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Body Schema

I Part of the space which is within the reach of a cognitive agent is its
peripersonal space, and the rest is extrapersonal space.

I Body schema is a sensorimotor representation of the agent‘s body and
its peripersonal space in its brain.

I Allows the agent to infer the position and orientation of its limbs
and of the objects in its peripersonal space, relative to its world.

I Enables the agent to perform actions in its peripersonal space.

An Empiricist View of Body Schema

I Nativism vs. Empiricism: Other animals (e.g. monkeys and cows) have
innate motor skills, but in humans most of the motor skills are learnt.

Previous Works on Body Schema

I In biological systems, body image and body schema are modelled as
self-organizing maps.

I In robotic systems, body schema is modelled as kinematic chains,
self-organizing maps and Bayesian networks.

I A survey on various models of body schema can be found in [HMA+10],
with an emphasis on body schema for robotic systems.

I Each of these models focuses on one key issue of body image or body
schema and does not address other issues. Some of them assume
knowledge about the agent’s body. [HS04, HFO+08, SPB09, MCLM10]

A Developmental Observation

I Human infants move and observe their limbs
from the age of 10 to 24 days. [vdM97].

I Start swatting at the age of around 6
weeks and start reaching at around the age
of 12-20 weeks. [TCK+93]

I Hand-eye coordination and visuo-motor
learning happens during these phases.

I Vision and touch play a crucial role in
learning to use the body.

Source: van der Meer [vdM97]

Dimensionality Reduction

I The visual and proprioceptive input that the brain receives are very
high-dimensional.

I But the body motions have very few degrees of freedom.
I Hence the set of images of all possible body motions lies on a much

lower dimensional subspace of the raw input image space.
I Discovering the underlying low-dimensional subspace, called a manifold,

for a given set of input points is called dimensionality reduction or
manifold learning.

This Work

I Proposes a computational model of body schema based on manifolds.
I Suggests how it can be acquired just by observing one‘s own body

without requiring any other knowledge.
I Suggests how it can be updated as the body grows?
I Demonstrates how it could be used for

- Moving to a desired pose
- Swatting and reaching of objects within peripersonal space
- Avoiding obstacles and planning motions

Manifold: Intuitions and Examples

I How many parameters are needed to describe a system?
I On a small-scale, what does the object look like?

I What is the probability that a
100× 100 greyscale pixel grid looks like a
human face, when the pixel intensities are
chosen randomly?

I How many degrees of freedom -
number of independent directions at any
given point, while still remaining on the
subspace? Courtesy: CDSST Eigenfaces

Manifold Definition

I Informal: A d -dimensional manifold is a
probably nonlinear space which locally
resembles a patch of Rd .

I Formal: A d -dimensional topological
manifold M is a Hausdorff topological space,
with a countable basis for the topology,
which is locally homeomorphic to Rd . For
every point p ∈ M , there is an open
neighborhood U containing p, an open set
U ′ ⊂ Rd and a homeomorphism x : U → U ′.

Source: Differential Topology,
Notes by Bjorn Ian Dundas

Manifold Learning

(Also known as Non-linear Dimensionality Reduction)
I Given a finite set of points: X ∈ RD×N drawn from a manifold;
I Learn a low dimensional representation Y ∈ Rd×N of X , such that

d << D and x = f (y) + ε, where f is the non-linear function that
generated X from a latent parameter space.

I Ex: Isomap, LLE, MVU, Deep Auto-encoder, LTSA, hLLE, Laplacian
Eigenmaps. [Bur09]

Source: Manifold Learning: Practical Difficulties and Current Solutions; Tutorial by Diana Mateus,
September 2011

Body Schema and Manifold Fusion

I Motions of each limb of the body form a manifold of the same dimension
as the degrees of freedom of that limb.

I A collection of all these manifolds constitutes the body schema.
I An action involving one or more limbs of the body corresponds to a path

on the joint manifold of the composite limb motions.
I Different sensory modalities can be fused together using random

projections [GS12] to form a joint manifold.

A Computational Model for Body Schema

The following procedure results in a discrete approximation of the motion
manifold.

I Collect images of the agent in a set of N random poses.

I Construct a neighbourhood graph G on the image space using some
image metric. Each node of G corresponds to a pose of the agent.

I Objects in the peripersonal space correspond to the nodes of G for
which the corresponding poses touch/hit the object.

I A motion between two poses corresponds to a shortest path on G
and an action is a series of motions.

Growing Body

I Body growth is fairly gradual; body schema (i.e, the neighbourhood graph
G ) can be updated at regular intervals, to adjust for the changes in the
obstacle map.

I Path between a pair of poses of the agent in its infancy and after some
growth. Here the hand is moving from a random pose to reach the mouth
area through a window (gap in the red bar) in its work space.

I Obstacle region marked on the angle space: yellow - common obstacle
area at the two ages; red - obstacle for just the infant robot; blue -
obstacle for just the bigger robot.

I The peripersonal space at infancy and after some growth:

Another Example

I A simulated arm with 3 links moving in the horizontal plane
I Its body schema using proprioceptive inputs (random projections of joint

angles), with the torso region marked in grey

Swatting and Reaching

I Graphs used for motion planning. Number of nodes = 100, 1000, 10000,
20000 respectively.

I Each node in the graph represents a random trial by the agent to reach
the object. More nodes means more experience.

I Trajectories followed by the agent in the workspace to swat the object:

I Swatting getting better with experience.

Planning Motions for Actions

I Actions are series of motions
modeled as geodesic paths on the
body schema manifold, which are
approximated by shortest paths
on the neighbourhood graph.

I The 3-dof agent tries to grasp an
toy from inside a box.

Conclusions

I We showed how body schema can be computationally modelled, acquired
based on visual input alone, updated as the body grows and used for
performing actions in the peripersonal space.

I We plan to do the following in future:
- Incorporate tactile feedback in to the current model.
- Address how the model changes with tool use.
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