
Design and Implementation of an OSD System and

Prefetching Models

by

Riyaz Shiraguppi

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

June 2008

i

Design and Implementation of an OSD System and Prefetching
Models

A Thesis

Submitted to the Department of Computer Science & Engineering

of Indian Institute of Technology, Kanpur

in Partial Fulfillment of the Requirements for the degree of

Master of Technology

by

Riyaz Shiraguppi

Certificate

It is certified that the work contained in the thesis titled "Design and Implementation

of an OSD System and Prefetching Models" by Riyaz Shiraguppi has been carried out

under my supervision and that this work has not been submitted elsewhere for a degree.

June 2008 _______________________________________

Dr. Rajat Moona

Department of Computer Science & Engineering,

Indian Institute of Technology,

Kanpur-208016.

ii

Abstract

Object based device (OSD) technology [2], built on top of SAN [6], provides solution to problems

of security and scalability associated with the block level storage. An intelligent OSD device

exports object interface and provides access to object data only if the requester possesses the

required security token. Security tokens are issued by the OSD manager based on security and

access control policies. In this thesis, our aim had been to build a high performance OSD system

using prefetching techniques. We have implemented a skeleton of OSD system consisting of target

and initiator side components. Our OSD target implementation is independent of underlying iSCSI

driver software. At the initiator side, we have implemented an OSD manager and an OSD client.

We have designed Prefetching Models to hide the costs of communication between OSD client

and manager, and to achieve high performance. We introduced graph based model for access

analysis at client side and use this information for prefetching. Our server side model is based on

prediction of objects required in future by grouping related objects. We have tested the efficiency

of this model on file-based as well as on block-based object controllers. The prefetching model

is effective even if only half of the prefetched data is actually used. In order to build the server

assisted prefetching, we built support of collection objects in IBM Controller Project [22] where

the target is a block based object store. Our own implementation of the target which is file-based

object store is also T-10 standard [17] compliant and has the support for collection objects.

iii

Acknowledgements

It is a pleasure to thank the many people who helped me throughout.

I would like to express my gratitude and thank my supervisor, Dr. Rajat Moona. This work would

not have been possible without his support and guidance. Despite his busy schedule, he used to

make out time for the weekly meetings, which helped in continuous progress of the work done.

His encouragement, perception, advice, and lots of good ideas have helped me throughout.

I would like to thanks Mr. Hemant Khachane, my colleague from Calsoft who always helped me in

various difficulties and encouraged me. I am also thankful to all my MTech friends for constantly

encouraging and supporting me throughout my stay here at IIT Kanpur.

I cannot end without thanking my parents, Mr. Moulasab Shiraguppi and Mrs. Ruksana Shi-

raguppi, and my sister Asama. Their encouragement and love have always helped me recover

from difficult phases during my stay and study here at IIT Kanpur. I wish to thank my entire

extended family for providing a loving environment for me. Their constant affection and encour-

agement has helped me achieve my goals.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope of This Work . 2

1.3 Organization of Thesis . 3

2 OSD Technology Survey 4

2.1 Overview of OSD System . 4

2.1.1 OSD System Components . 4

2.1.1.1 OSD Client . 4

2.1.1.2 OSD Manager . 4

2.1.1.3 OSD Device Server . 5

2.1.2 Advantages of OSD Technology . 5

2.1.3 OSD Device Components . 6

2.1.4 Technology Issues . 8

2.2 OSD-SCSI Model . 8

2.2.1 OSD Objects . 9

2.2.1.1 Root Object . 9

2.2.1.2 Partition Object . 9

2.2.1.3 User Object . 9

2.2.1.4 Collection Object . 9

2.2.2 OSD Meta-data . 9

2.3 Related Work . 10

3 Design and Implementation of OSD Target 12

3.1 OSD Component . 13

3.1.1 Exporter Module . 14

3.1.2 OSD Request Server . 14

3.1.3 OSD Task Processor . 15

v

CONTENTS vi

3.1.3.1 OSD Step Engine . 15

3.1.3.2 Security Checker . 17

3.1.3.3 Key Store . 17

3.1.3.4 Pre-Processing Unit . 17

3.1.3.5 OSD I/O Processor . 18

3.1.3.6 Error Handler . 18

3.1.3.7 Response Handling Unit . 19

3.2 iSCSI Component . 19

3.2.1 Ietd Daemon . 20

3.2.2 IOType . 20

3.2.3 NWThread . 20

3.2.4 WThread . 21

3.2.5 OSD- iSCSI Callback Module . 21

3.2.6 iSCSI Response Module . 21

3.3 Design Features . 21

3.4 Implementation . 23

3.4.1 Open Source Website . 23

3.4.2 Object Storage Hierarchy . 23

3.4.3 Storage of Key Store . 25

3.4.4 OSD Target Configuration File . 25

3.5 Putting All Together . 26

3.5.1 Exporting OSD LUN . 26

3.5.2 Writing Object Data . 27

3.6 Running OSD Simulator . 29

4 Design and Implementation of OSD Client and Manager 31

4.1 OSD Client Design . 31

4.1.1 Application Layer . 31

4.1.1.1 OSD Application . 32

4.1.1.2 Traditional Application . 32

4.1.1.3 Object Mapper . 32

4.1.2 Object Layer . 33

4.1.2.1 Object Module . 33

4.1.2.2 OSD ID Unit . 33

4.1.2.3 Object Command Preprocessor 34

CONTENTS vii

4.1.2.4 Object Command Postprocessor 34

4.1.2.5 Security Unit . 35

4.1.2.6 Credential Cache . 35

4.1.2.7 OSD-SCSI Converter . 35

4.1.2.8 Manager Update Unit . 35

4.1.3 SCSI Upper Layer . 36

4.2 Communication Between OSD Client and OSD Manager 36

4.2.1 Credential Request . 36

4.2.2 Database Update Request . 37

4.3 Working of the OSD Client . 37

4.3.1 Detecting OSD LUN . 37

4.3.2 OSD Client Object Layer Initialization 37

4.3.3 Working of the Object Create Command 37

4.4 OSD Manager Design . 38

4.4.1 Communication Module . 39

4.4.2 Security Manager . 39

4.4.2.1 Key Manager . 39

4.4.2.2 Credential Generator . 40

4.4.3 Policy Manager . 40

4.4.3.1 Database Handler . 40

4.4.4 OSD Device Manager . 41

4.5 Our Implementation . 41

5 Prefetching Techniques 42

5.1 Overview of Prefetching . 42

5.1.1 Prefetching Techniques . 43

5.1.1.1 Aggressive (Sequential) Prefetching 43

5.1.1.2 Selective Prefetching . 43

5.1.2 Location of Prefetching . 44

5.2 Related Work . 44

5.3 Prefetching in OSD System . 45

CONTENTS viii

6 Prefetching at OSD Client Side 47

6.1 Access Graph Model . 48

6.1.1 Object Access Graphs . 48

6.1.1.1 Construction of Access Graphs 49

6.1.1.2 Merging of Graphs . 50

6.1.1.3 Management of Access Graphs 51

6.1.1.4 Permanent Access Graph . 51

6.2 Selective Prefetch using Access Graphs . 51

6.3 OSD Client Design Integrated with Graph Model 53

6.3.1 Object Module . 53

6.3.2 Analyzer Module . 53

6.3.2.1 Access Log . 53

6.3.2.2 Object Frequency Unit . 54

6.3.2.3 Graph Generator Unit . 54

6.3.2.4 Feedback Unit . 54

6.3.2.5 Access Information Unit . 54

6.3.2.6 POS Unit . 55

6.4 Features of Graph Access Model . 56

7 Server Side Prefetching Model 57

7.1 Prefetching Policy at Sever Side . 57

7.2 Relations Among Objects . 58

7.2.1 Client-defined relations . 58

7.2.1.1 Collection Membership . 59

7.2.1.2 Hints from Client . 59

7.2.2 Manager-defined relations . 60

7.2.2.1 Closely spaced in terms of creation time 60

7.2.2.2 Study of Object Access patterns 60

7.3 Optimizing Prefetch Data . 60

7.4 Design of OSD Manager Integrated with Prefetching Model 61

7.4.1 Policy Manager . 62

7.5 Performance Model . 63

7.5.1 Reduction of traffic between OSD Client and OSD Manager 64

7.5.2 Reduction in Command Processing time at security Unit 66

7.6 Our Implementation . 67

7.7 Results . 67

7.7.1 Setup . 68

7.8 Analysis of Prefetching Model . 69

CONTENTS ix

8 IBM Object Controller (OC) 72

8.1 OC Architecture . 72

8.2 Differences between OC and IITK-OSD-SIM 73

8.3 Collection Support in OC . 74

8.4 Results . 74

8.4.1 Analysis of results . 76

9 Conclusions and Future Work 77

9.1 Conclusions . 77

9.2 Future Work . 78

List of Figures

2.1 OSD System Components . 5

2.2 OSD Device . 6

3.1 OSD Target Components . 12

3.2 Modules of OSD Component . 14

3.3 OSD Task Processor . 15

3.4 OSD-aware IET . 19

3.5 Format of ADD/REMOVE from Collection Command 23

3.6 OSD Object File Hierarchy . 24

4.1 OSD Client Modules . 32

4.2 OSD Manager Architecture . 39

6.1 Algorithm for Constructing Access Graph . 50

6.2 Access Graphs . 50

6.3 Merging of Access Graphs . 50

6.4 POS Construction Algorithm . 52

6.5 Analyzer Module . 53

7.1 OSD Manager Integrated with Prefetch Model 62

7.2 Overall Command Time for First Access of ORIGIN Object for n. 70

8.1 OC Modules . 73

8.2 Overall Command Time for First Access of ORIGIN Object for n. 76

x

Chapter 1

Introduction

Storage technologies can be classified into there major categories as Direct Attached storage

(DAS) [5], Network Attached storage (NAS) [25], Storage Area networks (SAN) [3].

DAS is computer storage directly attached to server. NAS is file-based storage architecture for

hosts connected to an IP network or a LAN. The typical functionality of a NAS requires file

servers to manage metadata, which describes how files are stored on the devices. NAS advantages

are in terms of data sharing and secure access through server.

SAN technology is intended to replace bus-based architecture with a high-speed switched fabric.

SAN is block based architecture where client can have direct access to disks on switch fabric

network.

The object based device (OSD) system [1], as a SAN technology, combines the advantages of

high-speed, direct-access SANs, and the data sharing and secure access capabilities of NAS.

