DESIGN AND IMPLEMENTATION OF
KIMS MULTICOMPUTER SYSTEM

A Thesis Submitted
In Partial Fulfilment of the Requirements

for the Degree of
MASTER OF TECHNOLOGY

by
BHASKAR CHOWDHURI

to the

Department of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

SEPTEMBER, 1992

N “
@e . , [
a, ILI.LT Koenput

$abmitted on JQ./..‘?,/..'
\hor

Certificate

It is certified that the work contained in the thesis entitled “Design and
Implementation of KIMS Multicomputer System”, by Sri Bhaskar Chowd-
huri, has been carried out under our supervision and that this work has not

been submitted elsewhere for a degree.

v’%@ﬂqﬂtn Q%ﬁ \l\:jﬂ'/
Dr. R. N. Biswas Dr. Rajat Moona

Department of Electrical Engg. Department of Comp. Sc. and Engg.
LL.T. Kanpur LLT. Kanpur

Acknowledgement

I express my sincerest gratitude to my guides, Dr. Rajat Moona and Dr.
R. N. Biswas, for their invaluable guidance and constant encouragement,
without which this work could not have been possible.

I take this opportunity to specially thank Mr. S. Kumar, Mrs. S. Sule
Mr. R. Singh of A.C.E.S. and all the steff and faculty members of computer
science department for their kind help and support. Special thanks are due
to Mr.R. N. Tiwari and Mr. Shiv Shankar , who took personal care in the
development of KIMS.

I also thank Mr. Deepak Gupta, who, with ks profound knowledge of
UNIX and LATEX, helped me in more ways than I can remember.

I thank my Hall-IV friends— Rahul, Rajan, Ashim, Gurudev (Sekhar’da)
and all the other jolly good chaps of Hall-IV, who shared my joys and sorrows
during the entire work and always provided a brotherly support. Their love
and support have made my stay at I.L.T. Kanpur a memorable experiepce. I
thank them all from the bottom of my heart.

Part of the work was financially supported by Motorola {India) Inc., which
is duly acknowledged.

Finailly, I would like to dedicate this thesis to my father, Dr. N arayan
Chaudhur, my idal in life.

11.T. Kanpur BHASKAR CHOWDHURI
September 1992

DT g
087771392
TENTRAL LiRRARY gorguudy

Lo mg Cigﬁ%g‘?v

oo pio, B 1 14547

e SE- Jffa-M-cpo - DES

Abstract

Low-cost parallel computer systems, built using easily available resources are of great
demand. Towards this goal, we have designed and implemented KIMS multicomputer
system. The system consists of a interconnected cluster of IBM PC/ATs. We designed
a special commmnication card, which augments the AT's with communication features.
The commmnication card supports number of data transfer modes which includes high
speed DMA transfer mode. These commmunication modes are sofiware selectable.
The link interface also supports multicasting in hardware. To enable easy use of the
system, we have provided a high level langnage support in C. The system is currently
running at the computer science department of IIT kanpur.

Contents

1 Introduction 1
1.1 Motivation for the Present Woek 1

12 Overviewofthe Work s 2
13 Organisationofthe Thesis0 000 3

2 Survey of Previous Works B
2.1 Micropracessor Based Multicomputers 5
22 Scopeforthe Present Work 7
23 Conclusion ¢ttt e it e it et e e 8

8 KIMS Architecture 9
3.1 Architectural Overview of KIMS e 9
3.2 Communication Link Registers 10
3.21 Reset Register PR et e e 11

322 Control Register ¢t eiteteanos 11

323 Mask Rogister . . . o oo oo veee s enteennens 13

3.24 Fifo-empty Register C et e e e e 4

325 Fifofull Register00t vieenen 14

326 LinkRegistercu0cteetenineeennnes 14

3.3 Summary of Link Accesa Modes PO | |

41
42
43
44
45

54

331 Poling0... e
3.3.2 Interrupt Driven Access Mode
3.3.3 Direct Memory Accems Mode

Multicasting¢cci ittt onnrnas
Special Considerations for PCeand XTs
Conclusion et st e .

Address DecodingLogic vi it

451 Reset Register. ey "

452 Control Register AW e

453 MaskRegisterttt
454 Fifo-empty and Fifofoll Registers

15
15
15
18
16
17

18
18
19

g 8

8 Performance Evaluation
6.1 Performance Evaluation Strategy
62 BamicSystem Performance it i

A PAL Logic
A1 EPLDIIOGIC . o o v o v ee eeeeeeeie e onnen, D

A5 EPLDSlogic. T e
A6 EPLDBLOGIC . « « o o o veevem e eeeeee e e eenses

B PCB Layout of the extension card

51
51

List of Figures

3.1 User accessible registers in the link interface

- 41 Block diagram of the communicationecard
42 Nibblesof 16 bit registerdata
43 Fightbitbusderivation ¢t et

" 44 Fourbitbusderivalion00t enan
45 Implementation of control register
46 Implementationof maskregister 0000
47 Implementation of fifo-empty register
48 Implementation of fifo-full register
49 Linkinterfacettt i i e
4.10 Intercard communicationsignals 0000
4.11 Bus interface of inter-card communication block

6.1 Speedupwithoutforkdelayc...
62 Speedupwithforkdelay,

Chapter 1

Introduction

In this chapter we discuss the motivation behind the present work. We also provide
a brief overview of the work and finally discuss the organisation of the thesis.

1.1 Motivation for the Present Work

To satisfy the demands of enhanced computing power, varions multicomputer and
multiproccssor archilcctures have evolved in the near past. Multiprocessors and mml-
ticomputers fall under the Mnultiple Instruction Multiple Data stream (MIMD) cate-
gory of parallel computers. Both consist of a network of Computing Elements (CE)
which cooperate and communicate amongst themselves to solve a problem. However,
the CEs in a mmlticomputer system are complete with local memory and processing
power. Therefore, they can also work as stand-alone computers, whereas, CEs in a
multiprocessor system do not have any independent existence.

The CEs in multicomputer and mmltiprocessor systems commmnicate either
through a shared memory or by passing messages through communication links, Al-
though, the shared memory systems are more attractive from the software-developers
' viewpaint, message-passing systems are much easier to implement and show better
performance with large number of computing nodes. '

Many multiprocessor and multicomputer systems are commercially available, how-
ever, their prohibitive cost restricts their wide use. Recently, a number of research
efforts have been directed towards low cost implementation of multicomputer and
multiprocessor systems.

Towards this goal, we have designed and implemenied a multicomputer system
using IBM PC/ATs. The reasons behind choosing IBM PC/ATs as the computing
elements are

o Low price and wide availahility.

¢ Availability of literature providing internal hardware and software design issues.
¢ Easy access to the system bus and its detailed description.

o The high computing power of PC/ATs with advanced processors like 80386,

804886.

1.2 Overview of the Work

As discumsed in the previous section, the objective of the present work is to design
and implement a message-passing multicomputer system wsing IBM PC/ATs. On
the hardware side, the work involves the implementation of high performance FIFO
based communication links with features particularly suitable for multiprocessing
application. On the software front, we have developed a language support to enable
easy use of the system. In particular the system has the following features.

1. Each computing node can have upto 16 bidirectional communication links. So,
networks with rich connectivity can be realizsed.

2. Each Link has hardwired FIFO buffer which significantly reduces the synchro-
nisation delays.

3. Multicasting is directly supported in hardware.

4. The links can be programmed fo provide various data transfer modes, namely,
polling, interrupt driven and DMA controlled transfer modes. Thus, one can
choose the best mode for a particular application.

5. Links have very high data transfer rate (> 1.0 MByte/sec in DMA controlled
mode).

6. There is no particular architecture or network topology dictated by the system.
So it can be used to realise a variety of network topologies.

7. A high level language interface in C has been provided through which one can
use the system without knowing the underlying hardware details.

The system is presently running in its minimum configuration at the computer
science department of IIT, Kanpur. Initial performance of the system is very en-
couraging. The system acte as a real test-bed for parallel software development and

provides significant computing power with the existing resounrces.
1.3 Organization of the Thesis

The organization of the remaining chapters is as follows.
In Chapter 2, we present a survey of the related works. We also provide a crit-

ical comparison of these works with the present work. We introduce the system
architecture in chapter 3 and provide the actual hardware implementation details in
chapter 4. In chapter 5, we discuss the software environment provided in the system.
Specifically, we discuss the C language support provided to implement configuration
transparent programs. The performance measurements of the existing machine con-
figuration are quite encouraging. We discuss this in Chapter 6. Finally, we conclude

by suggesting modifications for a better design in chapter 7. We also provide some
of the design details in Appendix A and the PCB design in Appendix B.

Chapter 2

Survey of Previous Works

In this chapter, we survey some of the existing microprocessor based multicomputer
systems similar to our system. After presenting a brief design philosophy behind each
of these systems, we analyse their performance and compare them with our present
systemn.

2.1 Microprocessor Based Multicomputers

With the advent of microprocessors, low cost nnplementation of multicomputer sys-
tems became feagible, In recent years, many such systems have been reported in the
literature. Amongst these, the Cosmic Cube architecture proposed by Seits [8] is in-
expensive and easy to implement. It also gives good speedup for many applications.
The system consista of 64 small computers connected in the form of a 6-dimensional
hypercube. An operating system kernel in each node schedules and runs processes
within that node and provides system calls for processes to send and receive mee-
sages. However, the communication links have large comnmnication latency as, they
are slow serial links without nmlticasting features.

