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Abstract— The infant will often struggle to keep its arms in
view - one reason for this visual interest may be for learning
the visuo-motor map. In this work we suggest that the infant
may be constructing a lower-dimensional embedding from an
unordered set of sightings. We show that if each robot pose
results in a distinct image, then the set of images will lie on a
manifold of the same dimensionality as the robot’s degrees of
freedom. This implies that the number of parameters in the low-
dimensional space will equal the number of joint parameters.
We suggest that such a compact mapping may serve as an
internal i-representation for the robot to reason about its actions
and their effects. For example, given an object that is introduced
into the workspace, it would be possible to identify reaching
motions by simulating the overlap of the object with the images
of the arm in that part of the image space. Poses on local patches
of the manifold may be joined together to construct a Visual
roadmap. Now, given an obstacle, one may remove nodes and
edges from the roadmap that cause collisions, and obtain a free-
space roadmap. We show how motion planning can be achieved
on such a graph and suggest using a local planner operating
by subdivision on the i-representation. The computational study
suggests a possible mechanism for models in psychology that
argue for high orders of dimensionality reduction in moving
from task space to specic action.

Thus uninterpreted sensory and motor data are combined
to enable a naive self-representation, and to solve problems
with it. The process is demonstrated for three situations with
real and simulated robots. No knowledge of robot or obstacle
geometry, or robot kinematics, is used at any step. In conclusion
we suggest that such an i-representation may in fact, lead to
generalizations that construct an agent’s model for space itself.

I. MOTOR LEARNING IN THE COMPUTATIONAL INFANT

The neonates conception of space arises from actions
performed within it. J.J. Gibson put it succinctly when he
said that “We must perceive in order to move, but we
must also move in order to perceive.” (Ecology of Visual
Perception, 1979). This has been underlined in the last
decade by intriguing experiments on neonates (10-29 days),
who were observed to be exerting to keep an arm moving
so that it is visible [17]. Such actions have been taken to be
indicative of the possibility that the neonate may be learning
a map between vision and proprioception, and discover new
possibilities for its motions [18]. When in a darkened room
with a beam of light, the infant attempts to keep the arm
in the light, and slows down the motion of the limb when
it is about to reach the beam. This behaviour arises months
before the infant can reach or grasp, and some have argued
that the movements are intentional and prospective [1].

One aspect of the infant repertoire that has not received
sufficient attention is how rapidly she learns to avoid involun-
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Fig. 1: Overview example: (a) Disk robot in a room with a long
table. (b) Initially, the robot images are acquired in the space
without obstacle. Images are organized by similarity on nearest-
neighbor graphs (this demo uses Isomap). (c) By comparing the
residual variance at differing dimensions we note that the variance
is best explained at dimension 2, indicating that the robot is likely
to have 2 DOFs. The resulting low-dimensional space and its
parametrization constitute the Visual Configuration Space (VCS).
(d) Now, the obstacle is introduced and all nodes for which the
robot image overlaps with the obstacle are removed; the resulting
graph is the basis for the Visual Roadmap for motion planning. We
use only uninterpreted images, and no knowledge of robot structure
or kinematics is used at any stage.

tary motions that hit its own body. The motion that brings the
hand to the mouth is often well developed before parturition,
but knowledge of its body continues to mature. Anecdotal
evidence suggests that many parents are mortified when
their newborn repeatedly pokes her own eyes. However, this
behaviour disappears within a couple of days. Bimanual
coordination requires that the arms do not hit each other,
which is otherwise quite a likely event.

In this paper, we take a computational perspective on
the development of this visuo-motor mapping. Our only
input are a set of visual images of its own limbs, and
attempt to develop a map that associates the various poses
to proprioceptive data. While the images are correlated with
proprioceptive information about how they were achieved,
this information is not used in discovering the ego-motion
characteristics, which is achieved purely visually. Nor do
we use any other information about the kinematics or other
parameters of the system. We adopt a dimensionality re-
duction approach, and unlike similar work in the dynamical
systems tradition [7], we do not require that the motions be
presented in a sequence; thus the memory of a disjoint set
of observations suffices to construct the internal map.

