units) |[nstruction Spfp@ﬂuﬁnqg’zation Model

von-Neumann languages represent the
common properties and abstract away
the differences

£ 14
L 0L
(L]

Bridging the Abstraction layers -

Streamlt exposes the data movement
— Graph structure is architecture independent
Streamlt exposes the parallelism
— Explicit task parallelism
— Implicit but inherent data and pipeline parallelism
Each multicore is different in granularity and topology
— Communication is exposed to the compiler
The compiler needs to efficiently bridge the abstraction

— Map the computation and communication pattern of the program
to the cores, memory and the communication substrate

III.] . dgd
! Types of Parallelism

Task Parallelism (traditionally thread fork/join)
Y — Parallelism explicit in algorithm

— Between filters without
producer/consumer relationship

Gather

A
v

Task

i .
! Types of Parallelism

Task Parallelism (traditionally thread fork/join)

= - — Parallelism explicit in algorithm

' ata Parallel . .
o — Between filters without producer/consumer

Gath relationship

Scattgr

Scatter
Data Parallelism (traditionally data parallel loops)

v — Between iterations of a stateless filter
— Place within scatter/gather pair (fission)
— Can't parallelize filters with state

Pipeline

Gather L
Pipeline Parallelism (traditionally in hardware)

— Between producers and consumers
Data — Statefull filters can be parallelized

A
v

v Task

i Problem Statement

Given:

— Stream graph with compute and communication estimate
for each filter

— Computation and communication resources of the target
machine

Find:

— Schedule of execution for the filters that best utilizes the
available parallelism to fit the machine resources

Baseline 1: Task Parallelism

BandPas

A

y

Compres

A

4

Proces:

A

y

Expand

A

y

[
|
!
|
!
|
|
!
|
|
!
|
!
|
|
!

BandStoy

N\

vJ

vJ

—_—ee o o o o e e e e e e e Em wm f

Joiner,

Adder

[
|
!
|
!
|
|
!
|
|
!
|
!
|
|
!

~
7

BandPass

\ 4

Compres

A\ 4

Proces:

A 4

Expand

\ 4

BandStoy

-

D

~

[+
| 1 o]
dpt 2l

CSAIL

Inherent task parallelism between
two processing pipelines

Task Parallel Model:

— Only parallelize explicit task
parallelism

— Fork/join parallelism

Execute this on a 2 core machine
~2X speedup over single core

What about 4, 16, 1024, ... cores?

v Evaluation: Task Parallelism

R
o ©
|

‘ Parallelism: Not matched to target!
P Synchronization: Not matched to target!

[
~

......... J = — —-———

I
()]

Cycle accurate simulator

PR R R R
BN W A O
L L L L

=

:

&

D

Q

O

9

(@)

=

D 10

e

T 9

Q

N g

©

E 77

S 6

S s

5 54

o

c 4

S

3 3

c 2

|_
1
O T T T T | | T

S F & @ & & & & K f & & P
X &L QO QO 0 Q.’D' éQ o Q_@' N
RN Q ¥ & & X° &8
Q & < oY)
& % &
& & o

Ul Baseline 2: Fine-Grained
Data Parallelism

e Each of the filters in the
example are stateless

 Fine-grained Data Parallel
Model:

— Fiss each stateless filter N
ways (N is number of cores)

— Remove scatter/gather if
possible
 We can introduce data
parallelism
— Example: 4 cores

e Each fission group occupies
entire machine

I : : : _ Arin
i Evaluation: Fine-Grained Data Parallelism -

[any
©
|

O Task

N L. P~
(Brne-Graied bat Too Much Svnchronlzatlon!

=
oo
|
|

[N
~
|

=
(o]

=
M~ O

e e
O, N W
L L L L

Throughput Normalized to Single Core Streamlt

O P N W b OO N 0O ©
| [T

21

it
Phase 1. Coarsen the Stream Graph

« Before data-parallelism is

i BandPas;‘i Peek i BandPas; Peek eXDIOited

I ' Fuse stateless pipelines as

SRS § comPress much as possible without

- : Introducing state
Process Process _
— Don't fuse stateless with

Expand Expand stateful
_____ L o — Don't fuse a peeking filter with
BandSto Peek BandStop Peek anything upstream

Adder

v

i
Phase 1. Coarsen the Stream Graph

CSAII_

« Before data-parallelism is
exploited

* Fuse stateless pipelines as
much as possible without

BandPass
Compress
Process

BandPass
Compress
Process

. N introducing state
— Don’t fuse stateless with
stateful
! ! — Don’t fuse a peeking filter with
BandStoy BandStof anything upstream
* Benefits:
X — Reduces global communication
and synchronization
Addver — EXposes inter-node

7 optimization opportunities

Process

Expand

\ 4

BandPass
Compress

BandStoy

Phase 2: Data Parallelize

BandPass
Compress
Process
Expand

\ 4

BandStoy

Data Parallelize for 4 cores

CCCCC

BandPa~:'
'| Compress]|’
'l Process |

‘ Expand

[e

I AN
1 r

II ,I'_'... |

Data Parallelize for 4 cores

e Task-conscious data
parallelization

Compress| Compress! — Preserve task parallelism
Process | Process | .
 Benefits:

— Reduces global communication
and synchronization

BandPass] BandPass!