It is widely accepted that a high throunghput can be achieved by overlapping
computation with communication. Absence of such a technique is also felt in the

Coemic Cube machine. This was introduced in the Acorn mmlticomputer syslem
proposed by Goodeve and Taylor [3]. They have used separate coprocessors to apeed
up the links. But many other problems remain unaddressed in the system. The
absence of buffers to decouple the sending and receiving processes, software overhead
in maintaining shared data and absence of multicasting make the links unauitable for
large multicomputer systems.

A similar approach is also used in the hypercube multiprocessor system by Das et
al. [1}. The system consists of 8 CEs cannected in 3-dimensional hypercube topology.
But instead of serial links, it uses twoport memories shared between two adjacent
CEs for data comnmmnication purpose. This sysicm bchaves marginally better than
the previons system as it was obeerved that the flat structure of twoport memory
is not particularly attractive for point-to-paint communication links. In fact large
software overhead is required to maintain the shared data structures. Moreover large
number of interface signals (address, data and control lines) makes it unattractive
for building large systems. Absence of multicasting is another shortcoming of the
system.

A simple low—cost nmlticomputer system based on message passing FIFO Enks
was proposed by Ghosal et al. [2). The system consists of eight IBM PC/XT mother
boards connected together using point-to-point byte-wide hidirectional commmumnica-
tion links with FIFO buffers. A language interface in Pascal with a few routines for
interprocess communication and remote process initialisation is also provided with
" the system. The communication links of the system cannot be satisfactorily used
with large systems because of the following shortcomings.

o Absence of multicasting.

¢ Number of links is only one per /O channel.

o Only blocked mode of data transier is provided.
| 6

improvements. The unified view provided for all the links with common contradl,
mask and stalus registers makes the physical distribution of the links transparent.
The mask register reduces the input-output space requirement drastically. The user
is provided the option of eelecting different input oulput modes of the links which
includes a high speed DMA transfer mode. This is done by properly changing the
contral register value. Both blocked and unblocked modes of transfers are provided.

The software environment provided for the sysiem is quite similar to that of the
MMS system, but the software overhead is much smaller than that in the MMS system
as many of the features which were emulated through software in MMS are directly
supported in the hardware.

2.3 Conclusion

From the survey of some of the recent microprocessor-based multicomputer systems,
it appears that the present system offers many interesting features needed for building
large systems which were not supported in the earlier systems.

Chapter 3
KIMS Architecture

We introduce the architecture of Kanpur ZIT Multicomputer System (KIMS) in this
chapter. We start our description by presenting a broad overview of KIMS. We then
discuss the details of its communication structure. Specifically, we discuss details of
different registers associated with the communication interface. We also show how
they are used to get different input ontput modes and multicasting feature. Finally,
we discuss the special considerations that are to be made for implementing KIMS
with IBM PC or XTs.

3.1 Architectural Overview of KIMS

KIMS uses IBM PC/ATs as the computing elements. Configuration of ATs used in our
present implementation is 16 MHs 80386SX processor with 4 MB main memory. We
have angmented the ATs with communication links to use them in KIMS. The links
are realised in specially designed extension cards where each card hosts 4 bidirectional
byte-wide links. Each AT can have upto 4 such cards to provide a maximum of 18
links. The carde are identical in design. Oanly two switch settings distinguish one
card from another. Each link is provided with 2KB FIFO buffer to decouple the

The link interface does not use any special features of s PC/AT and can be used
with any AT or ite clone. The link interface can also be used with a normal 8 kit PC
at the cost of reduction in the number of links and interrupt driven communication
facility. However, polling and DMA contralled communications are not restricted.
We discuss this in more details at the end of this chaptes.

The commmunication interface does not dictate any particular network topology,
80 a mumber of multicomputer configurations can be realived with KIMS. We have
tested the system with two computing nodes.

3.2 Communication Link Registers

As described in the previous section, the communication links are supported in spe-
cially designed extension cards. These cards are connected to the AT?s mother board
through standard extension slots. For easy use of the communication links, several
user-accessible registers are praovided. These registers are physically distributed across
different cards, but the novelty in implementation makes this totally transparent to
the user. |

The 6 registers provided in the link interface are listed below.

1. Reset Register (peeudo output).

2. Control Register (8 bit output).

3. Mask Register (16 bit outlput).

4. Fifo-empty Register (16 bit input).
5. Fifo-full Register (16 bit input).

6. Link Register (8 bit input / output).

10

All these registers are mapped in a block of 8 byte Jocations of the processor’s .
address map. The base addrees of this is programmable. We have chosen it as 140
Hex in present implementation. However, in our discussion to follow, we denote it as
BASE.

8.2.1 Reset Register

The reset register is a pseudo output register. It occupies the addreas (BASE + 4).
Writing in this register will result in the reset of all communication links. The same
effect is alsoc obtained when the processor is switched on oz the reset button of the
processar is pressed. As it iz & pseudo register, no data gets physically stored. The
resct register can be used as 8 bit as well as 16 bit register, |

3.2.2 Control Register

The conirol register iz an 8 bit output register occupying address (BASE + 2). Its
main function is to select different communication modes. We use only the Jower 4
bits of this register and the upper 4 bits are considered as “don’t care™ bits ar shown
in figure 3.1, We describe the function of each of these bits below.

WARN. This bit is ueed to enable Gllegal i/o WARNing’ (WARN) interrupt. I
this bit is scl, an interrupt will occur for Gillegal hnk-read’ or ‘illegal link-write’
operation. By ‘illegal Link-write’, we mean an attempt to write in a link whose
FIFO buffer is already full. Similarly, by ‘illegal link-read’, we mean an attempt
10 read from rmltiple links st the same time or attempt to read from a bnk with
empty FIFO. Physically, this interrupt is mapped with AT’s IRQ 10 interrupt
line. WARN bit should be kept Jow if IRQ10 is used by any other device,

DAV. This bit is used to enable ‘Dats has ArriVed’ (DAV) interrupt. If this bit is
set, an interrupt is generated whenever any selected (see description of mask

11

b7 bo
X X X X WARI] DAV] DMA] DIR
L 1 = Input, 0 = Output
1 = DM A Enable
1 = DAV Interrupt Enab
1 = WARN Interrupt Ex
CONTROL REGISTER
bis b1 b0
m]s -------------- ml m
L 1 = Bnable link 0
MASK REGISTER 0 = Disable link 0
b1s b1 b0
bls ------------ kl w
L 0 = FIFO Bufier of link
FIFO-EMPTY REGISTER i
b15 1 W
fls -------------------- ﬂ m

FIFO-FULL REGISTER

LO:FIPOBliuoﬂhk
fall

* Figure 3.1: User accessible registers in the link interface

12

register) empty link gets data. The DAV interrupt is very helpful, because it
eliminates the overheads of polling the link status for data arrival. Physically,
this interrupt is mapped with AT’ IRQ11 interrupt. This bit should be kept
low, if IRQ11 is used by any other device. ,

DMA.. This bit, when set to one, selects DMA mode of data transfer. In DMA mode
the DIR bit is used to decide the direction of DMA transfer. Setting DIR to one
indicates link read operation whereas, reseting DIR to sero indicates link write
operation. Once these two bits are properly set, DMA request nignal will be
generated as long as a valid transfer is possible. Valid tranefer is indicated by
the non-empty selected FIFO for read operation and non-full sclected FIFOs for
write operation. DeacﬁnﬁonofDMAmqlmtoccunwhentheaboveconditi?m
are violated, while antomatic reactivation of the DMA request occurs as soon
as the condition again becomes favorable for further transfer. Selecting more
than one link for link read operation canses no transfer. Physically, the DMA
request is mapped to DMA channel 3 on PC/AT bus. X it is used by some
other device, then line conflict can be avoided by keeping the DMA bit low.

DIR. This bit is used in conjunction with DMA bit to denote DMA direction as
explained above. If DMA bit ia zero then the valne of DIR bit is considered as

‘don’t care’.

3.2.8 [Mask Register

Mask register is a 16 bit output rcgistcr occupying address location BASE. This
register is need to enable or disable the links for read or write operation. Bit m ¢ of
mask register corresponds to link §. If m 1 is set to 1 then link ¢ is selected for access
otherwisc it in masked. More than one link can be enabled for writing. But it is
illegal to enahle more than one link for read operation. Under this condition, no data

13

links. These modes are Polling mode, Interrupt driven mode and DMA contralled

link access modes.

3.3.1 Polling

In Polling mode, Fifo-empty and Fifo-full registers can be checked by the driver
software, before each byte of transfer. Data transfer should be done only if the buffer
condition is favorable for the transfer. This mode is simple to use and performs well
with small data transfers.

3.3.2 Interrupt Driven Access Mode

In interrupt driven access mode links are accessed without their status checking.
Occurance of WARN interrupt indicates that the last link operation failed becaunse
of any of the reasons discussed above. This mode is mmch faster than Polling due to
the elimination of the overhead of status checking for each byte of transfer.

3.8.83 Direct Memory Access Mode

In direct memory access mode data transfer takes place without CPU intervention
and is the fasteat mode supported in hardware. Link read operation throngh DMA
continués as long as the required number of bytes are not read or the selected link’s
FIFO becomes empty. DMA operation is resumed again when further data becomes
availahle in the link buffer. Similarly, for link write operation, DMA process temporar-
ily halts when any of the selected link’s FIFO buffer becomes full. DMA operation
permanently stops when required mumber of bytes get transferred. This mode gives
more than 1 MB/sec data transfer with 16MHs 803865X PC/ATs. However, a re-
programming of DMA controller is needed for each session of transfer. This involves
the loading of word count register, address register, mode register etc. in the DMA

’

15

contraller. For small data transfer (< 10 bytes), this overhoad cutweighs the gains of
DMA mode data transfer.