1.1 Motivation

SAN is a dedicated, high performance storage network that transfers data between servers and

storage devices, usually separate from the local area network. DAS and NAS suffer from the

performance issues such as difficulty of data management in a network environment, scalability

and performance bottlenecks of a single fileserver etc. The SANs provide a promising solution to

these problems.

1

CHAPTER 1. INTRODUCTION 2

Main advantage of a SAN is in its ability to transfer large data in units of blocks, which is impor-

tant for bandwidth intensive applications. In a SAN, it is possible to have parallelization of data

and control paths where in multiple machines can access and process data and metadata simulta-

neously. This imposes the need of security and access control to the device. SAN security relies

on coarse grain techniques involving LUN masking [26] and zoning [27].

Object based storage disk (OSD) [1] provides an added abstraction of objects which relates to the

application data. OSD design is intended to embed storage intelligence into the disk. OSD does

not expose low level information such as disk geometry, and implements all layout optimizations

internally utilizing higher-level information that can be provided through the object interface. A

security domain is associated with each object. Therefore a client trying to access object from the

OSD device needs to acquire a security token. The security token also includes a list of permitted

operations allowed for the requester on the given object. A security token check is performed by

the OSD for each request. It therefore prevents both the accidental access for undesirable requests

and the malicious access for unauthorized requests.

Security token handling is facilitated by an OSD manager. OSD manager is responsible for man-

aging policy decisions for objects and granting security tokens. The security token also carries a

message integrity code (MIC) to prevent client from modifying token. The security token along

with the corresponding message integrity code is termed as Credentials.

OSD system introduces additional overhead of acquiring Credentials before actual access to data

which can shadow its security advantages. This can be improved by implementation of intelligent

mechanisms for prefetching of Credentials.

1.2 Scope of This Work

In this thesis, we describe design and implementation of our OSD system. This includes target

side implementation consisting of OSD simulator, and initiator side implementation consisting of

an OSD client and an OSD manager.

OSD Simulator is a prototype implementation of OSD device compliant with T10 standard [17]

for iSCSI based OSD protocol. We built OSD client and OSD Manager side components on the

top of IBM initiator [11].

CHAPTER 1. INTRODUCTION 3

We addressed issue of Credential traffic overheads in the OSD System. We have designed a graph

based model for implementation of client initiated prefetching at OSD client.

We also designed and implemented server initiated prefetching model at OSD manager. We tested

our server initiated prefetching model on our OSD simulator and a real block based object con-

troller which is part of IBM ObjectStore project [22]. We had extended IBM Objectstore project

for support of collection objects [1], a mechanism that may be used by a client to pass on the

relationship of objects to the server.

1.3 Organization of Thesis

Rest of the thesis is organized as follows. In chapter 2, we survey OSD technologies and describe

technical aspects of the OSD system. In chapter 3, we present design and implementation of our

OSD target simulator. In chapter 4, we describe OSD initiator side components where we present

design and implementation of the OSD client and the OSD manager. In chapter 5, we discuss

prefetching techniques and need of credentials prefetching in the OSD system. In chapter 6, we

discuss graph based model for client-initiated prefetching. We discuss OSD client design based

on this model. In chapter 7, we discuss prefetching model for server-initiated prefetching. We

present design and implementation of OSD manager based on this model. Results show that this

prefetching model is efficient and improves the performance. In chapter 8, we discuss IBM object

controller project and our contribution to this project for support of collection objects. Finally, we

conclude in chapter 9.

Chapter 2

OSD Technology Survey

In this chapter, we provide an overview of the OSD System. We also describe OSD protocol and

the extensions required in the traditional protocols to support the OSD protocols.

2.1 Overview of OSD System

2.1.1 OSD System Components

An OSD system (figure 2.1) typically consists of the following components.

2.1.1.1 OSD Client

An OSD client runs applications which access data from an OSD device. It places a request for

the security token to the OSD manager. After acquiring the security token, it integrates the OSD

service request with the security token and sends it to the OSD device server. The OSD request

token is acquired much less frequently as compared to the data.

2.1.1.2 OSD Manager

An OSD manager is responsible for the management of policy of access to objects in an OSD and

issuance of security tokens to the OSD client. It has two sub-components, namely, policy manager

and security manager.

4

CHAPTER 2. OSD TECHNOLOGY SURVEY 5

The policy manager maintains database of policy information (akin access control information

in a regular file systems) about objects. A request to acquire the security token for access to an

object is granted based on the policy information associated with the object. The security manager

shares secret keys with the OSD device server which is used for computation and verification of

the integrity of security tokens.

2.1.1.3 OSD Device Server

An OSD device server is responsible for processing the OSD commands after appropriate authen-

tication of the security token supplied by the OSD client. It supplies object data and metadata to

the client as a response to the request. It also manages the order of serving the requests for an

efficient system.

Figure 2.1: OSD System Components

2.1.2 Advantages of OSD Technology

An OSD system has certain advantages over traditional block based storage systems.

Improved Security

In OSD system, request authorization is performed directly by the storage device. This can prevent

problems of accidental access and malicious access due to unauthorized/undesired requests faced

in the block based SANs. Security mechanism in the OSD device allows the individual disc drive

to validate each read and write request.

CHAPTER 2. OSD TECHNOLOGY SURVEY 6

Improved Reliability

While existing block devices require external support for replication manager and reliability man-

ager, OSD can have these functionalities embedded in the device. Depending on the type and

importance of the object, storage component of OSD may implement replication, error check

mechanism for the object and manage in-built reliability manager.

Improved storage management

Storage component of a file system is moved to the device server in an OSD based storage sys-

tem. The OSD device is self managed independent unit and can manage data in the object for

performance, reliability or other options in a dynamic and flexible manner.

Improved Scalability

Object based storage provides scalability in terms of storage space and metadata management.

OSD device handles the management of metadata. All or part of metadata can be associated and

stored directly with data objects and automatically carried between layers of the storage architec-

ture and across devices. This allows metadata layers to be handled in a manner that simplifies the

storage system and improves scalability.

2.1.3 OSD Device Components

Figure 2.2: OSD Device

CHAPTER 2. OSD TECHNOLOGY SURVEY 7

The OSD device consists of several components as shown in figure 2.2.

Object Interface

The Object interface is visible to the external environment. Data on the OSD device is accessed

through commands that perform operations on particular OSD object. Command parameters spec-

ifies Object ID of the object, type of data access operation and range of data for performing data

access operation.

Storage Component

This component is responsible for implementing object storage intelligence into the OSD disk.

The storage management component is focused on mapping logical object constructs (e.g., files,

database entries or any other kind of object data) to the physical organization of the storage me-

dia. The physical organization of data may be a block-oriented organization, file-system oriented

organization or just a raw disk organization. As an example, our OSD simulator stores data in a

file-system based organization while the IBM object-controller [40] stores data in a block oriented

organization.

In addition to mapping data, the storage management component also maintains other information

about the OSD objects (e.g., size, usage quotas, associated username) and stores in the form of

attributes.

Block I/O Manager

This component is similar to the block I/O manager in the traditional disks. It is responsible for

translating commands from the storage component to the block commands. For example, if the

storage component architecture is that of a file system, this component performs the file system to

disk block mapping.

Storage Device

This is the physical media where data is stored. As an example, the storage device can be a SCSI

or an IDE hard-drive that talks in terms of LBA addressing.

CHAPTER 2. OSD TECHNOLOGY SURVEY 8

2.1.4 Technology Issues

In an OSD system, device storage intelligence is pushed to the disk. Embedding this sort of intel-

ligence makes OSD design costly. OSD technology needs implementation of security algorithms

and management of object abstraction embedded on the device.

Currently, OSD devices with these embedded functionalities are not present in the market. OSD

protocol is therefore implemented using a simulator for an OSD device. Simulator exports the

object interface and maps object commands to the block commands which are implemented on

the block devices. We implemented one such simulator that maps the objects to local files. We

shall discuss design and implementation of our simulator in chapter 3.

Another issue with an OSD system is concerned with the transition from the block based system.

Most applications today use the file system based abstraction and work on the block based storage.

It would be a while before OSD based applications start appearing. Till that time, the OSD must

integrate the block based architecture as well. SCSI based OSD model (described next) makes this

transition easy.

2.2 OSD-SCSI Model

T10 community [17] in collaboration with industry groups is engaged in standardization of OSD

protocol. Most standards are developed during 1999 through 2004. OSD standards are released

as OSD specification documents. OSD version 1 had undergone 10 revisions. Latest draft is OSD

version 2 revision 2. This standard defines a logical unit model for OSD logical units and SCSI

commands for communicating with OSD.

Under T-10 standardization, an OSD is implemented as a SCSI device. T-10 defines additional

commands to be carried over SCSI protocol for handling OSD devices. The OSD-SCSI command

set is designed to provide efficient operations of object based input/output. These commands man-

age the allocation, placement, and access of variable-size data-storage containers, called objects.

Objects can contain whole operating system or application constructs such as a database table, a

picture, a video or similar constructs.

iSCSI protocol over TCP/IP acts as a carrier for SCSI commands. The industry contemplation to

CHAPTER 2. OSD TECHNOLOGY SURVEY 9

shift SAN architectures to the IP-SAN technologies has been the driving force to adopt iSCSI for

implementing object based transport across the network. The OSD implementations are typically

built over iSCSI protocols.

2.2.1 OSD Objects

As defined by the T10 standard, an OSD logical unit contains following types of objects.

2.2.1.1 Root Object

Each OSD logical unit contains one root object. The root object contains a list of Partition-IDs for

the partitions in the logical unit. The root object is the starting point for navigation of the structure

on an OSD logical unit. The root object does not contain a read/write data area.

2.2.1.2 Partition Object

A partition object contains a set of collections and user objects that share common security require-

ments and attributes. Each partition contains a list of User_Object_IDs and Collection_Object_IDs

belonging to that partition. A partition object does not contain a read/write data area.

2.2.1.3 User Object

A user OSD object contains end-user data (e.g., file or database data).

2.2.1.4 Collection Object

A collection object is used for fast indexing of user objects. It acts as container of related objects.

For example a container object may be used to contain a list of database tables belonging to a

single database. A collection object does not contain a read/write data area.

2.2.2 OSD Meta-data

OSD object meta-data is stored in the form of Object attribute pages associated with each object.