F . .
(g ﬂ Task parallelism, each filter does equal work
1| BandStoy; BandStopij . . . : i
[\ S I e —J7 Fiss each filter 2 times to occupy entire chip

eyl

Evaluation
Coarse-Grained Data Parallelism

CSAIL

(@
(&

-

- ——— oy,
e e == -

Low Synchronization!

a
)
<
o
+
a4
S
MT
e
0O o
- £
Q ©
.WG
O &
X 4 =
U ©
e € o
b O
OB |
I T T 1T 71T 1T 1T 71T T
D 00O I~ O IO < O N 4 O OO0 0~ O IO < O N +H O
I d A A A A A A A A

Jweans alo) a|buls o1 pazijewltoN 1ndybnoayl

@Q’&

6 | AdaptDAT | AdaptDAT 6

Geardeo] Data Parallel

28 Target a 4 core machine

AdaptDR

S N N

Data Parallelize

Target a 4 core machine

Data + Task Parallel Execution "

Time |

S U R N

" Target 4 core machine

Time |

S U N

" Target 4 core machine

i Phase 3: Coarse-Grained
Software Pipelining
[s)

Prologue

New

"i;" /
Steady

State \ l
E-
 New steady-state is free of
dependencies
e Schedule new steady-state

. using a greedy partitioning

J

To Schedule:

33

Time |

Target 4 core machine

Ly Evaluation: Coarse-Grained <
Task + Data + Software Pipelining

O Task B Fine-Grained Data
1| @ Coarse-Grained Task + Data W Coarse-Grained Task + Data + Software Pipeline

1 Best Parallelism!
" Lowest Synchronization!

[E
©

[EEN
(0]
|

]

I
I
I
I
I
I
/

[EEN
\l

[E
(o))

[
A O

[EEN
w

[EEN
N

T =
o -
| |

©
|

Throughput Normalized to Single Core Streamlt

O, N W S~ 0l O N ©
O I B B

————————

34

Next: Scalable Stream

Representation

Data parallelism

/5
&

codo

Pipeline parallelism

¥

¥

1t

-3 8 5 0 45 0 5 B
I N

¥

¥

¥ 8 k! &

N2

¥

HEEEEEEN
3 8 5y 0 5 0 ¥

N2
N2

N
A

N

N

64 tiles

16 tiles

4 tiles

Conclusions

Computer Architecture is at a cross roads
— Once in a lifetime opportunity to redesign from scratch
— How to use the Moore’s law gains to improve the programmability?

Switching to multicores without losing the gains in programmer
productivity may be the Grandest of the Grand Challenges

— Half a century of work = still no winning solution

— Will affect everyone!

Streaming programming model
— Can break the von Neumann bottleneck
— A natural fit for a large class of applications
— An ideal machine language for multicores.

Compiler can extract explicit and inherent parallelism

— Parallelism is abstracted away from architectural details of multicores

— Sustainable Speedups (5x to 19x on the 16 core Raw)

— Increased abstraction does not have to sacrifice performance

http://cag.csail.mit.edu/commit/

CSAIL

	The Looming Software Crisis �due to the Multicore Menace
	Today: The Happily Oblivious�Average Joe Programmer
	Joe the Parallel Programmer
	Why Parallelism is Hard
	Compiler-Aware �Language Design
	Stream Application Domain
	StreamIt Project
	Compiler-Aware Language Design
	Streaming Application Design
	StreamIt Philosophy
	StreamIt Philosophy
	Compiler-Aware Language Design
	Common Machine Languages
	Bridging the Abstraction layers
	Types of Parallelism
	Types of Parallelism
	Problem Statement
	Baseline 1: Task Parallelism
	Evaluation: Task Parallelism
	Baseline 2: Fine-Grained �Data Parallelism
	Evaluation: Fine-Grained Data Parallelism
	Phase 1: Coarsen the Stream Graph
	Phase 1: Coarsen the Stream Graph
	Phase 2: Data Parallelize
	Phase 2: Data Parallelize
	Phase 2: Data Parallelize
	Evaluation: �Coarse-Grained Data Parallelism
	Simplified Vocoder
	Data Parallelize
	Data + Task Parallel Execution
	We Can Do Better!
	Phase 3: Coarse-Grained �Software Pipelining
	Greedy Partitioning
	Evaluation: Coarse-Grained �Task + Data + Software Pipelining
	Next: Scalable Stream Representation
	Conclusions