3.4 Multicasting

. The term multicasting means simultaneous transfer of data through nmltiple links. It
also implies the capahility to select any subset of the links, through which mmlticasting
will take place. It is apparent from the above discussion that nmlticasting is very
easy in KIMS. Multicasting is done by first enabling the desired links by setting
their corresponding mask bits in the mask register. Any write in the link register
~ now causes data to be simultaneously written in all these selected links. Antomatic
synchronisation is done to make sure that all the selected links are coping up with
the transfer. Whenever any of the selected link’s FIFO gets filled up, data transfer is
temporarily halted until at least one location becomes available in that FIFO. This

way single instruction multicasting is supported in KIMS.
3.5 Special Considerations for PCs and XTs

Originally the communication interface was designed to work in conjunction with
IBM PC/ATs. But similarity between 8 bit PC’s interface with that of ATs, makes
the interface work with 8 bit PCs as well. However, with each PC, we can attach
only 2 such cards to have upto 8 links instead of 16 links as in the case of ATs. This
restriction occurs because the card assumes 16 bit data bus and folds upper and lower
8 hits internally to support the distributed registers (this is discussed in detail in the
next chapter). Mareover the WARN and DAV interrupte are not directly supported
in PCs as they do not have IRQ10 and TRQ11 interrupt lines. However, one can map
these interrupts to some other unused interrupts to have interrupt driven transfer
facility. Polling and DMA driven modes are directly supported and no modification

16

is needed here.

A system built in this way, using IBM PCs, will obviously not offer the compu-
tation speed achieved with ATs, but still the system can be useful as a low-cost test
bed for parallel software development.

3.6 Conclusion

In this chapter, we presented architecture of link interface in KIMS. The actual im-
plementation details are given in chapter 4. We have also discussed about different
communication modes provided in KIMS. The comnmnication interface can also be
used with IBM PCs or XTs at the cost of loosing some communication features and

performance.

17

Chapter 4

Hardware Implementation of
Communication Interface

In this chapter we discuss the implementation details of KIMS communication inter-
face. Specifically, we discuss the details of bus-interface, distributed kink registers,
DMA contral and interrupt generation logic.

4.1 Design Philosophy

We have designed a PC/AT extension card for the communication interface. This
card is used to augment the PC/ATs with communication links. The design goals for
the card are described below.

o The cards should be identical in design for ease of management and fabrication.
o A card should incorporate as many links as possible.

¢ The cards should be robust. The hardware should be able to ignore illegal
software commands.

o The design should be reliable. Strict bus interface Jogic should be used to reduce
possibility of errors.

18

The communication interface is implemented on a PC/AT extension board, whose
sise, specified by IBM, iz 13.12x4.8 inches. On a double sided printed circnit board
with plated through holes, we could accommodate a maximum of 4 links.

The entire control logic for this interface card is implemented in PALs. We used
PALs instead of discrete logic becanse PALs pravide greater flexibility in design and
consume less space and power. Although Gate Arrays would have provided a better
optimisation and integration, their high cost is prohibitive in applications like ours.

4.2 Organization of the Card

For ease of visnalization, we classify the nser accessible registers into 2 groups. The
first group registers are reset, control, mask, fifo-empty and fifo-full registers and are
collectively called general registers. The other group contains only the link register.
We present the broad organisation of the communication board in fignre 4.2. There
are 5 basic functional blocks in the interface, which we List below.

1. Address Decoding Block.
2. Data Bus Interface.

3. General Registers.

4. Link Interface.

5. Interrupts and DMA Control Block.

In the following sections we describe each of these 5 blocks separately with occa-
sional reference to other blocks for non-local signals.

19

General Interrupts sad

Registers DMA control
L}. — Link 0
Link
ternal Kst;. Elu Interface
— Link 3
L ddress Decodi |l Data Bus
Block Interface

Figure 4.1: Block diagram of the communication card

4.3 Address Decoding Logic

The address decoding block consists of two PALs, namely EPLD1 and EPLDS. Part
of EPLDS3 is also used by the general register block. The address decoding block
generates two signals, namely §e@ and 1ink, both of which are active low signals.
Signal gen indicates selection of one of the general registera. Therefore, it becomes
active when the aystem’s address bus contains a valid address lying in the range
BASE to (BASE+5). Signal 1Ixk, on the othcr hand, indicutes selection of the Link
register. It is, therefore, activated when address bus contains a valid address equal to
(BASE+-6) corresponding to the link register address. Since the links are also mapped
to the processor’s DMA channel 3, signal Tink is also activated with DACKS signal.
We provide the details of EPLD1 and EPLDS logic in Appendix A.

4.4 Data Bus Interface

Communication interface in KIMS allows the use of upto 4 communication cards with
each CE. These cards are numbered 0 fo 3 and are selected through switches on the
cards. Data Bus Interface block provides the interface between these cards and the
processor data bus of a CE. Interface logic switches two halves of the processor’s

20

bit1s bit0

nibble 3 nibble 2 ribble 1 nibble 0

Figure 4.2: Nibbles of 16 bit register data

data bus to a cards’ internal bus depending upon the comununication register being
accessed and the card’s number. We discuss this below.

o For link register and conirol regisier access, only the lower 8 bits of the 16 bit
processor’s data bus are used. This is true for all the 4 cards.

o For mask, fifo-empty and fifo-full register access (all 18 bit registers), nibble i
of the processor’s data bus is nsed by card { as shown in figure 4.4.

o For link register write operation, the internal data bus is mapped to the lower
byte of the processor’s data bus on all the 4 cards. The link regisier read
operation is a little more complex. At a time only one link can be read. As the
links are distributed on different cards, first it is ensured that only one link is
enabled out of 16 links distributed across 4 cards. Only in that case, internal
data bus is mapped to the lower byte of the processor’s data bus on the card
with enabled link. In all other cards, internal bus is kept isolated from the
processor’s data bus.

In order to meet the above mentioned requirements, we use separate drivers with
tristate outputs for each nibble of the processor’s data bus. The resulting bus interface
is shown in figure 4.4. Transceiver DBF' is used to interface nibble i to the processor
data bus. The internal data bus of each interface card is 8 bit wide. We represent this
by cd0. .cd7. Mapping of the 16 bit processor bus to 8 bit internal bus js explained

21

later. The link interface also uses another 4 bit bus, denoted by mx0. .mx3, which is
derived fram the 8 bit internal data bus. This 4 bit bus is used exclusively by the
card’s mask register.

There are 2 control signals associated with each transceiver, namely dir and 3§
The signal dir; decides the direction of data flow in buffer DBFi. For all the 4
buffers, we drive these Lines with the processor’s TURD signal. This ensures that data
from the commmunication cards sppears on the processor’s data bus only during an
input operation. Signal #g7 corresponds to the output enable signal of buffer DBF4.
The logic to generate TF signal for four buffers is implemcnted in EPLD2. We now
discuss the mapping of the processor bus for individual registers.

The control regiater is an 8 bit write-only register duplicated on all cards, which is
mapped at an even address. During a write in the conirol register, data appears on the
lower 8 bits of the procesvor’s data bus. Therefore, lower 8 bits of the processor’s data
bus are mapped into the internal 8 bit bus during a control register write operation.
This mapping is achieved by simultaneously activating #g and #g; on all the cards.

For link register write operation, similar mapping is done on all the cards. How-
ever, for link read operation this mapping is done only on the card with selected
link. Further, the mapping is done only after ensuring that there is only one enabled
link in the CE. This condition is indicated by tmpillrd signal generated by EPLDS
discussed in the section on DMA and interrupt control Block.

For fifo-empty and fifo-full register read operations, a card provides only one
nibble of data. This is achieved by activating #g; on card i. However, internal
connection in the board ensures that all the 4 buffers (DBF0 to DBF3) get same
nibble value. Thus, by activating 3g7 on card i, complete 16 bit register content is
" placed on processor data bus.

For mask register write operation, the desired nibble from the 16 bit processor
data bus is extracted in two steps. For card number 0 and 1, this nibble is available

22

7 cdD..cd3

jorp — DIR
T4is245
A5 .

A8 DBF3

Figure 4.3: Eight bit bus derivation

B
TAla245 |
AS : [% cda..odr

Swo —i A/B

L l
cd0..cd3 A
——t 4A 7418187 1Y |

4Y‘: mx() .. mx3

i 1B

Figure 4.4: Four bit bus derivation

in the lower byte of the processor data bus. However, for card number 2 and 3, this
lies on the upper byte of the processor bus. Therefore, in the first step we extract
the byte containing the desired nibble and map it to the internal data bus d0. .cd?
on each card. In the second step, we exiract the proper nibble from cd0..cd7 and
map it to the 4 bit bus mx0. .1mx3 using a 7418157 (MUX). MUX uses bit 0 of card
address to select the desired nibble (see figure 4.4).

4.5 General Registers

Once the data bus interface is properly designed, it is relatively simple to implement
the general regisiers. All input registers are realised using 7418246 buffers, while the
output registers are realixed with 7418374 latches. We use PAL EPLDS to generate
the read /write signals for the general registers. We discuss the implementation details
of each of the general registers below.

4.5.1 Reset Register

The Reset register is a pseudo output register and does not require any storage. A
write into this register canses EPLDS to activate the reset signal, used for reseting
the FIFOs (IDT7203). As the reset register is duplicated on all 4 cards, a write into

4

0
|
OE

. . DIR,DMA,DAV,WARN
21 4D 7415374 4Q . ?

od .. cd3

CNTRL
C

catrlw

Figure 4.5: Implementation of control register

it lcads to a global reset of all comnmmication links. Following a reset, FIFO buffers
go into “empty FIFO” condition.
4.56.2 Control Register

The Control Register is an 8 bit ontput register referred o as CNTRL. The catrlw
signal generated by EPLIDS is used as the clock input for CNTRL.