OSD object attributes allow the association of metadata with an OSD object. Attributes are used to

CHAPTER 2. OSD TECHNOLOGY SURVEY 10

describe specific characteristics of an OSD object and are organized in the form of pages. Within

each attribute page, attributes are identified by an attribute number. A tuple containing <page

no,attr no> is used to access particular metadata information for an object. There are a few fixed

attribute pages defined by the standard and additionally vendor specific pages can be added.

2.3 Related Work

Several researchers from academic community as well as from industry have worked in OSD

technology.

NASD [7, 28, 29, 30, 31] project at CMU provided initial drive for the OSD technology. Their

implementation includes the NASD drive prototype, the NASD-NFS file-manager and client APIs

for accessing NASD.

University of Santacruz is working on Ceph [20, 32, 33, 34, 35, 36] project. Ceph is a distributed

network file system designed for petabyte-scale storage systems using OSD. Data is distributed

using CRUSH, a hash-like distribution function that allows any party to calculate (instead of look-

ing up) the location of data. This project is an OSD related project but is not compliant to T-10

standard.

University of Minnesota is working on an OSD project [24, 37, 38, 39] in its DISC Consortium

[21]. They have a reference implementation suite that consists of a security manager and a target

that builds object abstraction over a file system.

Panasas [18] is an active participant of SNIA OSD technical work group. The Panasas ActiveScale

File System (PanFS) integrates an object-based clustered architecture to orchestrate file activity

across the Storage Cluster and manage system performance. The file system virtualizes data across

all StorageBlades, and presents a single, cache coherent unified namespace.

Cluster File Systems, Inc. [46], acquired by Sun Microsystems, Inc. [47], has used object based

storage to build high performance storage systems. Their product Lustre [19], is implementation

of OSD system with an installable Linux file system and a metadata server (MDS) to create a file

system that can be used by multiple servers.

IBM Haifa Lab is working on Object Store [22] project. They have prototype of a T10-compliant

CHAPTER 2. OSD TECHNOLOGY SURVEY 11

object store target, T10 complaint OSD initiator for Linux (for iSCSI and FC) and iSCSI target in

software.

Intel’s Open Storage Toolkit [23] contains reference implementation of OSD. It incorporates an

OSD file system, an OSD initiator and an OSD target simulator. University of Minnesota has built

their implementation on top of the Intel’s open Storage toolkit.

Chapter 3

Design and Implementation of OSD

Target

Figure 3.1: OSD Target Components

In this thesis, we designed and implemented an OSD Target. Our OSD Target consists of three ma-

jor components: OSD component, iSCSI component, and an interface for communication between

these components known as OSD-iSCSI communicator.

The OSD component implements the functionality of OSD device server and is independent of the

underlying implementation of transport protocol such as iSCSI. As discussed in chapter 2, OSD

component is implemented as a simulator for the OSD device. This is primarily because there is

12

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 13

no hardware implementation of OSD device available in the market.

In our implementation of OSD component, we store data for the objects in files, a mechanism

that greatly simplifies implementation since we used an underlying file system support. In our

approach, objects are mapped onto hierarchical file namespace managed by the host file system.

The OSD component can be implemented wholly as a kernel module, or as a user mode daemon.

Our modular design permits the use of various iSCSI implementations by implementing OSD-

iSCSI communicator module for each. The same idea can also be extended to support other IP

storage technologies [49] in place of iSCSI.

The iSCSI component is implemented inside an existing iSCSI target program [48]. The iSCSI

component provides support of OSD devices in iSCSI target program. The iSCSI component

submits OSD commands to the OSD component using the OSD-iSCSI communicator.

The OSD-iSCSI communicator interfaces OSD and iSCSI components. Its implementation is

specific to a chosen iSCSI component and the way the OSD component might be implemented

(viz. user mode or kernel mode).

IITK OSD Simulator [16] is our implementation of OSD Target. We have implemented iSCSI

component over the freeware iSCSI Enterprise Target (IET) [48]. We extended IET to support

OSD devices. The OSD-iSCSI communicator is implemented using socket interface in our imple-

mentation.

3.1 OSD Component

The OSD component design in this thesis, is fairly generic. It has a modular structure as shown in

figure 3.2.

The exporter module exports the OSD device as an iSCSI LUN. The OSD request server accepts

connection requests from iSCSI component and passes them to the OSD task processor. The OSD

task processor module implements objects as files on the local file system.

In our approach, there is a directory associated with each OSD LUN. This directory is part of local

file system on the OSD target machine. Object data and meta-data information is stored in files

created in the directory associated with the OSD LUN.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 14

Figure 3.2: Modules of OSD Component

3.1.1 Exporter Module

OSD LUN to local directory name mapping is carried out through an OSD configuration file at

the OSD target that includes the OSD LUN information. OSD LUN information includes OSD

target name, LUN number, the local directory name for the OSD-LUN, the capacity (size) of the

LUN and the OSD system ID. The Exporter module is responsible for associating a directory on

the OSD target machine to the OSD LUN. It obtains this mapping by reading the configuration

file. Exporter module is also responsible for communicating OSD LUN information to the iSCSI

component.

Exporter Module scans entries in the configuration file to get information about the OSD LUN and

updates the information maintained by the OSD request server.

3.1.2 OSD Request Server

OSD request server is responsible for initialization of OSD simulator module. It maintains a list

of OSD devices available in the system. For each entry, the information maintained includes the

local directory name, capacity and the OSD system ID for each OSD LUN as described in section

3.1.1. This information is used while processing an OSD command.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 15

The OSD request server is responsible for initialization of the OSD configuration parameters such

as maximum input/output data transfer length, get/set attribute buffer size, etc.

The OSD request server listens for OSD task processing requests from the OSD-iSCSI callback

module (section 3.2.5). The iSCSI protocol defines SCSI command data blocks (CDB) which are

used to carry OSD commands. Since the OSD requests are carried over the same iSCSI protocol

that carries other SCSI requests, a task processing request can either be an OSD request or some

other SCSI request. Depending upon the type of request, the OSD request server invokes either

the OSD task processor or the task processing module that handles other SCSI requests.

3.1.3 OSD Task Processor

The OSD task processor is responsible for processing of OSD task processing requests that carry

OSD commands. It accepts OSD commands from the iSCSI component through OSD request

server and performs object operations which might translate to operations on the files of the local

file system.

Various sub-units of OSD task processor are shown in figure 3.3.

Figure 3.3: OSD Task Processor

3.1.3.1 OSD Step Engine

OSD step engine implements a state engine that is responsible for the management of various steps

in processing of the OSD command. For each command, it manages a osd_req data structure.

State field in this structure represents current step of processing of the corresponding command.

For each step, it invokes corresponding module for processing of that step.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 16

The steps of the OSD command processing are enumerated below.

Step 1: Security Handling

OSD step engine invokes security checker module for handling of security related processing of

the given OSD command. The security related processing involves the checking of security tokens

and validating the request.

Step 2: Preprocessing

After security handling step, OSD step engine invokes preprocessing module for preprocessing of

the OSD command. The preprocessing involves extracting service action specific parameters and

initializing fields of osd_req structure.

Step 3: Command Processing

OSD step engine invokes data processing unit of OSD I/O Processor (section 3.1.3.5) for process-

ing of the OSD command.

Step 4: GET/SET Attributes Handling phase

OSD protocol allows the merging to GET/SET attribute operations along with any other command.

In this step, parsing of the GET/SET command attributes and initialization of the corresponding

data structures is performed. It invokes meta processing unit of the OSD I/O processor for pro-

cessing of the GET/SET attributes.

Step 5: Command Response Phase

At the end of the command processing, the OSD engine invokes response unit to communicate

results of the OSD command and the corresponding response to the iSCSI target for relaying it to

the OSD client.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 17

3.1.3.2 Security Checker

The security checker module is responsible for the implementation of security authentication at

the OSD device. One of the fields in the OSD command header specifies security method to be

used such as CAP_KEY (only request header is protected against tampering using message au-

thentication code, MAC), ALL_DATA (in-out data along with request header is protected against

tampering using message authentication code, MAC) etc. Security check is performed only when

security method is a value other than NOSEC (to indicate no security).

OSD commands carry the object type and key version which relate to the security authentication.

Depending on the object type and key version specified in the OSD command, the security checker

extracts required key from the key store. A capability key is generated as per the OSD protocol

using fields of the OSD command and this key. Integrity value (keyed hash or the MAC) is

generated using capability key and compared with integrity value specified in the OSD CDB data

structure.

3.1.3.3 Key Store

Key store is used to store various keys in the key hierarchy of OSD device. Key store implemen-

tation is done on the permanent device. Recently accessed keys are stored in the key cache. Key

store implementation is described in section 3.4.3.

3.1.3.4 Pre-Processing Unit

OSD command needs to be pre-processed before actual execution to speedup the subsequent pro-

cessing. In general, this unit identifies OSD device for which the given command is issued. It

identifies service action and invokes corresponding parsing function to initialize command spe-

cific parameters.

As a part of pre-processing, various service action specific parameters from the OSD command

descriptor block (CDB) are extracted and initialized to respective variables of osd_req structure.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 18

3.1.3.5 OSD I/O Processor

This unit is responsible for the implementation of I/O operation for the OSD command. In our

implementation, OSD objects are realized using the files on local file system. Therefore object

operations are converted to the file operations and carried out on the file system local to the host.

Our design provides compatibility to any host file system.

The OSD I/O processor carries out the object I/O using the following steps.

1. Object-File mapping

This operation is responsible for identifying the file corresponding to the selected object. In

general, object data and metadata information is stored in two separate files. Object to file

mapping is further described in section 3.4.2.

2. Data Processing operation

This operation implements OSD data handling. It involves getting data file correspond-

ing to the given OSD object using the object to file mapping and implements data transfer

operation by reading/writing the identified file.

3. Metadata Processing operation

This operation implements OSD meta-data handling. The operation involves getting the

filename corresponding to the metadata for the given OSD object using object to file map-

ping. As mentioned in the section 2.2.2, object metadata information is stored in terms of

attribute pages. Object metadata operations are specified in terms of <attribute page, at-

tribute no>. For example, “object creation time” attribute is stored as attribute #1 in page

#3. Metadata operation is performed by calculating offset of the information corresponding

to the attribute in the object metadata file.