In the process, the system a) discovers the structure
underlying the motion space (e.g. the number of degrees of
freedom, a low-dimensional description for each pose), b)
formulates a forward map from this latent parameter space



to the pose space, c) identifies the location of objects in
this space in terms of the poses where the arm would hit the
object, d) plans paths that allow it to reach around the object
into other parts of the space.

This process seems ambitious, and indeed, it is possible
only when certain conditions are met. The critical condition
that we identify is in terms of what we call visual distin-
guishability - i.e. the imaging transformation must preserve
the homeomorphism underlying the C-space manifold, so
that the image space generated by a fixed camera also defines
an n-manifold (for an n-DOF robot). This enables us to
start with a sample of random pose images, and use well-
known manifold-discovery processes to infer n, as well as
a mapping from the discovered parameter space to both
image and motor spaces. Further, one can then connect the
local neighborhoods on the manifold to construct a Visual
Roadmap which is analogous to the well-known roadmap-
based algorithms used for constructing a neighbourhood
graph on robot configuration spaces [3].

Detection of poses that will hit or swat at the object is
easy; this is done by superposing the memory of the pose
with the perceived image of the obstacle in the visual space.
Thus uninterpreted sensory and motor data are combined
to construct a naive self-representation that can reach for
objects. In the next step, a mapping of obstacles onto this
Visual Roadmap is performed by superposition with robot
images. By deleting these nodes from the roadmap, one
obtains a visual mapping of the free-space. We demonstrate
motion planning using this algorithm in three situations with
real and simulated robots. No knowledge of robot or obstacle
geometry, or robot kinematics, is used at any step.

A. Relation with other work

A number of approaches developed over the last two
decades attempt to discover some aspects of a robot’s ego-
structure from sensory data, using approaches such as the
discovery of sensor–actuator patterns via linear manifolds
(PCA) [12], which learns a unified structure for robot and
environment. Alternately, one may discover the dimension-
ality of the input-output relation by analyzing locally linear
tangent spaces [11]. More recent work, often termed devel-
opmental robotics, attempts to establish visuo-motor corre-
lations by analyzing random motions (motor babbling) [2],
by observing smooth patches in optical flow data [10], or
via clusters of sensory data that permit the recognition of
object categories and shapes [9], [8]. Other approaches have
focused on discovering the topology [13], or on constructing
dynamical system models [14].

While these discovered structures capture many aspects of
the robot’s self and also its environment, very often these
models are verbose and differ significantly from what is
called a knowledge representation in the traditional AI sense
- an explicit model that can serve as a surrogate for testing
actions on the world without having to act them out [5]. The
term explicit is by analogy with conscious human processing,
where it is used in opposition to implicit or tacit models of
knowledge. For machines, explicit models were traditionally

hand-constructed. In today’s learning-driven systems, the
model is induced from a large training set, and the internal
mechanics of the model are often not accessible by virtue
of the complexity of the model. The system may need to
store a large matrix of weights that have been optimized, or
a significant fraction of the training set (e.g. support vectors).
Thus the learned structure is far from compact, and the
effect of the various elements on the final behaviour are far
from clear. In these senses, such models do not qualify as
“explicit”.

In this body of work, the sensorimotor mapping is learned
for the obstacle and environment together, and any change
in environment requires a complete re-learning of the map.
In this sense, and also because the parameter set is large
and not compact, they are difficult to make explicit, the
representations learned are very different from those used
in AI.

B. Illustrative example: Circular mobile robot

Let us illustrate this process via an example of a planar
disk robot moving in a room. Later we shall introduce an
obstacle, say a long desk (figure 1a). An unknown motor
plant and unknown imaging process results in the robot
R(q) being mapped to the image I(q). The robot has access
to its own proprioceptive signals q (here taken as its x,y
coordinates), but these are used only for moving the arm,
and not for discovering the manifold structure.