4.5.3 Mask Register

The Mask register is a 16 bit distributed output register. A 7415374 latch, referred
to as MASK, is duplicated on all 4 cards and holds nibble § of mask register’s content
on card i. The signal maskw, generated by EPLDS, is used as the clock input for
MASK. When a write in this register is detected, this signal is made active and the
data present on the internal 4 bit data bus (mx0..mx3) gets latched in MASK.

4.5.4 Fifo-empty and Fifo-full Registers

These two registers are 16 bit input registers which provide the ‘FIFO empty’ and
‘FIFO full® conditions of the FIFOs associated with each link. As each card has 4

25

OIF—-O
xd

mx0 . 1D 1Q L 0 s
[° I!. (1] m

MASK
C

maskw
Figure 4.6: Implementation of mask register

links, it can provide only 4 bit information of these registers. This 4 bit information
on card i forms the nibble s of 16 bit data. We provide the implementation details of
these two registers in figure 4.5.4 and 4.5.4. In both the registers, 4 status signals from
4 links on a card are duplicated on two nibbles of the internal 8 bit bus. This ensures
that all the data bus buffers get same value. However, only one nibble appears on
the output bus as discussed earlier in date dus interface. EPLDS generaies signal
statird to enable fifo-empiy register and stat2rd to enable fifo-full registcr.

4.6 Link Interface

We refer to the physical connection and the associated interface which connects one
CE to another, as link. A link has two hardwired FIFO buffers, each holding data in
one direction. Whenever a CF requirea to send come data to another CE connected
through a link, it writes the data in the FIFO buffer present in its link interface. The
other CE, referred as the remote CE, knows presence of this data from the ‘FIFO
empty’ status sent to it. On finding that the FIFO contains some data, it can read
this data by sending ‘read request’.

|
0—pm @
7418245
— 1A 1B =
cd0 .. cd3 —laa sl ”
o ASTAT] B * %0.. o3
Cd4-.0d7__._ aA aB :_ as

Figure 4.7: Implementation of fifo-cmpty register

|

stat2rd
]
1—{pm @
7418245
= Bl o .. o3
0.6 _:lu Y] iy
— 5A 5B I
018 2] ap STAT2 g oo - o0

Figure 4.8: Implementation of fifo-full register

s

The physical connection of a link i brought out on a 40 pin edge connector.
Every allcrnate pin of this connector is grounded to shield againat external noise
perturbations, Thus, there are 20 active signals, of which 10 are incoming and 10 are
outgoing. These signals are, 8 bit data lines, 1 read signal and 1 ‘FIFO empty’ signal
in each direction.

We show the block diagram of one of the four identical links interface in figure
4.6. We use OTBUF to drive the ontgoing data kincs of the local FIFO and INBUF
fo receive the incoming data lines. The transmission and reception of the ‘read
request’ and ‘FIFO empty’ signals are done using INOTBUF. We denote the read
and write signals for link i as Tinkrd; and 1iaker; respectively. These signals arc
generated by EPLD4. Whenever a write is done in the link register, a write signal is
generated corresponding to each enabled link on the card. Similarly for link register
read operation, a read signal is generated corresponding o the enabled link on the
card. However, this is done only after ensuring that there in exactly one enabled link
in the processor. Validity of this condition is indicated by tmpilIrd signal generated
by EPLDb in DMA and interrupt control block described below.

4.7 DMA and Interrupt Control Block

The Interrupt and DMA control block consists of two sub-blocks. (1) inter-card com-
munication interface and (2) logic for interrupt and DMA geneut.ion.r "

As discussed earlier, it is often required to ensure that only one bit is enabled in
the mask register (or only one link is enabled). For this, information is needed from
other cards, as a card holds only 4 bits of the 16 bit mask register. There are 4 signals
used for this purpose as described below.

o The PEEV signal is an input signal to card i. PEEV=0 indicates that one or mare
link on card 0 to card i — 1 has been selected. For card 0 this input is tied to

28

Eoam

1 (]

IDT 7203
FIFO
— — Tals34
linkwr W Qo Al) N I
L4 A8 B8 L DststoRemoteCE
q7 s .—-—
OTBUF
1 _JRT
o _1xI > 4
—_— EF 1A
RESET | MR e 74243 1B | FIFO empty to Remote
¥ 2B 24 |— Resd from Remote CE
DO D7 INOTBUF
i m_—sA SB—M‘ORHI.O‘OCE
e __11B 1A |__ FIFO empty from Remot
Gab Gba
| |
0 0
G 741245 Bl f—
. INBUF D3 b
0 — DIR
Al A8
3 cd0 .. odT i

Figure 4.9: Link interface

ILLRD
ILLWR

Card 0 Card 1 Card 2 Card 3
1 . PREV NEXT PREV NEXT PREV NEXT PREV

DAY

Figure 4.10: Inter-card communication signals

locilled] 1A 1B | _ 1LLRD
locliwr | 2A 2B | TLIWR
= 741,07
Jext i 3a BUFF 35 | NEXT
newdata] SA 6B | Dav
Bi?r — 1A 1B . dav
ILLRD —J 22 74534 3B | _ ila
SCHMITT
ILIWR —] 3A 3B | iliwr
PREV . 6A 6B | pICV

- Figure 4.11: Bus interface of intercard commmunication block

one.

The NEXT is an output signal of card i. FEXT=0 indicates that one or more link
on card 0 to card § has been selected by the mask register. This signal is tied
to PREV of card i + 1. The signal iz derived from PREV and the mask bits on the

card ¢ as

m:me; V m;4) V migz V mgs.

TLIRD is a shared line. A sero on this line indicates an ‘illegal condition for
link read operation’. By ‘illegal read condition’ we mean at least one of the
two following conditions. (1) Either more than one link has been selected for
reading or (2) the selected link does not have any data for reading. This line
is driven by open-collector ontput on each card. When a card detects an illegal
condition for link read operation, it pulls this Line low, otherwise this Line is
floated. Thus, this signal is implemented using wire-ORing of local illegal read
signals, Since all the cards monitor this line, an ‘illegal read condition’ on any
card becomes known to all other cards.

The TLLWR signal is ximilar to TLIRD, except that it denotes ‘llegal link write
candition’. By ‘illegal link write’ condition we mean thati at least one of the se-
lected links has its FIFO buffer full and no further write is immediately possible.
Signal TLLWR is implemented by wire-ORing of local illegal write signals.

The DAV is a shared line. A sero on this line indicates that at least one of the
selected links has some data, which can be read. This line is driven by open-
collector cutput on each card. When a card detects data arrival in one of its
selected link, it pulls this line low, otherwise this line is floated. Since all the
cards monitor this line, so a data arrival on one card becomes globally known.

31

The DMA request and interrupt signals are generated by the logic realised with
EPLDS5 and EPLDS. First, we discuss the function of EPLD5. Among the signals
generated by this PAL are maskor and newdata signals. On card i, signal maskor
is derived by the logical ORing of bits in nibble i of mask register. Signal newdata
denotes the arrival of data in one of the selected links of the card. Another signal,
TmpII1Ird denotes that more than one link has been selected. This signal is de-
rived from PREV smignal and the card’s mask value. Two other signals, TocIillrd
and TocIillwr, denctes that card’s Enk condition is unsuitable for read and write
operation respectively. These signals are also used in generating TLTRD and TEIUR as
discussed earlier. |

EPLD®S serves two purposes. It generates NEXT signal for the inter-card commu-
rication interface on all the cards. In addition to this, on card 0 it is also used to
generate DMA request, WARN and DAYV interrupt signals.

lee logic details of EPLD6 and EPLDS are given in the Appendix A.

4.8 Conclusion

In this chapter we discussed the communication interface of KIMS. We used six 1618
PALs to realise the entire contral logic of the comnmnication interface. A very robust
bus structure is nsed to decrease the possibility of error. Sufficient precautions have
been taken to gnard against any possible damage to the hardware due to software

errors.

32

Chapter 5

Software Environment

In this chapter we discuss the software environment in KIMS. The KIMS software en-
vironment consists of a sequential programming language augmented with rountines for
remote process creation, termination and inter-process communication. Specifically
we discuss the language support in C, which is currently available on KIMS. Pinally,
we present a small example program to elaborate the nsage of this environment.

5.1 Introduction

The current understanding of the software issues for loosely coupled computer system
is not very advanced. Our effort in designing the softwarc cnvironment has been to
make the environment as general purpose as poesible. This is certainly desirable for
solving different classes of problems on KIMS. However, many software inmmes depend
upon the algorithm used as well as on the underlying hardware. So a truely general
purpose software environment is not only difficuit to implement but can become over-
whelmingly inefficient in many sitvations. Therefore, our effort has been to provide
a language suppart which balances these two conflicting issnes. We discuss the re-
sulting environment, which is quite similar to the software environment of the MMS
system proposed by Moona [6].

33

5.2 Need

There has been considerable research in computer science on new concurrent lan-
guages. One basic barrier in parallelising the conventional sequential declarative
languages has been the use and modification of global variables. Maintaining the
coherency of the global variables takes large overhead. It is therefore necessary to
consider languages that have no concept of global variables and where the process-
ing and variables are localised to the modules and can be executed concurrently.
This has motivated object oriented and functional langnages. However, this style of
programming has been found comparatively inefficient for scientific computations.

A nev.eet concept called dataflow is evolving. Here, a computation is executed
when it gets all the operands needed for the operation. Our approach in building a
software environment can be viewed as a large grain dsiaflow environment, where a
processes is synchronized using messages from other processes. Thus in some sense,
we can visnalize the messages in KIMS as tokens in dataflow computers.

