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mir  Today: The Happily Oblivious
Average Joe Programmer

« Joe is oblivious about the processor

— Moore’s law bring Joe performance
— Sufficient for Joe’s requirements

e Joe has built a solid boundary between
Hardware and Software

— High level languages abstract away the processors
— Ex: Java bytecode is machine independent

e This abstraction has provided a lot of freedom for Joe

o Parallel Programming is only practiced by a few experts



 Moore’s law is not bringing
anymore performance gains

« |If Joe needs performance he
has to deal with multicores
— Joe has to deal with performance
— Joe has to deal with parallelism

e |s there a better way?

Joe the Parallel Programmer -
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Hhir Why Parallelism is Hard

* A huge increase in complexity and work for the programmer
— Programmer has to think about performance!
— Parallelism has to be designed in at every level

« Humans are sequential beings
— Deconstructing problems into parallel tasks is hard for many of us

« Parallelism is not easy to implement
— Parallelism cannot be abstracted or layered away
— Code and data has to be restructured in very different (non-intuitive) ways

« Parallel programs are very hard to debug
— Combinatorial explosion of possible execution orderings
— Race condition and deadlock bugs are non-deterministic and illusive

— Non-deterministic bugs go away in lab environment and with
Instrumentation



Compiler-Aware
Language Design

The Streamlt Experience
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Stream Application Domain

» Graphics

» Cryptography

e Databases

e Object recognition

* Network processing
and security

e Scientific codes




i Streamlt Project

Language Semantics / Programmability

— Streamlt Language (CC 02)

— Programming Environment in Eclipse (P-PHEC 05)
Optimizations / Code Generation

— Phased Scheduling (LCTES 03)

— Cache Aware Optimization (LCTES 05) Front-end
« Domain Specific Optimizations
— Linear Analysis and Optimization (PLDI 03) ]
— Optimizations for bit streaming (PLDI 05) @@
— Linear State Space Analysis (CASES 05)
e Parallelism !

— Teleport Messaging (PPOPP 05)

C iing for C cation-E q Stream-Aware
— Compiling for Communication-Expose N
Architectures (ASPLOS 02) Optimizations

— Load-Balanced Rendering
(Graphics Hardware 05)

App“catlons Uniprocessor Cluster Raw IBM X10
— SAR, DSP benchmarks, JPEG, backend backend backend backend

— MPEG [IPDPS 06], DES and
Serpent [PLDI 05], ...
C per tile + Streaming
e




Uty Compiler-Aware Language
Design

boost productivity, enable
faster development and
rapid prototyping

programmability

enable parallel execution

target multicores, clusters,
tiled architectures, DSPs,
graphics processors, ...
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Streaming Application Design
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e Structured block level
diagram describes
computation and flow
of data

* Conceptually easy to
understand

— Clean abstraction of
functionality
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Streamlt Philosophy

Preserve program
structure

— Natural for application
developers to express

Leverage program
structure to discover
parallelism and deliver
high performance

Programs remain clean
— Portable and malleable
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Streamlt Philosophy

MPEG bit stream
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output to player

add VLD(QC, PT1, PT2);
add splitjoin {
split roundrobin(N*B, V);

add pipeline {
add zigzZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

add pipeline {
add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);

add splitjoin {
split roundrobin(4*(B+V), B+V, B+V);

add MotionCompensation(4+(B+V)) to PT1;
for (int 1 = 0; 1 < 2; i++) {
add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}

-

join roundrobin(l, 1, 1);
}
add PictureReorder(3xW«H) to PT2;

add ColorSpaceConversion(3*W=H) ;



Uty Compiler-Aware Language
Design

boost productivity, enable
faster development and
rapid prototyping

programmability

enable parallel execution

target multicores, clusters,
tiled architectures, DSPs,
graphics processors, ...



CCCCC

Common Machine Languages

Unicores: Multicores:
Common Properties Common Properties
Single flow of control Multiple flows of control
Single memory image Multiple local memories
Differences: Differences:
< Register File ) Register Allocatiioyumber and capabilities of cores

ISA )|Instruction Selection Communication Model
Functional Units ) |[nstruction Spfp@ﬂuﬁnqg’zation Model

von-Neumann languages represent the
common properties and abstract away
the differences
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Bridging the Abstraction layers -

Streamlt exposes the data movement
— Graph structure is architecture independent
Streamlt exposes the parallelism
— Explicit task parallelism
— Implicit but inherent data and pipeline parallelism
Each multicore is different in granularity and topology
— Communication is exposed to the compiler
The compiler needs to efficiently bridge the abstraction