3.1.3.6 Error Handler

Error handler is invoked whenever an error condition occurs during any step of the OSD command

processing. It provides error description according to the SCSI error handling semantics.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 19

3.1.3.7 Response Handling Unit

The response handling unit is responsible for sending response for the OSD command processing

to the iSCSI module. Upon successful completion of the OSD command the response data (if

any), along with the status to indicate success, is sent. Otherwise error handler is invoked to get

error description and the status to indicate error is sent.

3.2 iSCSI Component

Figure 3.4: OSD-aware IET

We have implemented iSCSI component inside iSCSI Enterprise Target (IET)[48]. The IET is not

OSD aware. We modified existing modules in IET and added new modules to make it OSD aware.

We describe the implementation of IET in short and illustrate our enhancements to make it OSD

aware.

Various modules of OSD aware IET are shown in figure 3.4. Out of these modules shown in

figure 3.4, we modified existing IOType, WThread, NThread and iSCSI Response Modules. Ad-

ditionally, we introduced OSD-iSCSI callback module which communicates with OSD component

(section 3.1).

IET is implemented for GNU/Linux operating system and it consists of user mode and kernel

Mode modules which communicate using netlink socket interface [52].

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 20

3.2.1 Ietd Daemon

The ietd daemon is iSCSI target program management utility. It is used to configure parameters

such as iSCSI target port, uid, gid, etc. The ietd daemon takes entries from iSCSI configuration

file "/etc/ietd.conf" and submits it to the kernel mode daemon. Exporter module of the OSD

Component (section 3.1.1) makes entry for OSD LUN in the iSCSI configuration file and ietd

daemon submits this entry to the IOType module.

3.2.2 IOType

This module is responsible for the management of iotype for the given device. The iotype for a

device defines how operations are to be performed on the given device. For example, the most

commonly used iotype in IET is “file-io”. The file-io is used to perform block operations on the

device using generic file read/write functions.

Device iotypes can be registered with this module. Defining a new iotype requires one to im-

plement and register new callback functions for that iotype. These functions are invoked while

performing operations on the device of the new iotype.

The ietd daemon communicates with IOType module and passes configuration parameters read

from the configuration file. For each entry in the configuration file, ietd daemon submits informa-

tion containing target name, LUN, device iotype and path. IOType modules creates iSCSI LUN

for each entry and initialize its access methods depending on its iotype. This iSCSI LUN is then

exported to the initiator.

In our enhancements, we defined a new iotype as “osd-io” in this module. The corresponding

callback functions for the osd-io device type are implemented by OSD-iSCSI callback module.

3.2.3 NWThread

This module listens for iSCSI request from the iSCSI initiator. It accepts iSCSI request, initializes

iSCSI command structure and the corresponding LUN parameters, and allocates data buffers.

In our enhancements, we extended this module to support OSD commands. This enhancement

includes accepting OSD commands and the corresponding OSD SCSI additional header segment

(AHS) data.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 21

3.2.4 WThread

This module is responsible for processing of the iSCSI Command. Commands are classified into

two classes – iotype specific and iotype independent.

The iotype specific commands are implemented by invoking respective callback function regis-

tered for the given iotype. The iotype independent are implemented through generic functions.

We enhanced this module to support OSD commands. Our enhancements include passing control

to the callback function for processing OSD commands.

3.2.5 OSD- iSCSI Callback Module

This module implements callback functions which are responsible for processing OSD commands.

It communicates with the OSD component using OSD-iSCSI communicator. It first contacts OSD

request server (section 3.1.2) for processing the given OSD request and then sends OSD task

request to the OSD task processor. The task request comprises of OSD SCSI command header

fields, OSD LUN information and data if any. In response, it receives OSD response status, OSD

response data and OSD sense data in case of an error.

3.2.6 iSCSI Response Module

After processing of the iSCSI command, WThread module passes the output, or the error, to

the iSCSI response module. Depending on the status of the command, it generates the iSCSI

response. In case of an error while processing, the iSCSI response module sends the SCSI sense

data depending on the type of error. We enhanced this module to support OSD commands. Our

enhancements include sending appropriate sense data for OSD errors.

3.3 Design Features

Exporting a directory as OSD device

As mentioned earlier, we introduced “osd-io” as a new device type in addition to already supported

other device types. A directory at the OSD target stores data corresponding to an OSD LUN. Files

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 22

in this directory represent the object data and metadata as explained later.

Separation of iSCSI-OSD module and OSD simulator Module

Unlike other open source implementations, where the OSD target implementation is a mix of

OSD code and iSCSI target code, we have maintained a clear separation between OSD and iSCSI

components. Two components communicate with each other using the OSD-iSCSI communicator.

Compatibility

Since a clean separation is maintained between OSD and transport communicator, OSD compo-

nent is compatible with any IP SAN technology used as the transport component. It can be inte-

grated with such other technologies by implementing a communicator similar to the OSD-iSCSI

communicator for the corresponding technology.

Support for Multiple OSD devices

In several other implementations of the OSD targets [22,23], it is required to start new instance

of iSCSI target for each OSD device. In our implementation, a single instance of the IET iSCSI

target allows exporting any number of OSD devices. This is achieved by making several entries in

the configuration file.

T10 Standard Compliance

The OSD component of our implementation accepts OSD commands over the socket interface and

implements them. Our implementation is compliant to T10 OSD-2 specification rev0 [1].

Support for Collection Objects

Our implementation of the OSD target provides support for collection objects, as defined by the

T10 standard. We support the OSD collection commands LIST COLLECTION, CREATE COL-

LECTION and REMOVE COLLECTION. In addition to these, we introduced two more com-

mands for ease in accessing of the collection objects (These commands are known as ADD_TO_COLLECTION

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 23

and REMOVE_FROM_COLLECTION). Format of these commands is similar to that of RE-

MOVE COLLECTION as defined by the OSD-2 T10 standard with an additional field OBJECT_TO_ADD/REMOVE

at offset 32 as shown in figure 3.5.

Figure 3.5: Format of ADD/REMOVE from Collection Command

3.4 Implementation

3.4.1 Open Source Website

Our OSD target is available with open-source licensed under GNU GPL [53]. Currently, version

1.0 is available for download through sourceforge site.

Project Home page: http://iitk-osd-sim.sourceforge.net/

Project Open-Soure Site: http://sourceforge.net/projects/iitk-osd-sim/

3.4.2 Object Storage Hierarchy

In our implementation, OSD object operations are implemented on the files of the file system at

the OSD simulator. The modified IET exports a directory (osd_base) as OSD device.

There are two files associated with each object,

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 24

• _data : stores data information for the object.

• _attr : stores metadata information for the object as defined by the T10 standard.

OSD object files hierarchy is shown in figure 3.6. There are three kinds of objects for which the

filenames are described below. In these names, the osd_base is the directory exported as an OSD

LUN by the IET.

The files for root object data and metadata are stored under the osd_base directory itself. Data file

is named as root_data while the metadata file is named as root_attr.

The partition objects are stored under a sub-directory identified by the partition id. In addition

to this, we also store partition data and attributes in separate files. The partition zero data and

metadata are stored under the osd_base directory as 0x0_data and 0x0_attr. Other partitions are

stored as osd_base/part_id_attr and osd_base/part_id_data. For example, the partition 0x10001

information will be under osd_base/0x10001_data and osd_base/0x10001_attr.

The user and collection objects are stored under sub-directory of partition id. Data file is stored as

osd-base/part-id/object-id_data while metadata file is stored as osd_base/part-id/object-id_attr.

According to the T10 standard, there is no data information associated with ROOT, PARTITION

or COLLECTION objects. We however implement data files for ROOT, PARTITION, COLLEC-

TION objects only for the internal purposes, to speed up processing of OSD LIST commands.

Root data file stores list of all partitions, partition data file stores list of all user/collection objects

and collection data file stores list of all member objects. This data is not be accessible through any

OSD command and is used only for the internal purposes. OSD commands with data operations

on these objects will fail with error.

Figure 3.6: OSD Object File Hierarchy

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 25

3.4.3 Storage of Key Store

Cryptographic keys are associated with root object and partition objects only, storage of these

keys is done in flat hierarchy. Key Store directory (osd_key_base) is a sub-directory of OSD base

directory (osd_base/keys).

Keys are stored as described below,

• For root keys: osd_key_base/root_keys.

• For partition keys: osd_key_base/part_(part_no)_keys.

• For Working Keys : osd_key_base/working_(part_no)_(key_ver)_keys.

3.4.4 OSD Target Configuration File

Default configuration file for the OSD target is “/etc/osd_export.conf”. Before starting OSD sim-

ulator program, one needs to export at least one OSD LUN. A directory can be exported as OSD

LUN by making entry in the “/etc/osd_export.conf” file.

Format of an entry is given below,

$osd_target_name $lun_no_per_target $osd_lun_base_directory $capacity_in_Hex
$osd_system_id $username $master_key_digest $channel_token_buffer

An example of an entry is as following.

iqn.2006-09.com.ac.iitk:guest-osd.lvm 0 /tmp/osd/ FFFF iitk_kanpur iitk_user
ab34f2q123 e34f287da

This entry exports OSD target with name “iqn.2006-09.com.ac.iitk:guest-osd.lvm” LUN 0 with

OSD system ID “iitk_kanpur” . This OSD LUN has OSD base directory as “/tmp/osd”. Capacity

of OSD LUN is 0xFFFF bytes. LUN owner name is “iitk_user”. It specifies digest of master key

and channel token buffer used for authentication.

Exporter module of OSD simulator takes each entry, and makes entries for osd-io devices in the

iSCSI configuration file (i.e. /etc/ietd.conf). The entries in ietd.conf are used by the IET daemon

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 26

to configure and export the iSCSI LUNs and include information such as the OSD target name,

LUN number, OSD directory name.

Entry in the /etc/ietd.conf corresponding to the above example given as below,

Target iqn.2006-09.com.ac.iitk:guest-osd.lvm

Lun 0 Path=/tmp/osd/,Type=osdio

3.5 Putting All Together

The OSD simulator interacts with the IET daemon and other local file system activities as ex-

plained earlier. We shall see the flow of entire OSD simulator in this section with example of two

actions. We shall see the flow on how to export an OSD LUN and the flow on how to perform

write operation on this OSD.

3.5.1 Exporting OSD LUN

The OSD LUN export is explained in the sequential steps as given below.

Step 1: Adding LUN information

Entry need to be added in the OSD configuration file (/etc/osd_export.conf) for the OSD device to

be exported. This is done through a text editor. OSD simulator program is started. This program

interacts with the IET daemon.