The software environment discussed in this chapter views computing elements
as nodes in which one and only one processes can be executed at a time. It also
assumes homogeneous CEs in the system. By homogeneous CEs we mean that the
procesaor used and memory size is same for all CEa. This restriction results, becanse
the memory image of the program in the CEQ is directly transferred to other CEs
during & remote fork operation.

The software environment of KIMS is composed of several layers. An user can
build the upper layers using the features provided by the lower layers. Az system
architects, we provide the lowest layer with basic routines for process management
and inter-process communication. This layer does not provide automatic process
mapping or parallelism detection. They can be design issues for the higher layers.
However, even with the current language support, one can mse KIMS with little

34

knowledge about the underlying hardware implementation details.

5.3 Basic Functions

As described in the previous section, the Jowest layer of the software environment in
KIMS provides basic routines for process creation, termination and message passing.
In this section we consider these routines as supported for the C language. How-
ever, it is obvious that a similar language support can also be implemented for other
programming languages.

5.3.1 Process Creation and Termination

RFORK subroutine (Remote Process Creation Subroutine)

int rfork(mask)
unsigned int mask;

This subroutine creates a copy of the code, data and stack segments of the exe-
cuting procees on the remote CEs which are connected through enabled links. The
mask value encodes the links which are to be selected for this function.

Newly created remote processes continue execution from the same program lo-
cation from which the onginal process executes after return. All data initialisation
done by the calling process are also reflected in the remote process. The rfork()
subroutine returns 1 to the calling process and 0 to the newly created remote nodes.
This return value is important in deciding appropriate decomposition of the process.

A Complementary routine to terminate a process is called by a process when its
execution is complete or some fatal error is detected.

TERMINATE subroutine (Remote Process Termination Routine)

35

void terminate(mask);
unsigned int mask;

This subroutine when called by a process, causes the CE to terminate the running
process. The CE then starts monitoring ‘FIFO empty’ condition of the enabled Enks
for further data arrival. The value of mask encodes which links are to be enabled.
The data from any of these enabled link is interpreted as a memory image for another
process. In the current implementation, we used polling technique to check for any
data arrival, but one can also use DAV interrupt for the same purpose. This routine
is executed by all the CEs at the power on time except the CE with nodeid=0. This
particular CE is the master node from which the sysiem is operated. A program
initiates from CE 0 and then migrates to other CEs for concurrent execution using a
rfork() call.

5.8.2 Interprocess Communication

The processes running concurrently on different CEe need to commnmnicate between
themselves for data and partial results. We provide a wide variety of commmunication
-routines for this purpose. All the communication routines are implemented by the
complementary pair of send message and receive message instruction. We discuss
these routines below. In all the routines described below, parameter var denotes the
starting address of the data in the memory, from where data transfer has to start.
Parameter sixe specifies number of bytes to be transferred. Parameter mask encodes
the links through which this transmission has to take place. This value is loaded into
the mask register at the beginning of a routine,

36

Unblocked Communication Routiheo

UBREAD subroutine (Unblocked Read Subroutine)

unsigned iat ubread(mask,var,sixe)
unsigned iat mask,size;
char =var,;

This routine is used for reading data var from the channel specified by the mask.
This is an unblocked read, i. e. if the required amount of data is not available in the
enabled link, then it reads only the available data and does not wait for further data
to come. The control is returned to the calling program with return value equal to
the number of bytes still to be read. A return value equal to 0 indicates successful
completion of the function. This routine is helpful in program development stage, as
it tries not to cause any indefinite postponement.

UBWRITE subroutine (Unblocked Write Subroutine)

wnsigned int ubwrite(mask,var,size)
unsigned int mask,size;

char ®var;

This routine is complementary to the ubread() routine and is used for writing
data from the memory into the channels selected by the mask value. While this write
operation is going on, if the FIFO associated with any enabled link becomes full, then
the write operation is terminated and control goes back to the calling program. The
routine returns to the calling program a value equal to the number of bytes yet to be
transferred. So a return value of 0 indicates successful completion.

37

Blocked Communication Routinea

The unblocked mode of data transfer are implemented using the interrupt driven
data transfer fechnique, which is faster than than the polling method of transfer.
But the main disadvantage of these routines is the averhead associated with resum-
ing the read /write operation on unsuccessful return. We also provide a set of blocked
read /write routines to avoid switching overheads. In blocked read /write mode, a func-
tion does not terminate till the required number of bytes are transferred. In current
implementation, these routines are implemented using polling technique. However,
one can also use the anblocked read /write routines to implement these routines which
will give better transfer speed. We describe the blocked mode read /write routines

below.

BREAD subroutine (blocked Read Subroutine)

void bread(mask,var,size)
unsigned int mask,size;

char *var;

This routine is similar to the wbread() subroutine except that it operates in
blocked mode. It reads size number of bytes from a channel specified by mask into
the array var. It returns to the calling routine only after completion of required
number of byte transfer.

BWRITE subroutine (blocked Write Subroutine)

void bwrite(mask,var,size)
unsigned int mask,size;

char *var;

This routine is complementary to the bread () subroutine. It wntes size number
of bytes from array var into the channels enabled by mask. The routine terminates
and returns to the calling routine only after completion of required number of byte
transfer.

DMA mode Communication Routines

All the above mentioned routines are supported using POLLING and INTERRUPT
DRIVEN 1/O technique. We pravide two rountines which are quite similar to bread ()
and berite() routines. However, this routines are implemented using high speed
DMA mode of communicalion offered by the link interface. These routines are nmch
faster than the other read/write routines. We deacribe these below.

DREAD subroutinc (DMA mode Read Subroutine)

void dread(mask,var,size)
unsigned int mask,size;
char *var;

This routine is similar to the bread () subroutine except that the data transfer
is done in DMA mode. It reads size number of bytes from a channel specified by
mask into the the array var. It returns to the calling routine omnly after completion
of required number of byte transfer.

DWRITE subroutine (DMA mode Write Subroutine)

void derite(mask, var,size)
unsigned int mask,size;
char *var;

39

This routine is complementary to the dread () subroutine. It writes size number
of bytes from array var into the channels enabled by mask. The routine ferminates
and returns to the calling routine only after completion of required number of byte
transfer.

5.4 Example

In this section we present a small example program written using the above mentioned
fanctions. The program computes the sum of first hundred integers. Purpose of this
example is solely to give an idea about how programs are written in KIMS. As the
execution proceeds, first it creates a remote process using rfork() call. The return
value distinguishes between the parent process and the forked process. The parent
process calculates the partial sum of first 50 integers. The forked proces, on the other
hand, calculates the partial sum of 51 to 100 and sends it to the parent process. The
parent process receives this value and adds it to ite own partial sum giving the final
result.

#include <KINS.H>

main() {

int forkresult,psum,i,othersum,finalsum;
L]
/* fork the program to the
CE connected through chamnel 1 »/
forkresultsrfork(1);
if (forkresult==1){

40

/* this is the parent prograa s/

psum=o;

for(i=1;i<m50;i++)

/* calculate the partial sum of 1 to 60 *»/
psomt=i;

/* read the partial result calculated
by the forked process ¢/

bread(1, (char *)&othersum,sizeof (othersum));

/¢ calculate the final result */
finalsuw=psumtothersum;
) _
elge {

/* this is the forked program */

prun=o;

for(i=51;i<m100;i++)

/* calculate the partial
sum of 61 to 100 »/
psuwiei;

/* write the partial result to the
original program«/

bwrite(1, (char *) kpsum,sizeof (psum)) ;

terminate(1)/# all forked processes should
terminate with this functiom */

}/* end of main */

41

5.5 Conclusion

In this chapter we discussed the software environment for KIMS. The environment
consists of several layers. Routines provided in the lower layers run more efficiently
than those in the upper layers. However, the upper layers provide more abstract
view of the architecture. We also discussed the lowest layer of this environment
which has been implemented and supports the basic process creation, termination
and comnmnication primitives. Finally, we presented a small example program to
demonstrate the use of KIMS software environment.

42

Chapter 6

Performance Evaluation

In this chapter we present the performance analysis of KIMS. The analysis is done
in two stages. In the first stage, we provide the statistics of data-commmunication
* speed in various modes. In the second stage, we study the overall performance of
the system by solving different standard programs on KIMS and observing the speed
enhancement over uniprocessor system.

6.1 Performance Evaluation Strategy

There is no single parameter by which the performance of a multiprocessor system
can be denoted. Moreover, the performance of the system also greatly vary depending
upon the algorithm used to solve the problem. In absence of any standard bench-
marking procedure, we have carried out performance evaluation in two stages. In
the first stage, we measured the performance of the systerm hardware. This includes
measurement of raw computation speed and communication bandwidth of the links
for different communication modes. In the second stage, we measured the overall
system performance by salving a class of standard problems on KIMS. The execution
time is then compared with corresponding uniprocessor computation time. The ratio
of these two times gives the speedup, which is an indication of the system efficiency

43

including its software environment.
6.2 Basic System Performance

In this section we present the basic hardware performance of KIMS. All these mea-
surements refer to the present configuration of KIMS currently running at computer
science department of IIT Kanpur. ,

Each CE consists of a PO/AT with 4 MB main memory space. The processors
used in the CEs are 16 MHs 80386SX. About 3% of the total computation time is
used for dynamic memory refreshing. We do not use any separate arithmatic processor
with the CEs. However, they can be easily incorporated in the system to enhance the
computing power. |

The commmunication links, which are used to send messages between CEs are
found to be quite reliable. For measuring the reliability of the communication links,
we used two CE setup. One CE in this setup sends a predefined message to other
CE in DMA mode of transfer. The message is checked for errors at the second CE
for predetermined pattern. No fransmission error was detected even for 48 hours of
continuous run.