We first consider the robot in the absence of any other
objects or obstacles. Here, 2000 such images are organized
into local neighborhoods based on image similarity (fig-
ure 1b). When mapped onto a lower-dimensional manifold,
we find that the residual variance in the data is best explained
when the manifold dimensionality is 2 (figure 1c). This di-
mensionality, which can be empirically discovered by trying
different target dimensions, matches the degrees of freedom
of the system. The resulting low-dimensional embedding (the
Visual Configuration Space), is then characterized by two
parameters, say v = (v1, v2).

The neighborhood graph, obtained via image similarity,
provides connectivity to different parts of the motion space
of the robot. Now, when the obstacle is introduced, one
may superimpose it on images of the robot and remove
those nodes where the images overlap. We now need to
test the remaining edges for local connectivity using a local
planner, which works by subdividing the path connecting the
two free configurations and testing a set of interim poses.
The graph that remains is the final Visual Roadmap, which
is used for motion planning. Given manifold nodes v, the
robot is controlled between them using the corresponding
control parameters q obtained using the inverse sensorimotor
map. These procedures, and the variables they operate on,
constitute a naive representation - they are the sensorimotor
analogs of the operations and parameters in the formal C-
space. We later demonstrate the same process for articulated
robot arms. We observe that while no knowledge of the
robot kinematics is required, the algorithm has high space
requirements - the entire set of original images has to be



preserved. This may be thought of as part of the robot
“subconscious” that feeds into the compact model. Also,
the superimposition condition is only necessary, but not
sufficient. Hence it is overly conservative when the camera
axis is not orthogonal to the motion directions.

II. EXTERNAL AND INTERNAL REPRESENTATIONS

At this point, we would like to make an observation on
the relation between implicit and explicit representations.
Each of us has an internal model with which we move
our limbs, or throw a piece of chalk at a student sleeping
in class. These representations are internal to us, and are
implicit and non-compact. Yet, certain aspects of the same
representations - e.g. “bend your elbow at 120 degrees”,
are explicitizations that conform to social convention. These
external descriptions define a pose (or a class of poses),
so that the set of locations can be expressed in a compact
manner. Different people would be able to achieve the mo-
tions required under such instructions, though their internal
representations may be significantly different. We call these
explicit descriptions, those that are conventionalized within
a linguistic or cultural group, as e-representations. These
differ from i-representations in that the former may vary
from agent to agent, since each agent’s experiences are
different. At the same time, since these experiences are
all constrained in the same physical world, there would
also be significant consistencies in the actions generated by
these i-representations. Whereas these i-representations in the
human are implicit, we argue that if they are sufficiently
compact, there is no reason why artificial agents may not use
them explicitly for the purposes of reasoning (clearly, they
cannot be communicated). We also posit that large models
that result from machine learning may constitute the artificial
agents’ “subconscious”. In any case, there is always a clear
mapping from the i-representations to e-representations.

The e-representations for a robot are the conventional-
izations which we adopt to reason about robotic motions.
They include parameters such as the type of each joint,
the link lengths and offsets, as well as the set of joint
angles or motions. Once the link geometries and kinematics
are fixed, a specific pose of the robot is determined by a
set of joint parameters. In the i-representation model we
discover here, the pose is described using the same number
of parameters as the joint parameters, and hence these are
just as compact. These parameters are the low-dimensional
embeddings for the images, and they do not equal the joint
angles. They may be thought of as transformations on the
external parameters, but transformations that preserve the
topological properties. Depending on the type of non-linear
dimensionality reduction used, they may also approximate
to some degree the metric properties. In our investigtions
of different NLDR algorithms for the purpose, we find that
the Isomap algorithm [15]), which attempts to preserve the
geodesic distances in the low-dimensional space, often re-
sults in a map that seems to be an approximate metric. Other
NLDR algorithms also preserve the topological relations, but
may severely distort the metric aspects. The demonstrations

used here are based on Isomap for this reason - but almost
any NLDR algorithm, or even the coding layer in a deep
autoencoder may be used.

This is the first part of the construction of our (internal)
i-representation - it serves as an explicit surrogate model for
testing actions on the world, and also serves as a predictor
of action outcomes. We then outline how various processes
can work on this i-representation to identify the location of
objects, and also to plan paths that circumvent obstacles.