Step 2: Flow of Exporter module

Exporter module scans OSD entries in the OSD configuration file and adds entry for each OSD

LUN in the iSCSI configuration file (/etc/ietd.conf). It adds entry to the OSD LUN list maintained

by the OSD request server as mentioned in the section 3.3.1. After this, iSCSI target program

(IET) is restarted.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 27

Step 3 : Creating OSD LUN

The ietd daemon of IET (section 3.2) scans entries in the configuration file (/etc/ietd.conf) and

submits each entry one by one to the kernel mode daemon through netlink socket. IOType module

(section 3.2.2) checks the iotype of this entry and associates osd-io functions for processing of the

OSD LUN corresponding to the OSD LUN entries (the type being osd-io).

IOType module then adds OSD LUN in the iSCSI LUN list maintained by IET.

Step 4: Inquiry command from iSCSI Initiator

iSCSI initiator asks for available SCSI devices to the iSCSI target. iSCSI target sends a list of

iSCSI LUNs to the iSCSI initiator. For each LUN, iSCSI initiator sends an INQUIRY (INQUIRY

83) [50] command, which requests information about the device owner, vendor, device type, etc.

NWThread module (section 3.2.3) gets INQUIRY command and invokes SCSI inquiry call handler

of the WThread module. WThread module (section 3.2.4) identifies that command is intended for

the OSD LUN, it invokes inquiry command handler of the OSD-iSCSI callback module (section

3.2.5). Inquiry command handler of OSD-iSCSI module sends task request to the OSD request

server (section 3.1.1) of the OSD simulator through socket communication.

OSD request server preprocesses the request and passes it on to the OSD task processor (sec-

tion 3.1.2). OSD task processor identifies the command as SCSI INQUIRY (non-osd command),

invokes SCSI command handler and sends INQUIRY response to the iSCSI Target.

iSCSI response unit of iSCSI target sends INQUIRY response to the iSCSI initiator. iSCSI initiator

accepts inquiry response, submits to the SCSI mid layer [51] which ultimately forwards it to SCSI

upper layer driver for OSD (SO driver) of SCSI upper layer of linux SCSI sub-system [51]. SO

layer at the initiator side creates a device node for this OSD LUN.

3.5.2 Writing Object Data

The OSD write operation is explained with an example of OSD WRITE command for writing 100

bytes. Since all OSD commands can also request for attributes, we also request GET attribute

request for object data length along with the OSD write request in this example. The OSD write

request is executed in the following steps.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 28

Step 1: Initiator sends request

OSD initiator prepares an OSD command within a SCSI CDB. The service action argument of this

command is chosen as OSD WRITE to indicate OSD write. The initiator also adds data to write

as part of the SCSI command.

In OSD framework, each command may have a piggybacked GET/SET attribute command. We

request for the object length as an attribute. For this request, the initiator adds entry in SCSI CDB

to request for the GET ATTR of object data length (object attribute page #3 attribute #1).

Initiator sends the SCSI CDB to the given OSD LUN using iSCSI protocol.

Step 2: NWThread receives the OSD request

NWThread module of IET receives the SCSI request, parses it and identifies it as an OSD com-

mand. It then transfers control to WThread module of IET.

Step 3: Communication with OSD Simulator

WThread module of IET identifies the OSD request. It invokes “osd-io” corresponding to the OSD

LUN which results in the activation of the OSD-iSCSI module.

OSD-iSCSI module passes the OSD command request along with data to the OSD request server

at the OSD Simulator. OSD request server forwards the request to the OSD I/O processor. OSD

step engine (section 3.1.3.1) of OSD I/O processor creates an osd_req structure for the command

and initializes the OSD CDB part.

Step 4: Processing at security checker and preprocessing Unit

OSD step engine controls the invocation of various units. It first invokes the security checker

for access control related processing. Security checker gets the security method, the object type

and the key version from the OSD CDB. It the extracts the corresponding core key from the key

store. Security checker now generates the capability key using the core key and capability fields of

the OSD command. Capability key is used to calculate the integrity value of the OSD command

frame.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 29

The integrity value is compared with the value available in the OSD CDB. Assuming that the

match is successful, OSD step engine now invokes the preprocessing unit. Preprocessing unit

parses OSD_WRITE command and initializes the command specific parameters of the osd_req

structure.

Step 5: Processing at OSD I/O Processor

After the preprocessing, the OSD step engine invokes the data processing unit of the OSD I/O

processor. Data processing unit maps the object to the local file name and performs a file write

operation on the file at the given offset for the object. OSD step engine now invokes the metadata

processing unit of the OSD I/O processor to process GET ATTR request.

Metadata processing unit finds the name of the file containing metadata for the object, calculates

offset of the given attribute from the file and reads the attribute value. This value is copied to the

output data buffer. OSD step engine now invokes the response unit to send the command response

and output data to the iSCSI-OSD module of iSCSI target.

Step 6: Processing at iSCSI response module

The OSD-iSCSI module forwards the command response and output data to the iSCSI response

module. iSCSI response module sends response to the iSCSI initiator thus completing the execu-

tion of the WRITE command.

3.6 Running OSD Simulator

Our OSD simulator can be run as a service daemon or can be started manually.

In order to run it as a service daemon, the “service” command may be used as given below.

> service osd-target start

In response to this command, the output on terminal appears as,

IITK OSD Simulator Program Started
Exporting target =

CHAPTER 3. DESIGN AND IMPLEMENTATION OF OSD TARGET 30

This action creates a daemon process "osd-sim" which starts the OSD simulator with the default

parameters as given below.

• OSD port : 11026

• Debug Mode : -1

• iSCSI Configuration file : /etc/iscsi.conf

• OSD Configuration file : /etc/osd_export.conf

2. Starting Manually

The OSD simulator can also be started manually through “osd-sim” command with several op-

tional command line arguments as given below.

• -p <port> : TCP port for the OSD service. Default value is 11026.

• -d <debug_level> : Debug level for OSD simulator

– -1 : Run OSD simulator as a background daemon (also the default)

– 0 : Prints error messages if any

– 1 : Debug output from upper level functions

– 2 : Detailed debug output from all functions

• -o <filename> : Name of the OSD configuration file to export OSD LUNs from. Default file

name is taken as /etc/osd_export.conf

• -i <filename> : Name of the iSCSI configuration file to export iSCSI LUNs to. Default file

name is taken as /etc/ietd.conf.

In addition to these parameters, the “-h” parameter may be used to get the information on the

current configuration. This option does not start the daemon.

Chapter 4

Design and Implementation of OSD

Client and Manager

In this chapter, we describe design of OSD client and OSD manager. As mentioned in chapter

2, an OSD client runs applications which access data from an OSD device. An OSD manager is

responsible for management of policy decisions for access to objects in an OSD and issuance of

security tokens to the OSD client.

4.1 OSD Client Design

An OSD client interacts with the OSD server to acquire data for the objects. For this operation, it

needs to present its security authorization in form of the security tokens obtained from the policy

manager. Our OSD client consists of various modules organized in the Application layer, Object

layer and SCSI upper layer as shown in figure 4.1.

4.1.1 Application Layer

Application layer is a representation of programs and utilities that operate on OSD data. As

objects are moved between layers, all layers except the application layer process only the control

information while the data is processed by the application layer.

31

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 32

Figure 4.1: OSD Client Modules

4.1.1.1 OSD Application

An OSD object aware application is known as an OSD application. An OSD application manipu-

lates its data in terms of objects. For example, an OSD application can implement a full-fledged

file system based on OSD (OSDFS) or may be just a test application to test functionality of other

layers.

Instead of using traditional read/write system calls, an OSD application calls object read/write

functions of object layer to operate on the OSD data. Intelligent OSD application can also provide

feedback regarding the object working set to the object layer (section 4.1.2).

4.1.1.2 Traditional Application

An application that is unaware of OSD system is a traditional application. It operates on the

data using read/write system calls and assumes traditional block based architecture of underlying

system. An object mapper is required which maps block based I/O to object based I/O in order to

port such applications to the OSD system.

4.1.1.3 Object Mapper

An object mapper allows block based application to operate on OSD device. It is responsible for

converting file system based block read/write calls to object read/write functions that are imple-

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 33

mented by the object layer. This module therefore maps file and block level abstraction to the

objects.

Object mapping can be either at the block level where data blocks are mapped to the objects,

or at file level where files are mapped to the objects. Object mapper can also provide feedback

regarding object working set to the object layer.

4.1.2 Object Layer

The object layer in an OSD client is responsible for implementation of security features, and

communication with security manager and SCSI upper layer. OSD commands are submitted to

the SCSI stack as SCSI commands after the formulation of SCSI CDBs. Object read/write calls

made by the application layer are therefore processed to create SCSI CDBs and then passed on

over iSCSI protocol.

This processing of OSD commands is done in the object layer. Besides this, the OSD request

needs additional processing before sending to the lower levels and similar processing also needs

to be done for the command response before passing it to the application layer. This processing is

carried out in the object layer. Various subsystems of the object layer are the following.

4.1.2.1 Object Module

This module exports object read/write functions which are called by the application layer mod-

ules. It acts as a communicator between application layer and object layer, and is responsible for

sequencing of operations in the object layer by invoking other modules.

Object module also sends feedback on object access to the analyzer module which is used later to

make operating more efficient. This feedback includes the access information specifying object

information, type of access and name of the application accessing this object.

4.1.2.2 OSD ID Unit

In our implementation, OSDs are implemented as SCSI devices. We have used SCSI device

id to identify the OSD. OSD ID unit is responsible for the management of SCSI device id for

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 34

OSD devices in the system. SCSI device ID is used as identifier for OSD device for internal

communication between various modules at client and communication with OSD manager.

SCSI architecture defines attribute pages associates with each SCSI device. SCSI device ID is

stored in INQUIRY page. OSD ID unit obtains this ID by sending INQUIRY command requesting

this attribute,

4.1.2.3 Object Command Preprocessor

The OSD requests from the application layer are preprocessed before they move on.

Preprocessing includes the following

• Invoking the security unit for obtaining security token.

• Placing the request for required metadata information of the object to the OSD device. This

information may be modified as a side effect of the command execution. For example, the

access time of an object is modified as a side effect of read command. Such modifications

are updated to the OSD manager.

• Computing Message Integrity Code (MIC) for OSD request and attaching it with OSD re-

quest.