The comnmnication bandwidth of the links depend on the communication mode
used. We used the earlier setup for measuring the link speed in three different modes.
We first programmed the control register suitably on both the CEs. Then a mes-
sage of size 1.2MB was sent by one CE and the time taken for this commumication
waa measured using the 8253 timer present on the AT mother board. The clock
resalution was 18.2 clock ticks per second. Communication routines were written in
assembly language with minimum software overheads. We summarise the result of
this experiments below.

In POLLING mode of transfer, comnmnication bandwidth of the links was found

44

to be approximstely 60 KBytes per second. This mode is the slowest mode of trans-
fer. INTERRUPT DRIVEN transfer mode is dlightly faster than this in which the
communication bandwidth of the links was measured to be roughly 110 KBytes per
second. The DMA mode of transler is the fastest mode of transfer supported in
KIMS. In this mode, the links exhibit commmnication bandwidth nearly equal to 1
MBytes per second.

6.3 Overall System Performance

For gaining an insight of the overall performance of KIMS, we solved a class of stan-
dard problems on KIMS.

1. Matrix addition.
2. Matrix Multiplication.
3. Sorting of N numbers.

These problems are compute intensive and have a large degree of inherent paral-
lelism. The execution time of the problems on KIMS were compared with correspond-
ing execution time, when solved on a uniprocessor system. In this section we discuss
one such experiment. The problem chosen for this purpose is the multiplication of two
square matrices. Since the main objective of the experiment is to evaluate the sysiem
- performance and not to solve the problem in optimum way, therefore, we choose the
standard O(N?) Anlgorithm of matrix multiplication for this purpose, where N is the
order of the matrices, ,

The algorithm is quite simple. Two square matrices, A and B of order N, are
multiplied to obtain matrix C. Here the parent proceas firat forks a child process in
‘the remote CE. Then it computes the first N/2 rows of C. The child process on the
other hand computes the last N/2 rows of C. Then it sends this partial result to the

45

parent process. The parent process, in turn, reads this partial result and combines it
with its own result to get the final value of C. We present the actual program written
in KIMS language interface below. '

int afW] [N1,p0n] [N],cDN] D03 ;
main()
{

int 4,3,k;

iat fork_result;

fork_result= rfork(); /# create the child process */
if (fork_results=1){
/* parent process */
/* compute first ¥/2 rows of c »/
for(i=0;i<N/2;1++)
for(j=0;j<N;j++){
clil[j1=0;
for (k=0;k<N;k++)
clil [jl+=a[il xI*b[x] [§1;
}
/* read the last N/2 rows from child »/
dread(1,&c[8/2][0] ,sizecf(c)/2));
}
else{
/* child process */
/% compute last N/2 rows of C #/

48

for(i=N/2;i<N;i++)
for(j=0; j<N;j++){
c[il[j1=0;
for (k=0;k<N;k++)
clil [j14=alil kI»b[x] [51;
) .
/* send the partial result to paremnt #/
derite(1,&c[N/2] [0],sizeof(c)/2);
terminate(1); /# wait for next fork #/
}

The corresponding uniprocessor algorithm is given below.

int a[N] [N],b0N] M) ,c[N] [N
main() {
int i,j,k;
for(im0;i<N;i++)
for(j=0; j<N; j++){
c[il [j1=0;
for (k=0 ; k<N ;k++)
clil[j)+=ali] x1+blk] [j1;

We studied the performance for different matrix order (N) and different commu-
nication modes. We measured the execution time of the problem in two ways. In the

47

SPEED-UP

B B B B B B B B B

210

207

ETIHHHI;NH HHT}TYHHFHIT”TT” ”;HUHHT:HHH’IH;”HTI”!';TTTTT?I'HTI[HH TYY:ITT'T.'TTTE
]

Y

IRERRRREER

IYTTH I !TIT” [RAR ITYTTY 1 YTTI'H‘ rrrrey

|

losne o ladooco oo oo d vdeoken oo

" MODE OF TRANSFER

e —a— A

NERERNE]

i — =+ — —+ P =
wonbosenbirboeee hseoadoeoebeeoromedbi e oo i g

0 0 &
o2 ORS%R 045:'0 MATsigIX (N) 0 100

Fig. 6.1 SPEED-UP WITHOUT FORK DELAY

Py E’TT! rery I Torrre I‘ITH'”T! IrITTITYTTTP Tiryeen ‘ IARERARAA]

SPEED-UP

2 8 5 B

200

180

=

{'HY”'H'TIIIHH!”'!{‘Y!HHH]IHHHH]IHHHH!HIYH

2

B
Py E‘”TTIT T]'l"l'”TTl'l 1 [TT'H vt l [RRRRRRAR!

<

=

E’.HIIII’lTHHHII?"HIHHH-’“HH(H"”ZI“TH'H”IH'H71””??”'””IH”'HHHTHTHK‘
‘ i I 1 i i i { { i

\2
lllll!llla

AW

Finn

ouxmhmnmhnmm]mmmlnnum!nmun

Joreanl

1L

& -e———eo INTERUPT =
+ ——+ ——+ POLING 3

~
-] t
SRUNES. _<UNREEN] .{U.LLU .HJ.{ INTRRSASEYNSERRusNRsNAR TN LLLLJLLUJJLLLLLLILLDJLLMJJLU.LLLLLB

0 2 30 40 5 6 70 8 9 100
ORDER OF MATRIX (N)

Fig. 6.2 SPEED-UP WITH FORK DELAY

first step we ignored the time taken for remote process creation while measuring the
execution time. We then observed the variations of the execution time for Polling
and DMA mode of communication. This was carried out for different values of N.
The result of this experiment is presented in figure 8.1. We observe that there is gain
in speed for N greater than 25 in both the modes. _

In the second step, we carried out the same experiment with due consideration
of remote process creation time. The result of these experiments are summarised in
figure 6.2, We see that there is no speed gain for N less 85 than for Polling method.
However, we observe speed-up for N greater than only 25 in DMA mode. This deuly
shows that the comnmnication costs are much less in DMA mode than in software

polling mode.
6.4 Conclusion

The performance analysis of KIMS shows that it is effective in solving different of
problems with the expected speedup. Among the different comnmnication modes
supportfed in KIMS, the DMA mode gives best performance.

Chapter 7

Conclusion

In this chapter we summarise our experiences in developing KIMS multicomputer
"system. We also suggest some modifications which can be incorporated in future
versions of KIMS for improving its performance.

7.1 Observations

The present configuration of KIMS consists of two AT’s connected using the commu-
nication interface developed for this purpose. The system gives expected speedup.

During the testing of link interface card, some minor errors were detected in the

 printed circuit board connections. These errors were rectified using jumper wires. We
have also incorporated these changes in the artwork of the PCB layout.

A small bug in the WARN interrupt generation circuit was also detected. The
WARN interrupt, which indicates illegal link access, works for any illegal link access.
But a WARN interrupt is also generated for the last valid read/write access of the
Links. The reason behind this is explained below.

The FIFO empty and FIFO full conditions of IDT 7203 FIFO change during the
last valid read/write operation. This change occurs while the read/write process is
still going on. This gives a false indication of illegal link access to the WARN interrupt

CEWTRAL LIPRARY

. oJanem

51 I — e
dce. No. AN A54

generation circuit, which gencratcs an intcrrupt when the FIFO is emty (full) and
a read (write) attempt is made.

In the current implementation, we have taken care of this problem through soft-
ware, where the fist WARN interrupt is ignored. However, the software solution
implies some overhead and slows down the comnmmnication speed.

The hardware solution for this problem is simple as described below. It may be
incorporated in future versions of communication interface cards.

Since the FIFO empty and FIFO full conditions change while the read / write
operation is still gaing on, this causes triggering of a false WARN interrupt for the last
valid read /write link access. This can be avoided, if the WARN interrupt generation
circuit samples the FIFO full and FIFO empty condition only at the beginning of
a machine cycle. The system interface of the PC/AT motherboard provides an ALE
gignal at the starting of every machine cycle. Thus, a laich can be used to sample
the FIFO empty and FIFO full condition using ALE signal. However, the same FIFO
status are also used for generation of DMA request. If the 8237 DMA controller
finds that the DMA request signal is active throughout a DMA transfer, then it
antomatically starts the next transfer. So the DMA request has to be remaved during
the last valid DMA operation. Otherwise an invalid transfer will be made. Thercfore,
for the DMA request generation circuit, it is required to have the status of the FIFOs
without synchronisation with ALE. This demands that the latching of FIFO status
should be done using a transparent latch. The latch will remain transparent during
a DMA mode operations but sample the FIFO status using ALE during normal CPU
cycles.

52

7.2 Suggestions for Future Modifications

In this section, we briefly ztate some modifications which can be incorporated in
KIMS to obtain better performance.

¢ The WARN interrupt generation circuit should be modified in the way as de-
sctibed above.

¢ The current implementation of KIMS consists of only two CEs. The number
of CEs« shonld be increased for better performance. Moreover, for salving large
scientific problems, it will be advantageous if the CPUs of the CEs are backed
with additional arithmatic processors.

¢ The software environment provided is very primitive as far an the debugging of
parallel dgoﬂthms are concerned. So a suitable debugger for this purpose will
be certainly desirable.

o Currently, the language support is provided only in C language. To enable a
larger class of users to use KIMS, language support in other commonly used
languages like FORTRAN , Pascal, LISP should be provided.

o The current software environment does not provide antomatic process map-
ping or parallelism detection. If these features are added then users with lLittle
knowledge about parallel processing will be able to use the system.

53

Appendix A
PAL Logic

As explained earlier, the entire contral logic of the communication card is implemented
using six 1618 PALs. In this chapter we provide the details of each of these PALs.
These PALs were programmed in CUPL PAL programming langunage. Listing of the
CUPL programs corresponding to each PAL is given below.