The models developed in this work apply to any robotic
system (articulated or mobile) that is able to obtain visual
images of its own poses (e.g. a baby observing its own limb
motions). We limit ourselves to this set of uninterpreted
visual images, and define certain conditions under which
the system may discover a compact ego-model, resembling
in many ways the conventional robotics models, but one
that is derived solely based on dimensionality reduction.
We observe that the images lie in a very high dimensional
space e.g. 640 × 480 pixel images would result in a space
of 3 × 105 dimensions. In this vast space, valid images of
the robot comprise a vanishingly small fraction; indeed, as
has been claimed earlier [11], if the robot has n degrees
of freedom and the camera is static and there are no other
sources of motion, these images would constitute a manifold
of dimension n. In this work, we assume a static camera, but
we observe that if the camera can also undergo constrained
motion, then its motions will be composed with those of the
robot and the total degrees of freedom will be the sum of
these two motion spaces.

Visual distinguishability - the requirement that given a
viewpoint and imaging parameters, no two poses of the
robot should result in identical images - is not very difficult
to meet in many practical systems. We first establish that
under these conditions, the images of the robot poses will
lie on a manifold of the same dimensionality as its degrees
of freedom. This then paves the way for using NLDR
algorithms for discovering this manifold. The representation
of the robot is then discovered in terms of the characteristics
of the low-dimensional embedding. Thus the parameters v in
the discovered lower-dimensional space V can be mapped to
the robot image space I and to the the control commands,
q ∈ Q, that generated the motions. We observe that these
mappings are visual analogs for the processes of forward
and inverse kinematics used in traditional robotics, which
is why we call this map the Visual Configuration Space or
VCS.

III. VISUAL CONFIGURATION SPACE (VCS)

The shape of the robot in the workspace, R(q), is com-
pletely determined by its n-dimensional configuration q.
Now, let us consider the imaging transformation which maps
R(q(i)) to the image region IRi in the set of observable
images I(i), each of which is represented by a D-dimensional
vector, where D � n (using superscripts as indices).

The basic premise of this work is that this set of obser-
vations (images) I(i) ∈ RD, is drawn from an underlying
m-dimensional manifold, with m � D. If the imaging



Fig. 2: VCS dimensionality reflects degrees of freedom. Images from
two-degree of freedom planar arm (top row). Row 2: Nao humanoid
robot moving arm along a linear trajectory; PUMA robot moving
with 3 joints. Bottom row: Residual variance of low-dimensional
embedding for different target dimensions. Planar arm variance
(left) is almost completely explained at dimension 2; 99.9% of
the variance in the smooth motion of the nao arm is explained at
dimension 1; and the 3-DOF Puma motion requires 3 dimensions
before the error drops off (right).

transformation is smooth and the robot is distinguishable, i.e.
different parts of the robot, even if geometrically symmetric,
are distinguished by colour, then each configuration will
present a different view, and these views are one-on-one and
an inverse mapping for the imaging transformation exists.

Let R(Q) = {R(q) : q ∈ Q} denote the space of all
possible shapes of the robot.

Lemma 1. For an n-DOF robot, R(Q) is an n-dimensional
manifold.

Proof. The mapping φ : Q → R(Q) is expressible as a
composition of two matrices from the special orthogonal
group over Q, so it is bijective. Hence small changes in
q result in neighboring shapes R(q), and vice versa, so that
φ−1 : R(Q)→ Q is a local homeomorphism.

Note 1. (Visual distinguishability assumption) The robot is
opaque, and every point on the boundary δR(q) is distin-
guishable in terms of the colour in its neighborhood.

Let ψ : R(Q)→ I be the imaging transformation so that
ψ(R(q)) = Iq , the image corresponding to the shape R(q)
of the robot in configuration q. So the map ψ ◦ φ : Q → I
takes a configuration into the image space.

Theorem 1. (Image Manifold Theorem) The space I of
robot images is an n-dimensional manifold.