4.1.2.4 Object Command Postprocessor

This module is responsible for processing of metadata information requested in the pre-processing

unit. Post processing is carried out after command execution. It includes updating the credential

cache (section 4.1.2.6) and updating security manager.

For ”remove object” commands, the post processor removes corresponding entries from credential

cache. For example, in case of REMOVE PARTITION command for an OSD LUN, the post

processor removes all entries corresponding to the partition object from credential cache.

The post processor invokes manager update unit for the modification of required metadata infor-

mation as a side effect of OSD command execution.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 35

4.1.2.5 Security Unit

Security unit is responsible for the implementation of security features at the client side which

includes getting credentials for the object. For an OSD request to the given OSD device, SCSI

device ID is obtained from the OSD ID unit. Credentials for the object are first searched in the

credential cache. If credentials are found but permission rights do not allow performing the given

operation, requested OSD command is rejected with an error. Credential request contains OSD-

SCSI ID, object information, user information.

4.1.2.6 Credential Cache

Credential cache is a local store used to store recently accessed credentials. Entries are added to

the credential cache using the response of the security manager. Entries are removed after the

execution of remove commands or when credentials expire or whenever the policy changes.

An entry in the credential cache consists of object information (OSD-SCSI ID, object type, part-id,

object-id), user information (uid, gid), credentials and priority of object. Priority information of

objects is obtained from the analyzer module. If the priority information is not found, given object

is assigned medium priority. We use hash queues for management of the credential cache entries.

Priority based replacement policy is used.

4.1.2.7 OSD-SCSI Converter

This module is responsible for encapsulation and decapsulation of OSD request into SCSI control

descriptor block (CDB). A normal SCSI CDB size is 8 bytes while OSD CDB size is 200 bytes.

Remaining 192 bytes of OSD CDB are send as additional header segment (AHS) [10] within the

SCSI CDB.

4.1.2.8 Manager Update Unit

OSD manager maintains a database containing access control information and metadata for ob-

jects. This database needs to be updated after execution of CREATE/REMOVE commands at the

OSD client. This task is done by the manager update unit. A request from the OSD client to the

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 36

OSD manager is sent by the manager update unit for updating this database as a side effect of

command execution.

Manager update unit is invoked for the following OSD commands.

FORMAT, CREATE PARTITION, CREATE OBJECT, CREATE COLLECTION, REMOVE OB-

JECT, REMOVE COLLECTION, REMOVE PARTITION.

4.1.3 SCSI Upper Layer

SCSI upper layer driver for OSD (i.e. SO driver) is implemented as a part of the Linux SCSI

stack [51]. Like other SCSI upper layer drivers such as those for SCSI disk (sd) and SCSI tape

(st) devices, it is responsible for detecting and managing OSD devices in the host system. OSD

command is submitted to this layer module. OSD ID unit queries the SO driver using ioctl system

call to get a list of all OSD devices.

4.2 Communication Between OSD Client and OSD Manager

OSD client sends two types of requests to the OSD manager, namely, credential request and

database update request.

4.2.1 Credential Request

This request is sent when credentials for an object is not found in the credential cache. OSD

client prepares credential request containing access right information, user information and object

information.

Access right information is given as an array of service actions for which access rights are required.

User information specifies user id and group id of the user who wants to access the object. Object

Information specifies OSD-iSCSI ID obtained from OSD-ID unit (section 4.1.2.2), partition ID,

object ID and the type of the object.

Credential response from the OSD manager contains credentials for the given object.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 37

4.2.2 Database Update Request

Database update requests are sent to update database at the OSD manager side as a side effect of

the command execution. OSD client prepares the database update request containing OSD service

action, user and object information.

Response to this request provides the status of the processing at the OSD manager side.

4.3 Working of the OSD Client

We illustrate the working of the OSD client with the process of identifying the OSD devices and

corresponding initialization at the OSD clients, and an example of object create command.

4.3.1 Detecting OSD LUN

In order to detect the OSD LUN, iSCSI initiator with the OSD support queries for the list of OSD

devices to the iSCSI target. In response to this, iSCSI target program sends a list of available SCSI

devices to the iSCSI initiator. For each SCSI device iSCSI initiator then prepares an INQUIRY

command and invokes the object layer of the OSD client. The object layer identifies the request

for the OSD device and forwards it to corresponding SO driver of the SCSI upper layer. SO driver

then creates a /dev entry for OSD device. All commands for the OSD LUN are then operated with

this /dev entry.

4.3.2 OSD Client Object Layer Initialization

At the start, OSD client establishes connection with the OSD manager. For each OSD device LUN

identified by the system, OSD ID unit sends an INQUIRY command to request for the SCSI device

ID.

4.3.3 Working of the Object Create Command

The command to create an object is handled by the OSD client and then sent to the OSD device.

We see the client side processing here.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 38

An OSD aware application at the client invokes a function Create_object exported by the object

module of the object layer (figure 4.1). It is then preprocessed by the pre-processing unit which

identifies the command and additionally requests for the attribute object create time along with

this command.

The security unit searches for the object credentials of parent partition (since this is an object

create command) in the credential cache. If the credentials are not found in the credential cache,

the security unit requests the OSD manager for the same. Upon response from OSD manager, it

adds that entry in the credential cache. Integrity value of the OSD command is computed using

capability key field of credentials.

OSD command with credentials and this integrity value is then given to the OSD-SCSI module.

OSD-SCSI module encapsulates it into SCSI CDB and invokes the SO driver. SO driver submits

the given OSD command to the SCSI middle layer which then sends it to the iSCSI initiator

program.

iSCSI initiator program sends OSD request to the OSD target using iSCSI protocol and receives

the response. The initiator then submits the OSD response back to the SCSI mid layer. SCSI

mid layer forwards this response to the SO layer which is returned to the OSD-SCSI module.

OSD-SCSI module de-capsulates the SCSI command and extracts the OSD response.

As a part of command post processing, post-processing unit extracts the object creation time and

invokes the manager update unit to update the policy database related to the object.

Finally, object module returns from the Create_object function call and result is sent back to the

application layer.

4.4 OSD Manager Design

The general architecture of the OSD manager is shown in figure 4.2.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 39

Figure 4.2: OSD Manager Architecture

4.4.1 Communication Module

The communication module in an OSD manager implements handling of communication between

an OSD client and the OSD manager. There are two types of requests sent by OSD client namely

– credential requests and database update requests.

For credential requests, it invokes the security manager to generate credentials for the given object.

For database update requests, it invokes the policy manager to update the object database. It also

maintains the history of accesses to the objects that can be useful for access analysis.

4.4.2 Security Manager

Security manager module is responsible for issuing credentials for the objects as per the request

from the OSD client. It comprises of the key manager and the credential generator.

4.4.2.1 Key Manager

This module is responsible for the management of keys associated with objects. Keys are stored in

the permanent key store to prevent loss from power failures or system reboots. Recently accessed

keys are copied to the key cache in volatile memory.

Keys are stored as explained in section 3.4.3. Keys are associated with the root object and partition

objects only. The keys of these objects are stored in the key store directory (osd_key_base) in a

non-hierarchical manner. This directory is a subdirectory of the OSD base directory.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 40

4.4.2.2 Credential Generator

Credential generator module is responsible for the generation of credentials using security algo-

rithms. Credentials for an object are generated using policy information of that object. Credentials

comprise of a capability key and the policy information for the user making the access to the ob-

ject.

4.4.3 Policy Manager

Policy manager is responsible for storing policy information for each object and relations among

objects. It maintains object database which contains information about object identification, ob-

ject owner, ACL list and policy related information. Object entries are added/removed from the

database as per the database update requests from the OSD client.

4.4.3.1 Database Handler

The database handler unit maintains and handles operations on database to store information about

objects.

A database entry for an object includes the following.

• Expanded object ID including the OSD device ID, partition ID within the device, object ID

within the partition and the object type

• User information including UID and GID of the user and access permissions

• Object creation time and other object related policy informations

Access permissions for the users are maintained in the form of a bit array with each bit specifying

permission for specific OSD operations. For example, bit 0 specifies permission to create object,

bit 1 specifies permission to read object etc.

There are at least three entries for each object. These include the entry for the owner of the object

specifying owner uid, gid and the owner’s permission rights; entry for the users belonging to same

group as the owner with uid being NULL, gid field containing the gid of the owner and permission

CHAPTER 4. DESIGN AND IMPLEMENTATION OF OSD CLIENT AND MANAGER 41

rights for these users; and an entry for users belonging to other groups with uid and gid being

NULL, and permission rights for these users.

System administrators can add more entries for any other user or group of users as per the policy.

4.4.4 OSD Device Manager

This module is responsible for the management of the OSD devices in the system. This module

interacts with the OSD device for initialization of security parameters and communication of the

shared keys. Besides this, it also performs job of the maintenance of the OSD device.

OSD-SCSI converter module and SO Driver module in the OSD manager are similar to the ones

for the OSD clients as discussed earlier and implant the same functionality.

4.5 Our Implementation

Our current implementation includes the basic skeleton of the OSD system. We have built initiator

side modules on top of the IBM OSD initiator [11]. The client side implementation includes the

object layer and upper layer modules as described earlier. We have also implemented a user mode

OSD manager as described earlier. Our implementation supports the collection objects.

Chapter 5

Prefetching Techniques

Prefetching is useful for improving response time in client-server systems. Client-server systems

are based on the two-tier or three-tier architectures where the server provides services to the client

upon service requests. Major performance factors in these systems are service response time and

network traffic between server and client.

Prefetching is useful for improving response time in client-server systems. Prefetching techniques

bring data a priori in anticipation to the client side based on data access analysis. Prefetching can

also be helpful in reducing network traffic. In an OSD system, prefetching of credentials of objects

reduces the transactions between the OSD client and security manager and improves the system

performance. We discuss this mechanism in this chapter.

5.1 Overview of Prefetching

Prefetching is a mechanism to bring data before it is actually processed. In a distributed environ-

ment, data needs to be fetched from the remote server before actual processing at the client. Since

data is not local to the client, time to fetch the data impacts the overall the response time. Prefetch-

ing techniques are aimed to improve the time to fetch the remote data by bringing it a-priori and

thus improving overall response time.