Following conventions are followed in all the programs.

o Any signal name, which ends with a capital ‘B’, indicates that it is an active
low signal.

¢ The symbal ‘#’ stands for logical OR operation, whereas ‘&’ stands for logical
AND operation. Symbol ‘I’ denotes logical NOT operation.

A.1 EPLDL1 logic

The CUPL program listing of EPLD1 PAL is given below. This PAL is used in the
Address decoding block.

Nane EPLD1;
Partno i;

Date 30/4/92;
Revision O01;
Designer BHASKAR;
Company IITK;
Assembly MNMS Board;
Location epldl;
Device pi618;

4 ey
/* This device is used to decode A1..416 and decide :- #/
/* 1inkB & genB »/
e e e o T}
/** Allowable Target Device Types : 1618 PAL,EP320 s/
g Y

/+* Inputs *=/

PIN 1 = ai ; /* CPU address Al */
PIN 2 = a2 /% CPU address A2 »/

-e

PIN 4 = aJa4B ; /% Nor of A3 & A4 from EPLD3+/
PIN 6 = ab ; /* CPU Address A6 »/
PIN 8 = a6 ; /* CPU Address A6 =/
PIN 7 = a7 ; /¢ CPU Address A7 */
PIN 13 = a8 ; /% CPU address AB */
PIN 14 = a9 ; /* CPU address A9 */
PIN 15 = al0 ; /% CPU address A10%/
PIN 186 = aii ; /% CPU address Aiis/
PIN 17 = a12 : /¢ CPU address A12+/

55

PIN 6 = ai3 /% CPU Address A13%/
PIN 18 = ai4 /% CPU address A14x/
PIN 8 = ai5 ; /% CPU address A15%/

“a

e

PIN 9 = aen ; /* AEN indicates =/
/* valid Address */
PIN 11 = dackB ; /* Ack. of DMA channel 3%/
/%% QOutputs #*s/
PIN 12 = linkB ; /* Link Select Bar */
PIN 19 = genB i /* General Regis. Select Bar */

/* Declarations and Intermediate Variable Definitioms */
Field memadrH = [ai15..a5] ; /* The High Addresses */
Field memadrl = [a2..al] ; /*+ The Low Address L 74

DEAactive = (asn & !dackB); /+ Indicates active DNAC */

linkaddr = laen & memadrH:140 & a4adB & memadrl:i46;
/% “———- Indicates valid link address */

genaddr=lasn & memadrH:140 & s4a4B &k memadrL:[140..146];
/% ~~-—- Indicates valid general register address */

/%> Logic Equations ##/

1inkB = !(linkaddr # DMAactive) ;

56

genB = | (genaddr) ;

A.2 EPLD2 logic

The CUPL program listing of EPLD2 PAL is given below. This PAL used in the data
bus interface block.

Nanme EPLD2;
Partno 2;
Date 30/4/92;

Revision 01;
Designer BHASKAR;
Company IITK;
Assembly NNS Board;
Location epld2;
Device pi618;

[TR R SRR AR AR R E R EE R R R XK RN AR R EREERTRRUEREEXNRR TGS]

/* This device is used to decode switch sw0,sui and sig-+/
/% nals tmpillrdB,linkB,genB and decides the 4 buffars’ ®»/
/* output enable signals sg0B .. sg3B(active low) */

/*#‘t#*.#**#*#*.‘**O#**‘*‘*###*.‘#*“**.‘**“##“*‘.‘*“#/

/%* Allowable Target Device Types : 1618 PAL,EPS20 s/

/**‘l*#t#**tt**t#**lt**#t#*.t***l*##l**‘t#*t.**#t#*lt#*“/

57

/** Inputs w%=x/

PIN 9 = linkB ; /* link select bar */
PIN 15 = genB ; /% general reg select bar */
PIN [3..4] = [suw0..1] ; /¢ Card select switchaes */
PIN 7 = maskor ; /# OR of mask0..mask3 »/
PIN B = tmpillrdB ; /# temp illegal read bar »/

/% “-—this signal indicates >1 link selection */
PIN 1 = jordB ; /* IORD bar from CPU L4
PIN 2 = jowrB ; /» I0WR bar from CPU */
PIN 14 = cuntrisel ; /# catrol register select */

/% generated by EPLD3 =/
/%% Outputs #s»/

PIN 19 = sg0B : /* enable DBFO */
PIN 18 = agiB H /* enable DBF1 »/
PIN 17 = g2 ; /% enable DBF2 */
PIN 16 = 3g38 /* eneble trancv3 */

/* Declarations and Intermediate Variable Definitioms */

Field cardadr = [swl..0]; /* Card No. switches */

legalrd= tmpillrdB & liordB & maskor & [1linkB ;
/% “--indictes not more tham one lizk being accessed */

legalur= iordB & !1inkB ;
/* “--indicates link write access */

validlink = legalrd # legalvwr;
/* “—-indicates valid link access x/

/+* Logic Equations »%/

sg0B = !(validlink # cntrlsel # (cardadr:00 & !gemB));
sglB = !(validlink # catrlsel # (cardadr:01 & lgemB));
8g2B = |(cardadr:02 & IgenB & lcntrlsel);
8g3B = |(cardadr:03 & !geaB & !cntrlsel);

A.3 EPLDS3 logic

The CUPL program listing of EPLD3 PAL is given below. This PAL used in the
general register block.

Nanme EPLD3;
Partao 3; »
Date 30/4/92;

Revision O1;
Designer BHASKAR;

Company IITK;
Assembly HNS Board;
Location epld3;

59

Device p1618;

/ununnununn"nunnn**nnunnnnn“nn/
/* This device is used to gemerate rd/wr signals for #/
/* the general purpose registers resetB,cntrlw,maskw »/

/* statirdB,stat2rdB s/
/“J“‘M‘"LJ e e dfeole s e senke s o sl s e el e bk bdirk hfiohid et L:‘/
/#* Allowable Target Device Types : 1618 "/

/#*#tWt‘#ltﬂ‘#”l*##t#**t.*#ti**tt**tt**‘t#t‘**tt**.‘/

/** Inputs *=/

PIN 8 = 1linkB ; /% link select bar */
PIN 6 = genB ; /* general reg select bar */
PIN 1 = iordB ; /* I0RD bar from cpu/dmac #/
PIN 2 = jowrB ; /* IOWR ber from cpuﬁhu: */
PIN 8 = reget ; /* RESET DRV from cpu */
PIN 7 = a0 ; /% address A0..A4 from cpu */
PIN 11 = al :
PIN 4 = a2 ;
PIN 6 = a8 ;
PIN 8 = o4 ’

/#* Outputs *s/

PIN 13 = resetB ; /* reset bar for fifos s/
PIN 16 = cutrly ; /* cntrl register write NOBAR »/
PIN 14 = masky /* mask register write NOBAR =/

60

PIN 18
PIN 19
PIN 16

PIN 17
PIN 12

statirB

= jocsi6B

= aSadR

= catrlsel;

stat2rB ;

]

4

/* statusi register read bar
/* status2 register read bar
/* iocs16 bar to indicate 16
/* 16 bit register operation
/* NOR of AS and A4

/* Control Register select

*/

/** Declarations and Intermediate Variable Definitioms ®s/

Field addr = [a2..0] ; /* Give The Address Pus »/

/** Logic Equations ##/

resetB
cntrle
maskw
statirB
stat2rB
iocs16B
adadB

= |(reset # (!genB & 'iowrB & addr:04));
= (IgenB & !iowrB & addr:02);

(!genB & !iowrB & addr:0);

1(!genB & !iordB & addr:2);

1{!genB & YiordB & addr:4);

|(igenB # 11inkB) ;

1(a3 % a4);

cntrlsal = (lgeanB & addr:02);

61

A.4 EPLDA4 logic

The CUPL program listing of EPLD4 PAL is given below. This PAL used in the link

interface.

Name EPLD4;
Partno 4;
Date 30/4/92;

Revision O1;
Designer BHASKAR;
Company IITK;
Assembly MNMS Board;
Location epld4;
Device ep320;

A el LR s LT L TR s L T e T T ne—y
/* This device is used to generate rd/wr signals for */
/* the link fifos. =/

/ sleseapap stk s aaiealel o afeake o afoke kb sk akok ok skok ik il ok kol ok Bk b slokoog /

/** Allowable Target Device Types : 1618 PAL,EP320 s/

, Aok ek SRRk BBk kR E kR SRR R EE AL SRR EEREEEEREEERSERREE KRS I

/% Inputs #+/

PIK 3 = 1inkB ; /* link select bar */
PIN 11 = jller ; /* illegal write */
PIN 9 = tmpillrdB ; /* temp illegal read */
PIN 1 = jordB ; /+= IORD bar from cpu */

62

; /* IDNR bar from cpu */

; /* mask0.. nasgks

/* 1link-0 read bar
/* link-0 write bar
/* link-1 read bar
/* link-1 write bar
/* link-2 read bar
/* link-2 write bar
/* link-3 read bar
/* link-8 write bar

*/

1((11inkB & mask0 & !iordB) & tmpillrdB);
1(11inkB & mask0 & !iowrB) ;
1((!1inkB & maskl & !iordB) & tmpillrdB);
= | (11inkB & maski &k !iowrB);