— Map the computation and communication pattern of the program
to the cores, memory and the communication substrate
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! Types of Parallelism

Task Parallelism (traditionally thread fork/join)
Y — Parallelism explicit in algorithm

— Between filters without
producer/consumer relationship

Gather

A
v

Task



i .
! Types of Parallelism

Task Parallelism (traditionally thread fork/join)

= - — Parallelism explicit in algorithm

' ata Parallel . .
o — Between filters without producer/consumer

Gath relationship

Scattgr

Scatter
Data Parallelism (traditionally data parallel loops)

v — Between iterations of a stateless filter
— Place within scatter/gather pair (fission)
— Can't parallelize filters with state

Pipeline

Gather L . .. .
Pipeline Parallelism (traditionally in hardware)

— Between producers and consumers
Data — Statefull filters can be parallelized

A
v

v Task



i Problem Statement

Given:

— Stream graph with compute and communication estimate
for each filter

— Computation and communication resources of the target
machine

Find:

— Schedule of execution for the filters that best utilizes the
available parallelism to fit the machine resources



Baseline 1: Task Parallelism
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Inherent task parallelism between
two processing pipelines

Task Parallel Model:

— Only parallelize explicit task
parallelism

— Fork/join parallelism

Execute this on a 2 core machine
~2X speedup over single core

What about 4, 16, 1024, ... cores?



v Evaluation: Task Parallelism
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Ul Baseline 2: Fine-Grained
Data Parallelism

e Each of the filters in the
example are stateless

 Fine-grained Data Parallel
Model:

— Fiss each stateless filter N
ways (N is number of cores)

— Remove scatter/gather if
possible
 We can introduce data
parallelism
— Example: 4 cores

e Each fission group occupies
entire machine
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Phase 1. Coarsen the Stream Graph

« Before data-parallelism is

i BandPas;‘i Peek i BandPas; Peek eXDIOited

I '  Fuse stateless pipelines as

SRS § comPress much as possible without

- : Introducing state
Process Process _
— Don't fuse stateless with

Expand Expand stateful
_____ L o — Don't fuse a peeking filter with
BandSto Peek BandStop Peek anything upstream

Adder

v
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Phase 1. Coarsen the Stream Graph

CSAII_

« Before data-parallelism is
exploited

* Fuse stateless pipelines as
much as possible without

BandPass
Compress
Process

BandPass
Compress
Process

. N introducing state
— Don’t fuse stateless with
stateful
! ! — Don’t fuse a peeking filter with
BandStoy BandStof anything upstream
* Benefits:
X — Reduces global communication
and synchronization
Addver — EXposes inter-node

7 optimization opportunities



Process
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Phase 2: Data Parallelize

BandPass
Compress
Process
Expand

\ 4

BandStoy

Data Parallelize for 4 cores

CCCCC
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Data Parallelize for 4 cores

e Task-conscious data
parallelization

Compress| Compress! — Preserve task parallelism
Process | Process | .
 Benefits:

— Reduces global communication
and synchronization

BandPass] BandPass!

F . .
(g ﬂ Task parallelism, each filter does equal work
1| BandStoy; BandStopij . . . : i
[\ S I e —J7 Fiss each filter 2 times to occupy entire chip
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Evaluation
Coarse-Grained Data Parallelism
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6 | AdaptDAT | AdaptDAT 6

Geardeo] Data Parallel

28 Target a 4 core machine
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Data Parallelize

Target a 4 core machine



Data + Task Parallel Execution "

Time |
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" Target 4 core machine
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i Phase 3: Coarse-Grained
Software Pipelining
[ s )

Prologue

New

"i;" /
Steady

State \ l
E-
 New steady-state is free of
dependencies
e Schedule new steady-state

. using a greedy partitioning

J




To Schedule:
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Time |

Target 4 core machine



Ly Evaluation: Coarse-Grained <
Task + Data + Software Pipelining
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Next: Scalable Stream

Representation

Data parallelism
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Conclusions

Computer Architecture is at a cross roads
— Once in a lifetime opportunity to redesign from scratch
— How to use the Moore’s law gains to improve the programmability?

Switching to multicores without losing the gains in programmer
productivity may be the Grandest of the Grand Challenges

— Half a century of work = still no winning solution

— Will affect everyone!

Streaming programming model
— Can break the von Neumann bottleneck
— A natural fit for a large class of applications
— An ideal machine language for multicores.

Compiler can extract explicit and inherent parallelism

— Parallelism is abstracted away from architectural details of multicores

— Sustainable Speedups (5x to 19x on the 16 core Raw)

— Increased abstraction does not have to sacrifice performance

http://cag.csail.mit.edu/commit/
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