Proof. The visible part of the robot is its boundary δR(q).
For q, q′ ∈ Q even if q 6= q′ there may be situations where
the set R(q) and R(q′) are identical, though each point is the

Fig. 3: Visual symmetry. Images of CRS A460 6-axis robot (first and
second images) appear to be neighboring poses, but close observa-
tion reveals that the base joint θ1 has rotated by nearly 180 degrees,
while θ2 and θ3 have changed sign. Similar situation observed in a
simulated planar articulated arm (third and fourth images). Under
euclidean distance metrics, the two poses may be closer than many
other poses with smaller angle shifts. Such situations would not
arise under the visual distinguishability assumption.

map from a different initial point. (e.g. consider a cylinder
rotating about its own axis). However, by the assumption
that the the colouring at every patch on δR(q) is distinct,
the image will be different so long as every point on δR(q)
is the mapping from some different initial point so that ∀q ∈
Q, Iq ∈ I obtained from δR(q) is also unique. Thus, for
every I ∈ I, there is a unique q and for every q there is a
unique Iq , i.e. the mapping ψ◦φ : Q → I is a bijection. Since
the imaging transformation is a projective group, it is also
smooth and hence, (ψ◦φ)−1 is a local homeomorphism.

We observe that the visual distinguishability assumption
often causes difficulties in practice, for robots with various
symmetries (see figure 3). Even in such situations however,
the symmetries can be decomposed into separate submani-
folds on widely separated configurations, and one may design
control regimes that operate within a particular submanifold.

Given that we expect the image space to be an n-
manifold, if we can discover the manifold dimensionality
of the image space, this will give us a cue to the number
of DOFs in the system. This can be achieved by any of
a number of non-linear dimensionality reduction (NLDR)
algorithms [6]. In many such algorithms, the first step is to
construct a nearest neighborhood graph (based on a measure
of distance in I); the resulting graph is mapped to the
embedding v(i) ∈ V . If the graph is connected, then distances
between any two distal images can now be computed via a
path on the edges connecting near neighbors. The Isomap
algorithm constructs a manifold by attempting to preserve
this geodesic distance [15]. We prefer to use the Isomap here
for this reason, though far from exact, it gives it a closer
resemblance with the global metric distances compared to
other algorithms. In order to estimate the robot DOFs (n),
we simply try out a range of target dimensions and choose
the lowest dimension that is able to adequately explain the
variance in the data (based on residual variance). Note that
sometimes for images sampled on a single trajectory (as with
the Nao, fig. 2), the manifold is one-dimensional, indicated
by a very low residual variance even at m=1 (10−5). If we
are able to discover the dimensionality of the robot (m = n),
the lower-dimensional space can be described in terms of n
latent parameters v1...vn, which act as (state) parameters in
the robot i-representation.



Fig. 4: Isomap embedding of a set of images of a 2-DOF articulated
robotic arm (top row of figure 2). The embedding resembles the
toroidal structure of the topology of this C-space.

A. Topology discovery in VCS
The configuration space of a freely-rotating 2-DOF artic-

ulated robot (such as the one in the top row of figure 2) is
S1 × S1 = T2, which is a torus embedded in R3 [3]. The
NLDR algorithm that generates the VCS shown in figure 4,
assumes that the target space for the dimensionality reduction
is a euclidean space (a subspace of R2). This means that
the torus surface, which is also two-dimensional, cannot
be globally fitted to this space. Hence the map, as shown,
resembles the torus in capturing the variability along the θ1
dimension of this space, but not θ2.

We note that much of this topological complexity would
be reduced for real world robots; e.g. the Scara arm demon-
strated in section VI-B has a range of rotation −135◦ to 135◦

for both θ1 and θ2. This implies that the mapping, though
it is part of the surface of the torus, can be stretched and
would fit in a Rn target topology. For this reason, we have
made no attempt to map onto complex spaces.

We next describe how obstacles are mapped on the VCS.

IV. VISUAL ROADMAP AND MOTION PLANNING

In the imaging process, robot and obstacle are mapped to
a bundle of rays converging on the camera optical center
(figure 5).

Let CRi be the bundle subtended at camera optical center
CO by the robot in configuration q(i), CA be the bundle
subtended at CO by the obstacle A and IRi, IA be the
image regions corresponding to the robot and the obstacle.