PIN 2 = jowrB

PIN [6..8] = [masko0..8]
el Outputs #*»/

PIN 19 =]inkOrdB
PIN 18 = 1inkOwrB
PIN 17 = linkirdB
PIN 16 = linkiwrB
PIN 12 = link2rdB
PIN 13 = link2wxB
PIN 14 = 1ink3rdB
PIN 15 = link3wrB
/** Logic Equations ##/
1inkOrdB =

linkOwrB =

linkirdB =

linkiwrB

1ink2rdB =

1¢ (11inkB & mask2 & !iordB) & tmpillrdB);
1ink2wrB = !(!1inkB & mask2 & 'iowrB);
1ink3rdB = |((11inkB & mask3 & liordB) & tmpillrdB);
linkSwrB = |(11inkB & mask3 & !'iowrB);

A.5 EPLDS logic

The CUPL program listing of EPLD5 PAL is given below. This PAL used in the

infer-card communication interface,

Neame
Partno
Date
Revision
Designer
Company
Assenbly
Location

Davice

/.LLLL b e ek

EPLDG5;

5;
30/4/92;
01;
BHASKAR;
IITK;
Board;
eplds;
ap3820;

ek ez sl s g sist e fpsd oo le el

L R R R Y

/* This device is used to gemerate some temporary signals */
/* which are then used in epld6 to generate differnet «/
/* interrupts,dma request etc.. */
f T e R P P e T e Y

1618

, ““”#m.‘”““'tﬂ”ﬁ‘.‘*#‘”#‘”.‘“.‘“t#“”"”ﬂ/

/** Allowable Target Device Types : w/

/** Inputs &/

PIN 6 = feB3 ;/* FIFO empty status of link 3 */
PIN [7..8] = [feB0..2] ;/* FIFD empty status of 1ink0..2%/
PIN & = ffB3 ;/% FIFU full status of link 3 */
PIN [2..4] = [££B0..2] ;/+ FIFO full status of 1ink0..2 */

64

PIN 1 = prev ;/% PREV from previous card i-1 =/

PIN 11 = mask3 ;/* mask bit 3 of mask reg */
PIN [17..15] = [mask0..2];/* mask bits 0..2 of mask reg =/
PIN 14 = tmpillrdB ;/* intermediate illegal read */

/* “~-this is output also and demotes selection >1 link */

‘/
/*+ Outputs =*+/

PIN 19 = pevdataB ;/* arrival of data in sel. link */
PIN 13 = locillrdB ;/* indicates local illegal read */
PIN 12 = locillwrB ;/¢ denotes local illeag write */
PIN 18 = maskor ;/* logical OR of m0..m3 »/

/** intermediate variables #*+/

i1lmask0 =((mask0 & maski)#(mask0 & mask2)#(mask0 k mask3));
illmaskl =((maski & m;z)#(m1 & mask3));
illmask?2 =(mask?2 & mask3);

enbfifemp = (naskOk!feBO)#(maskik!feBi)¥(mask2k!feB2)# (maskdk!feB3);
/* "“—denotes >=1 enabled FIF0 in card is empty */

enbfiffnll*(mslﬂ!f.'fBO)#(lalklt!ffBi) #(mm!ffBﬂ)#(IalkSl!ffB@ H
/% "—denotes >=1 enabled FIFO in card is full »/

/*+ Logic Equations =/

65

tmpillrdB
locilirdB
locillerB
magkor

newdataB

! (i11maskO#1i]Imaski#i11mask2# (previmaskor)) ;

= | (1tmpillrdB # enbfifemp);

!enbfiffull;

= magk0 ¥ na§11 ¥ pnask2 ¥ nask3 ;

=! ((maskOkfeB0) # (maskikfeB1)# (mask2&feB2) #(mask3&feB3));

A.6 EPLDG logic

\

The CUPL program listing of EPLD6 PAL is given below. This PAL used in the

snterrupt and DMA control block.

Name
Partno
Date
Revision
Designer
Company
Assembly
Location

Device

EPLD6;

6;
30/4/92;
01;
BHASKAR ;
IITK;

HMS Board;
epld6;
p1618;

ik kdok ook kK Rk /

e e el St ok kokoh

/* Thie device is used to gemerate --next,intl,int2, drq *f

/* illioint ,datacameint

*/

/**t***#t**#**#**%*##***%ii ook e e ek e e o “*#Mt*ﬂ**ﬁt#“***/

66

/%% Allowable Target Device Types : 1618,ep320

e/

/ o s sl ke s e sk o sl ol el s sk s kol i ke e ook s sl sl ook okl e ook ok /

/x>

PIN
PIN
PIN
PIN
PIN
PIL
PIN
PIN
PIN
PIN
PIN
PIN
PIN

/e

PIN
PIN
PIR
PIR
PIN

Inputs *=/

3 = linkB

9 = illrd

11 = illwr

4 = maskor

5 = dav

16 = dmmenbl

18 = direction
8 = illintembl
15 = davintenbl
1 = jordB

2 = jowrB

6 = prev

7 = genB
Outputs =*s/
12 = pnextB

14 = drq
17 = intl

19 = int2

13 = illrdurB

;/* link select »/
i;/* illegal read access »/
;/* illegal write accesss/
;/* mask OR from eplds =/
:/* data has arrived «/
;/* DNA enable of cantrl #/
;/* DIRecton of cntrl #»/
;/* WARN enable of catrls/
;/* DFAV enble of cntrl =/
;/* cpu/DEAC iord signl *)
;/* cpu/DEAC iowr signals/
;/* PREV from prev card #/
;/* general reg. select %/

;/* NEXT signal */
;/* DMA request(DRQ3) */
;/* VARN interrupt */
;/* DAV interrupt */
;/* illegal read or write */

/*+ Logic Equations *+/

67

nextB = | (maskor # prev);

drq = (dmaenblk((directionk!illrd)#(!direction & !illwr)));
drq.oe = dmaenbl;

illrdurB =!((illrde!iordB&!1inkB)#(illurk!iowrBk!1inkRB));
int1l.0e = illintendl; -

int1 = 1illrderB #(int1 & genB);

int2.0e = davintenbl;

int2 = dav;

68

Appendix B

PCB Layout of the extension card

The PCB layout of the comnmnication card was designed using Protel PCB desin
toal. The card is realised on a double sided PCB with plated throngh holes. The

detailed layouts of the two sides of the card are shown below.

69

0000080900000

-oo,_,ooL_"L;: ‘o‘o |
R

Loy

..0000—-
—e 9o

L] L]

““ I ..:‘E—.—:‘.—O

-..._Tr"—g__.

..'.{

——————
-‘uoi. [X i

XXX o‘o:.o ‘0? I .
! T

oooooq_c

\S\\\\\\

-
*~—

'_—"__HO" [XXX]
——— 3

[XXX TR Y ¥)

N

®0800000000000000000

—— o
—————

2000009000000

..,T ..Om:.—-—l

-—— Q.:.‘. . e — i
ogoodoz:‘ —t 0060000000099 mm .

q.ﬁ—.:.‘.’

X XX ?TT.

(XXXXXIXXX 3

...0......1

©000000000 \umodocoe

'ﬂf_—" L

00000000 p e —s
L g Sl
>~ >~—s
—
(XXX XY X) A

000 s000 0 ..I“ .
.\..OOOOCC‘CW
-804~ se0c0000

..0....'.‘

0000000000000 0000000

0000009000000
[}

(XXX X]

_‘__.’_,I o:—oL::o-—t

000000000009

ORI M O ?TT.

3 (XX XX}

a!@

00 000OCGOIOIS b....'.x.......

—T

Lo,

I XXXTI)

————a
N]
[XX XX 1) L X

90000000 00 ‘. - *
\oooooooooﬁ.....

Lz;;s_o.{:ir__‘

—'-'_.—‘.E‘J\..

1

ooooo)oooooo
e At g
— e I Y Y YT Y Y YR Y Y Y X
e S —
= ——— v S : OO X X IXXXXX)
L pmeerwwmrerenan] oEmEa—— ¢ & "00 (X L 2 s 3
-"—moooo:]‘oo. ‘z’
-_—. .o $06000cscodopem o
oS XXX ?TIO
e

P OO X)
p—C—. ooooooooc\-—-o‘oooo
-— —
- I ses00eee "'"—3‘0 -

S ¢ ¢ L ﬂoooo.oooo[:_-;o‘l-o

g (XX XXTY X}
-——y

000000000000 0000000

component side

Bibliography

[1] S. R. Das, N. H. Vaidya, and L. M. Patnaik. “Design and implementaion of a
hypercube multiprocessor”. Microprocessors and Microsystem, 14(2), Maxch 1990,

[2] S. K. Ghosal, S. Guha, and V. Rajaraman. “Simple low-cost multiprocessor based
on message passing FIFO links”. Microprocessors end Microsystem, 14(5), June

1960,

[3] D. M. Goodeve and R. W. Taylor. “Communications coprocessor for the Acorn
RISC machine”. Microprocessors and Microsystem, 14(5), June 1980.

{4] R. Moona and V. Rajaraman. “Design and implementation of a broadcast cube
nmltiprocessor”. In Proc. KBCS conf. on Knowledge Based Computer Systems,
1989,

[5] R. Moona and V. Rajaraman. “A FIFO-based multicust network and its use in
multicomputers”. Microprocessors and Microsystem, 16(10), December 1991,

[6] R. Moona and V. Rajaraman. “Multidimensional mmltilink multicomputer: A
general purpose parallel computer”. Journal of Indian Institute of Science, 71(2),

1991,

[7] V. L. Narasimhan, R. J. Coote, and J. Rission. “Design and analyxis of a
loosely coupled dumal processor system™. Journal of Microcomputer Applications,

15(2):121-136, 1992.

70

[8] Charles L. Seits. “The Cosmic Cube”. Communications of the ACM, 28(1):22-33,
1985.

71

Aiisna

T -
s - Yoty ANYSYz
C ysqd _

Date Slip

This book is to be returned on th
date [ast stamped.

..

...

..

..

...

...

...

...

......................................
............

..