42

CHAPTER 5. PREFETCHING TECHNIQUES 43

5.1.1 Prefetching Techniques

5.1.1.1 Aggressive (Sequential) Prefetching

Aggressive prefetching is a technique that brings data surrounding to the data currently being

accessed without consideration to the history of past accesses. Aggressive prefetching assumes

spatial locality of access and brings all data near to the data currently being accessed. This is quiet

a naive approach where aim is to bring as much data as possible. This method is also called as

sequential prefetching since it is useful when data access pattern is sequential in nature. However,

if it is not the case, this may lead to the wastage of network traffic as it ignores user access behavior.

This method is implemented in various file-systems for prefetching of file data.

5.1.1.2 Selective Prefetching

Selective prefetching is a technique where candidates suitable for prefetching are chosen by con-

sidering history of past accesses. This is typically achieved by analyzing the access pattern based

on the past accesses and selecting the ones with high probability of future accesses. Selective

prefetching requires smart applications which can determine suitable candidates. Suitable can-

didates are decided using access analysis techniques, study of access patterns and prediction of

future data from the past history. Selective prefetching can be assisted by predictions based tech-

niques or by application hints.

Prediction based techniques are based on the study of data access logs. Access logs are searched

for certain access patterns. Dependency relations are defined among data. In this case, user appli-

cation is unaware of the prefetching mechanism.

Selective prefetching can be based on the user application hints where smart user application can

provide hints regarding its future accesses and access behavior. This is often more accurate than

prediction based techniques. It however requires changes in the application which must provide

hints.

CHAPTER 5. PREFETCHING TECHNIQUES 44

5.1.2 Location of Prefetching

Depending upon the location where prefetching mechanism is implemented, prefetching can be

server initiated where prefetching mechanism is implemented at the server side, or client-initiated

where prefetching mechanism is implemented at the client side, or proxy-initiated where a proxy

residing between server and client implements prefetching mechanism.

In server-initiated prefetching, server keeps a log of accesses of the clients. Data required by

the client in future is predicted by studying accesses made in the past. For a given data request

from the client, response includes requested data and additional prefetch data. It has advantage

of having global analysis among clients, i.e., access analysis made for one client can be used for

serving requests from other clients. Prefetching implementation at server adds extra load to server

for processing required to generate prefetch data in addition to serving client requests.

In client-initiated prefetching, the client analyzes its own accesses by studying data access logs

of applications running at client side. Prefetch data is requested along with the request of data

currently being accessed. This is more accurate than the server-initiated prefetching but requires

smart applications at client side. However, it does not have advantage of global analysis as in

server initiated prefetching.

In a proxy-initiated case, a proxy forwards the client requests to the server. This is suitable for

proxy environment such as in HTTP protocol. It combines advantages of server-based and client-

based prefetching. Proxy, residing between client and server, keeps a log of accesses by the client

and performs an access analysis on the log. Prefetch data request is sent along with data request

received by proxy from the client. Proxy maintains a local cache which stores data responses.

5.2 Related Work

Prefetching is a common technique used for improving efficiency. Instruction and data prefetch is

a common technique in modern processors. Prefetching of file data in the form of READ AHEAD

is common in most file systems.

NFS version 3 [8] which is an extension of NFS version 2 [9] added a complex operation NFS

READ DIRPLUS to save many lookups. This operation is used to get file handles and attributes

CHAPTER 5. PREFETCHING TECHNIQUES 45

along with file names which are member of the given directory. Prefetching of metadata for

directory members is done with assumption that it will be required in future.

FileWall [12] is a file access control framework that allows file system administrators to enforce

file access policies based on dynamic access context such as access history. It interposes on a

client-server path and operates on network file system messages to enforce file access policies and

uses prefetching for minimizing request to server.

SEER [15] is a predictive caching system for disconnected mobile operations. It provides a way

for mobile computers to access resources in disconnected state by predicting information required

a priori and cache the appropriate data while still connected. Files that are needed during dis-

connected state are predicted by studying user’s file-access patterns. This information is used to

infer relationships between various pairs of files and define semantic distance that quantifies how

closely related they are. Files are automatically prefetched based on the semantic distance.

Prefetching in object oriented database is discussed in a technical report by E. E. Chang and R.

H. Katz [13]. It discusses how prefetch algorithms can use structural relationships and inheritance

semantics to improve DBMS response time in object oriented databases. User can provide the

buffer manager with access hints which influences the buffer manager’s prefetch strategy.

Based on this, Jung-Ho Ahn and Hyoung-Joo Kim [14] proposed an adaptable object prefetch pol-

icy known as SEOF. SEOF prefetches objects based on correlations and the frequency of requests.

5.3 Prefetching in OSD System

OSD system consists of three components as OSD client, OSD manager and OSD target device.

For any request, OSD client gets credentials of given object from the OSD manager and then gets

data of that object from the OSD target.

If we consider OSD system in terms of client-server architecture, for any request OSD client

interacts with two servers, with OSD manager for service of object credentials and then with OSD

target for service of object data information. These are two traffic points where prefetching can be

implemented in the OSD system. We are particularly interested in how prefetching techniques can

be useful in minimizing the network traffic between OSD client and OSD manager, related to the

CHAPTER 5. PREFETCHING TECHNIQUES 46

credentials requests and acquisitions. These techniques can also be used to reduce traffic between

OSD client and OSD target by prefetching of object data.

OSD system emerged to provide solution to the security related problems in SAN network. How-

ever, for security, it introduces extra overhead of acquiring credentials before access to actual data.

As part of a fault tolerant policy, object data in an OSD system may be stored across multiple

OSDs. Therefore a data operation may require access to objects from multiple OSDs. It is possi-

ble to store credentials in the local cache after first access to an object thereby avoiding repeated

requests for credentials. However, there is still a significant overhead of obtaining credentials in

terms of time and network traffic even for the first access.

There is a significant difference between credentials traffic and regular data traffic. Credentials are

fixed and small size units associated with each object while regular data is of variable size. Due to

small size, it is possible to have caching of large number of credentials of objects. In that way the

credential cache may be built over time using the first access of objects.

Chapter 6

Prefetching at OSD Client Side

The prefetching can be implemented on the OSD client as well as on the OSD server side with each

having its own merits and demerits. We implemented client-initiated prefetching where the OSD

client maintains a log of accesses. Access analysis is carried out on this log to identify frequently

accessed objects and ordered sequences of objects. We used a graph based mechanism for access

analysis.

An ordered sequence of objects is also termed as a pattern. These patterns are used for prefetching

the objects credentials by the client.

We discuss client side components of the OSD system and integration of graph based model for

prefetching of object credentials from the OSD manager. This model can also be applied for

selective prefetching of objects from the OSD device.

Graph based techniques are used by several researchers for various applications. James Griffioen

and Randy Appleton discussed graph techniques for prefetching to reduce file system latency

[42]. In their approach, they create a graph with nodes as files in the file system and edges to

represent the access sequence between nodes. Nexus [43] is a weighted graph based prefetching

algorithm for metadata servers in petabyte-scale storage systems. This is designed for metadata

servers. In this approach, relationship graphs are constructed dynamically by defining successor

relationships. George Pallis, Athena Vakali and Jaroslav Pokorny discussed a clustering-based

prefetching scheme [44] on a web cache environment. This is a proxy-initiated prefetching scheme

where a graph-based clustering algorithm identifies clusters of correlated web pages based on the

47

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 48

user’s access patterns. Carl Tait and Dan Duchamp discussed detection and exploitation of file

working sets [45] for effective prefetching using graph techniques.

6.1 Access Graph Model

We used access graph model for the object pattern analysis. The access graph model uses weighted

graphs to create an ordered set of objects. This set is used for the selective prefetch.

The time duration for which accesses of the objects in the system are observed is termed as “obser-

vation window”. This factor is dependent on the frequency of objects accesses and changes in the

access patterns. Access analysis is carried out at the end of the observation period as a background

process.

A log of object accesses is maintained per observation window. Past log files are stored for a

limited number of observation windows. The log contains information specifying each accessed

object, its access time, the type of access made on that object, etc. In particular, we consider the

log for the prefetch of object credentials. In our case, information about type of access made on

the object is not very useful but it might be useful for prefetching of the object data from the OSD

target.

While doing the access analysis, we compute the object access count and inter-reference intervals

to determine frequency of object access in the observation window. We use this information to

prioritize objects with reference to their access frequency. In our model, we define four priority

levels for objects - very high, high, medium, low.

Prioritization is useful for selective prefetching. Objects with higher priority can be brought a

priori. Prioritization can also used in the replacement policy. Objects with low priority are chosen

as candidates suitable for replacement.

6.1.1 Object Access Graphs

We build an object access graph by identifying pattern of objects accesses. The logs are searched

for an access pattern, i.e., repeated sequence of objects.

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 49

If access patterns do not overlap then the task is simple. For a particular access on an object which

falls in a pattern, all other objects in the pattern that are accessed after the given object are returned

as candidates for a prefetching.

It is possible that two or more access patterns overlap. In this case, selection of a pattern can be

done by determining the pattern that is closest to the current access behavior. This solution is

expensive and may cause wastage of prefetch data when accesses of the objects are not according

to the determined pattern. Alternately, objects from all patterns can be selected. However, there

is a limit on the amount of data that can be prefetched. This implies a need to selectively prefetch

objects from all patterns of which the given object is a member.

We propose a graph based solution for selective prefetching. This works by maintaining a weighted

directed graph for each access pattern. There is a weight associated with each pattern which is a

factor of the number of times the given access pattern is repeated. The factor value is decided

depending upon the number of patterns and repetitions of the patterns in the observation window.

6.1.1.1 Construction of Access Graphs

We construct a graph for each pattern with a vertex for each object in the graph. The graph is

constructed using method in figure 6.1.

Figure 6.2 shows access graphs for various patterns with pattern weight as 10% of repetition count.

It is also possible for the application to give feedback regarding its working set. Objects in the

working set are considered as a pattern and the highest pattern weight value is assigned to this

pattern to ensure that this pattern has the highest priority.

Construction of directed graphs is useful for defining successor relations among objects. The list

of objects obtained by the traversal of directed access graphs gives the set of objects having a high

probability of access after the access of the given object.

The access graphs can also be constructed as undirected graphs. In this case, the weight of a

resultant undirected edge will be the sum of weights of the directed edges between two vertices.

An undirected graph is useful for defining an object working set, i.e. a collection of objects with

high probability of getting accessed together.

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 50

Figure 6.1: Algorithm for Constructing Access Graph

Figure 6.2: Access Graphs

6.1.1.2 Merging of Graphs

Two access graphs can be merged if their associated patterns contain common objects. The resul-

tant graph contains the union of vertices from both graphs.