Lemma 2. If CRi ∩C A = ∅ then A ∩R(q(i)) = ∅.

Thus, robot configurations for which the bundles do not
intersect with the obstacle bundle are guaranteed to be in the
free space F . Note that the converse is not true.

Lemma 3. CA ∩C R = ∅ iff IA ∩I R = ∅.

Theorem 2. (Visual Collision Theorem) For a robot in a
given pose q(i), if IRi ∩ IA = ∅, then q(i) ∈ F .

We note that the above is a necessary condition, but it
is often rather conservative. Indeed, the inverse condition

Fig. 5: Imaging the workspace. The robot and obstacle lie along the
projection bundle from the optical center via their image regions
in the virtual image plane (left). If these bundles do not intersect,
R ∩A = ∅. However, the converse is not true.

defines occlusion situations: where A∩R = ∅ but CR∩CA is
non-null. This limitation is a result of the information loss in
the imaging process. These can cause particular difficulties
for articulated arms. In such cases, one may use multiple
cameras; since the Visual Collision Theorem holds for all
cameras, we may define any space as free if CR∩CA = ∅ in
at least one view. In this situation, both robot and obstacle are
less conservatively modeled as the intersection of multiple
cones.

In general, for non-orthographic projections, the higher the
ratio of camera distance/focal length, the tighter the bound.
(e.g the Scara robot arm in section VI-B).

Algorithm 1 describes the process of computing the VCS.
The resulting i-representation has the following structure:

i-representation {
• Degrees-of-freedom n
• Visual Configuration Space: space V of the low-

dimensional embedding. The space is discretely
sampled via nodes {v(1), . . . , v(N)} and corre-
sponding images {I(1), . . . , I(N)}

• Sensorimotor map f : Q → V; inverse mapping:
f−1 : V → Q;

• Visual querying procedure for new image
• Visual Roadmap: graph G, with nodes
{v(1), . . . , v(N)} and edges that pass the
local planner.

}

V. MOTION PLANNING ON THE VCS

Given the sensorimotor representation including the VCS,
we are now in a position to introduce obstacles, and plan
paths on it (algorithm 2).

The i-representation also includes the graph based on
stitching together the local k-NN neighborhoods. After all
obstacle-colliding nodes and edges are deleted from this
graph, motion planning can be performed on the attenuated
graph, which constitutes the final Visual Roadmap (algo-
rithm 2).



Algorithm 1 Visual Configuration Space and sensorimotor
representation

Input: Set of images {I(1), . . . , I(i), . . . , I(N)} and cor-
responding control parameters {q(1), . . . , q(i), . . . , q(N)};
optionally, a query image Iquery.

Output: The Visual Configuration Space with low-
dimensional embedding {v(1), . . . , v(i), . . . , v(N)}, and
the sensorimotor i-representation.

Step1: Based on a suitable metric of image distance,
construct the k-nearest neighbor graph G on the set of
images.

Step2: Construct low-dimensional manifolds for several
different dimensions ni and compute the residual variance
at each ni. Estimate the degrees of freedom of the system
n as the dimensionality at which the variance explanation
is maximal.

Step3: Obtain the encoding {v(1), . . . , v(i), . . . , v(N)} at
this dimension. VCS: space of these latent variables (di-
mension = n).

Step4: Learn a mapping f from the control parameters q
to the latent variables v. Also learn the inverse mapping
f−1 from v to q.

Step5: Visual querying. Interpolate using k-NN in the
image space to solve for set of weights Iquery =∑

j=1...kwj ∗ I(j). Assign vquery =
∑

j=1...kwj ∗v(j) and
obtain qquery as f−1(vquery). This procedure estimates
the joint coordinates that would reach a given image
configuration.

We observe that for representing the robot and performing
motion planning, the discovered i-representation is quite
adequate. The need to map to the e-representation arises only
if the agent wishes to communicate or participate in a social
interaction.

A. Interpolation for new states

We observe that the set of images I(i) and corresponding
low-dimensional mappings v(i) are mapped well, but it is
problematic to extrapolate the mappings for intermediate
points. This is the out-of-sample situation: once a set of
data points X ∈ RN×D has been mapped to Y ∈ RN×m

(m << D) using any NLDR approach, it is not possible to
add a new y to the embedding corresponding to a new data
point x. This is why we adopt a node deletion strategy for
obstacles - deleting nodes on the non-linear manifold leaves
the remaining structure intact.

At the same time, we also observe that once the basic
neighborhood structure has been put in place, it is possible
to update the neighbourhood graph without changing the
underlying manifold model. This is because local neigh-
borhoods can be computed and expanded without updating

Algorithm 2 Motion planning on the sensorimotor represen-
tation

Input: Sensorimotor Representation, images Igoal and
Istart, and obstacle image Io.

Output: sequence of control coordinates q moving the
robot from Istart to Igoal and optionally the estimated
control parameters q for these two poses.

Step1: Perform background subtraction [4] to obtain the
robot as the foreground object gi from each image I(i).
Apply the mean background also to the obstacle image to
segment the obstacle foreground go. (see figure 7)

Step2: If gi∩ go 6= ∅, remove node v(i) and all associated
edges from Visual Roadmap graph G.

Step3: For remaining edges, use local visual planner
(below) to check for collisions. If colliding, remove from
G.

Step4: If either Istart or Igoal overlaps the obstacle, report
failure. Else obtain vstart and vgoal by the Visual querying
procedure given as part of algorithm 1.

Step5: Find a path from vstart to one of its near neighbors
vs on the roadmap by testing it with the local planner.
Similarly find vg for vgoal.

Step6: Find a shortest path (Djikstra) from vs to vg on G.
For each edge on the route, compute a set of intermediate
v, and return the sequence of joint parameters q = f−1(v)
as via points for the controller.

the manifold model - some added nodes will not have their
immediate counterparts.

B. Local planner

Traditional roadmap algorithms are based on a collision
check for nodes, but the path from two free-space nodes
needs to be checked via a suitable local planner [3]. In
our situation, a local planner is one that involves actually
moving the robot to intermediate configurations v (this is
done by interpolating in the q space - see section V-A).
A subdivision algorithm works well where we keep testing
vmid, recursively until a suitable precision.

C. Forward and Inverse mappings

The embedding captures the inherent regularities underly-
ing the image space, hence it is only to be expected that the
mapping from this space to the actual joint angles q would
be relatively simple. This is demonstrated empirically using
a multi-layer perceptron (figure 6); the convergence is faster
and has an error that is two orders of magnitude less, than a
learner that attempts to learn the map to q from the images
directly. Both forward and inverse maps are easy to learn
and are quite accurate, which is why we use these maps
to interpolate for new image data in the querying process
(algorithm 1, step5).



Fig. 6: Left: Comparison of the performance of a multi-layer
perceptron mapping to the motor parameters q. When learned
directly on high dimensional images (left), the error is two orders of
magnitude higher than when learning from the manifold coordinates
v (right).

Fig. 7: Path planning for the MTAB Scara robot. Row 1: (a),(b)
some of the 4000 images of the arm. (c) scree plot. Row 2:
incorporating obstacles. (a) background subtracted image of the
arm, (b) image with obstacles. (c) obstacles after image subtraction.
Row 3: Visual Configuration Space; obstacle nodes shown in black,
and showing a path plotted from start to goal images. Row 4: path
being executed by Scara.

The Isomap algorithm takes O(N3) time. For N images
of size K each, identifying obstacles takes O(N ∗K2) and
the path computation on the roadmap is O(N ∗ log2N); in
practice the former step dominates since K is much greater
than N in many situations. The algorithm also requires
O(N ∗K) space. For robots with high degrees of freedom,
one typically requires rapidly increasing samples, and thus
N will also grow, and this often overwhelms the capacity to
use an NLDR algorithm like Isomap.

Fig. 8: Two-armed robot carrying a box with water. Row 1: two
poses of the robot as it moves the box through a hole. Scree plot
shows the dimensionality, while holding the box, as 2, though the
base system has four degrees of freedom. bottom: The VCS - black
nodes indicate collision; A planned path is shown.

VI. RESULTS: CASE STUDIES

A. Case study 1: Mobile robot simulation

We have presented the results for a mobile robot simu-
lation in figure 1. The VCS here resembles the actual C-
space in this situation because of the choice of Isomap for
the embedding. Using other approaches to dimensionality
reduction, the shape of the space gets rounded and altered
considerably. Also, the fact that the v1, v2 axes are aligned
to the global axis is a coincidence; on most trials, the axes
orient in an orthogonal or mirror directions.

B. Case study 2: Scara robot

We now demonstrate the algorithm for a real robot, a
Scara 4-DOF arm, in which two revolute joints move the
first two links in a plane and it has two more joints providing
translational and rotational motion at the wrist.

We observe this robot with a camera mounted on the
ceiling. 4000 images are sampled from a video while
the robot is moving between random poses throughout its
workspace. Background subtraction is performed on each
image to generate the foreground robot. Thereafter, one or
more obstacles are introduced in the workspace and the
obstacles are discovered via background subtraction.

Now the collision configurations are identified by super-
imposing the foreground robot on the foreground obstacle.
Deleting these in the VCS gives us the visual roadmap on
which we plan paths (figure 7).

C. Case study 3: Two-arm planar robot

We now consider the case of a 2-armed robot. This system
has two arms, which jointly constitute a four degree-of-
freedom space. This simulated robot is given the challenging



task of carrying a box filled with water through a hole
(figure 8).

The verticality constraint reduces the dimensionality of the
overall system to two. Through trial and error in the space
of dimensions, we find after NLDR that the dimension of
this space is only two (scree plot in row 1 of figure 8),
as expected. The resulting computation of the VCS and the
Visual Roadmap with a path is shown in figure 8.

VII. CONCLUSION

In this work we consider the problem of a robot infant,
and attempt to discover its sensorimotor map in a manner
that draws upon some aspects of human infant cognition.
We argue that for artificial agents where the conscious sub-
conscious distinction is irrelevant, the primary hallmark of a
representation should be compactness, and its effectiveness in
replicating the behaviour. We show that under some normal
conditions, most robot systems would be able to discover a
low-dimensional mapping from the image space; the set of
parameters in this space constitute a state description which
are closely aligned with robot joint angles. This sensorimotor
map or i-representation is an alternative, consistent, symbolic
space and is as compact as the traditional e-representations.

This representation now allows the identification of objects
in the workspace via visual overlap. If the object is to be
reached by a given part of the robot, poses for this can be
identified by overlapping the obstacle image with a series of
robot images. For the purposes of obstacle avoidance, one
may construct a Visual Roadmap from the local neighbour-
hoods on the manifold. Given an obstacle, putative collision
poses (the images where the robot overlaps the obstacle)
can be removed, and motion planning performed on the re-
maining free space. Additional obstacles or moving obstacles
can be handled with incremental computation. Though the
computation and space costs are high, we must consider that
in contrast to traditional approaches, this also discovers the
robot self-structure as well as obstacle structures.

An important ramification of this process would be that
such a representation, after repeated application in diverse
situations, may lead to a generalization which may be con-
sidered to be an internal representation of space itself. Such
a role for sensori-motor development has been suggested
by many [16]. As an example, given a base pose for the
robot, distant parts of the space are to be reached with a
greater change in the state parameters. Two locations may
be close if they can be reached with similar configurations.
By generalizing over a large set of such experiences, one
may form many notions of space, such as its dimensionality,
a hierarchical scale structure, and many other aspects based
on the action-perception pairings. By identifying the con-
figurations that reach various parts of the workspace, the
system is also constructing a model for the space itself.
This is a powerful argument and a possibility that such a
computational model can be used to demonstrate.

What we have presented here is just an initial step. The ba-
sic idea of discovering patterns from the lower-dimensional
mapping of visual images is actually more general, and can

also be used for learning other regularities, as in learning the
laws of physics, or for handling self-motions of a camera,
based on the image space alone. These and many other
matters related to this approach remain to be explored.
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