The weight for edges of the new graph is assigned as follows. If the edge is common to both

graphs, the weight of the edge is the sum of the weights of the given edge from each graph.

Otherwise, it is equal to the weight of the edge in the graph where it is present.

Figure 6.3 shows merging of graphs shown in figure 6.2.

Figure 6.3: Merging of Access Graphs

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 51

6.1.1.3 Management of Access Graphs

Access graphs are stored in the database at the client side. For each access graph, there is an

entry for every edge specifying its two vertices and the weight of the edge. There is also a unique

identifier associated with each access graph.

There is another database maintained which stores the age value for each access graph. The age

value is increased if the access graph is repeated in the current observation window. Age values

are assigned in such a way that the values for the access graphs found in the recent observation

windows are more than those of access graphs found in the past.

Age values are useful for determining replacement policy. It is not possible to store all access

graphs from all past observation windows. Access graphs with lower age values are chosen as

candidates suitable for replacement.

6.1.1.4 Permanent Access Graph

We call an access graph as a permanent access graph if it is always found in the past observation

windows. Age values are useful in deciding permanent access graphs. Permanent access graphs

have very high age values. The use of permanent access graphs is discussed in section 6.2.2.

6.2 Selective Prefetch using Access Graphs

As mentioned earlier, the size of data that can be prefetched is usually limited. Selective prefetch-

ing is done on the basis of weights of edges. An ordered Prefetch Object Set (POS) with objects

in descending order of prefetch preference is constructed using an access graph. Depending upon

the size of the prefetch buffer, prefetch data for the objects from this set is requested.

When an object is accessed, the access graph containing the given object is searched. If it is not

found, prefetching is not done.

The POS is constructed using the algorithm shown in figure 6.4. This is a modified form of Prim’s

minimum spanning tree algorithm [54]. Initially, all immediate neighbors of the given object are

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 52

Figure 6.4: POS Construction Algorithm

considered. Subsequently, a modified Prim’s algorithm is used where the next vertex is chosen

having the edge with the maximum weight.

As an example, consider the generation of the POS for vertex 2 of the graph constructed in step

2 of figure 6.3. Initially, immediate neighbors vertices 3 and 4 are chosen. This creates a partial

tree containing vertices 2, 3, 4. The modified Prim’s algorithm is applied on this partial tree

which chooses vertex 8 (as edge 3-8 has the maximum weight) and then vertex 6. Thus, the POS

generated for vertex 2 is {3, 4, 8, 6}.

It may be seen that the edges corresponding to the objects with repeated occurrence in a pattern

have higher weight. This gives higher preference for prefetching such objects.

It is possible to save time for building a POS for frequently accessed objects by constructing it

a-priori and storing it in the database. Such a POS is known as a Permanent POS. Permanent POS

is typically used for patterns that occur always in observation windows.

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 53

6.3 OSD Client Design Integrated with Graph Model

We have seen various sub-modules of an OSD client in section 4.1. Certain modules are modified

to support OSD client-based prefetching using Access Graph Model. Access graph Model adds a

new “Analyzer Module” in the object layer.

6.3.1 Object Module

In the prefetching OSD-client with access graph model, the object module sends information about

object access to the analyzer module. Access information specifies object information, type of

access and name of the application accessing this object.

6.3.2 Analyzer Module

Figure 6.5 shows various units of the analyzer module its interface with other modules.

Figure 6.5: Analyzer Module

6.3.2.1 Access Log

Information about the current object access sent by object module is added to the access log. The

access log is maintained in a very simple manner since it is updated for each access of every object.

We implemented it as simple text file for each observation window with each line specifying time

of access, information about application accessing it, object ID information and type of access.

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 54

6.3.2.2 Object Frequency Unit

This module is responsible for prioritization among objects. It works on the log file associated with

the current observation window and assigns priorities to each object depending on the number of

accesses and average interval time. Priority information is stored in the database maintained by

access information unit.

Object frequency unit is activated once in every observation window, at the end of the observation

period.

6.3.2.3 Graph Generator Unit

Graph Generator unit is responsible for the construction of access graphs. It works on the log file

associated with the current observation window and searches for the access patterns. As there is

a high probability of getting a pattern around frequently accessed objects, it takes feedback from

the object frequency unit regarding accesses of high priority objects.

For each access pattern, the graph generator unit constructs a directed graph known as access

graph. A pattern weight is also assigned to each access graph.

After construction of the access graphs, these graphs are merged if their associated access patterns

contain common objects. Final access graphs are stored in the database at access information unit.

Graph generator unit is run once every observation window at the end of the observation period.

6.3.2.4 Feedback Unit

Application layer can also help in the process of pattern analysis by providing information regard-

ing the object working set. Feedback unit exports object calls that allow application to provide

object working set. It also submits each working set as a pattern with very high repetition count to

the graph generator Unit.

6.3.2.5 Access Information Unit

Access information unit maintains databases for object priority, weighted access graphs, age of

access graphs and permanent POS. These databases are updated once every observation window

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 55

at the end of the observation period.

The “object priority” database contains an entry for each object found in the observation window

with its priority. Entries are added by object frequency unit during analysis of the access Log.

This database is used by several units, including the credential cache to query priority information

of objects while adding them to the credential cache; by security unit which queries this database

before sending prefetch requests for high priority objects to the OSD manager and by POS unit

which queries this database for building permanent POS associated with the high priority objects.

The “weighted access graphs” database stores the access graphs. A unique identifier is assigned to

each access graph. Access graph information is maintained in the form of edge list representation

with a weight assigned to each edge. Entries are added by the graph generator unit at the end of

the observation period. This database is queried by POS unit for construction of POS.

The “age of access graphs” database stores information about each access graph (with unique iden-

tifier) and its age. Age is computed using method described in section 6.1.4.3. Graph generator

unit adds a new entry for every new access graph found in the current observation window. It also

updates age values for old access graphs. This database is queried by the POS unit for construction

of permanent POS. This is also queried by the manager update unit to update OSD manager with

permanent access graphs.

The “permanent POS” database contains POS for high priority objects belonging to permanent

access graphs. POS unit adds entries in this database at the end of the observation period. Manager

update unit also queries this database to update OSD manager with permanent access graph.

6.3.2.6 POS Unit

POS unit is responsible for generation of prefetch object set. Request for selective POS of an object

is sent to this unit by the security unit. First, this unit queries the “permanent POS” database to

check whether POS for the given object exists. If it doesn’t exists, it queries the “weighted access

graphs” database for access graph containing this object. POS is generated using algorithm as

described in section 6.2.1.

CHAPTER 6. PREFETCHING AT OSD CLIENT SIDE 56

6.4 Features of Graph Access Model

Features of our graph model can be summarized as the following.

We have constructed weighted directed graph for each pattern which allows us to define successor

relationship between various objects within the graph. Weight of each edge in the graph describes

strength of this relation. Merging of these access graphs allows us to define strength of this relation

across multiple patterns. Unlike other approaches [43,45] where prediction is done considering

only single access pattern, merged access graphs makes it possible to consider multiple patterns

for prediction. This can make prediction more accurate.

Our access algorithm to generate ordered prefetch object set is a modified form of Prim’s mini-

mum spanning tree algorithm [56]. Initially, prefetch object set is constructed using all immediate

neighbors of the object giving them high priority. Later on using a modified Prim’s algorithm for

maximum weight we add objects having high priority of accesses after accessing a object from the

partial prefetch set.

Chapter 7

Server Side Prefetching Model

We implemented an another prefetching model where the OSD manager can predict objects re-

quired by a client and send credentials for them as prefetch data. Prefetch mechanism is based

on identifying relations among objects. Relations are defined among objects using access his-

tory, feedback from the client, common collection membership and other factors. We observed

significant enhancement in performance of object command processing and network traffic.

7.1 Prefetching Policy at Sever Side

Prefetching policy is devised for minimizing overheads of the credential requests. This is also

helpful in reducing number of credential requests from a client to the security manager.

In our approach, the OSD security manager predicts the objects that might be required by the

client and provides the credentials for all such objects along with the credentials for the requested

object. We refer to these additional security tokens as prefetch data. OSD client can help in this

process by providing hints for the prefetch data. It is usually possible to group objects accessed

by a client depending upon their access behavior.

We introduce a relationship among objects. Two objects are termed as RELATED if when an

object is accessed, there is a high probability that other object will be accessed in near future.

Group of such objects form an “object relation group”.

Prefetching mechanism is effective if it sends prefetch data for all objects in the group upon access

to any object from the group. In our case, the prefetching mechanism should return credentials

57

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 58

for all objects in the object relation group upon credential request for an object from the group.

The object in the request is termed as an ORIGIN object. OSD manager generates prefetch data

by making prediction about objects required by the client in the near future. This prediction will

be based on identifying relations among objects. There are various factors that are used to define

relations among objects. We provide details about prefetching mechanism in the next section.

7.2 Relations Among Objects

We group objects by defining relations among them. Both OSD client and OSD manager can

participate in the process of defining relations. OSD client can have full participation or partial

participation in the process of defining relations.

When the client participates fully, it uses collection object support and makes related objects mem-

ber of a collection. Object belonging to same collection are considered as related and OSD man-

ager does not require to perform additional processing to relate them. While in case of partial

participation, client provides hints to the manager. OSD manager uses those hints while grouping

objects.

However the access analysis done by the client is based on the access done by the client only. This

mechanism therefore does not have advantage of global analysis which is possible only when the

manager defines the relations. OSD manager can define relations by performing access analysis of

objects. Relations are defined among objects by study of object access patterns and by considering

various other parameters such as creation times.

7.2.1 Client-defined relations

In chapter 6, we discussed the implementation of client initiated prefetching mechanism. We

describe the role of OSD manager in this chapter. As described earlier, OSD client can have either

full participation using collection membership or partial participation by providing access hints in

the process of defining relations.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 59

7.2.1.1 Collection Membership

An OSD client can define relations among objects by making them member of a collection. This

is the simplest scheme that can be implemented by an OSD client. Depending upon the type of

application data it is accessing, OSD client can group objects that are likely to be accessed together

and make all objects from a group as member of a collection.

From OSD manager’s perspective, it does not need to analyze objects and their access patterns to

create relations. If at some instance, the object whose credentials are requested by the client is

part of a collection, OSD manager will send credentials of other objects in the same collection as

prefetch data. An object can be part of multiple collections. In that case, either client provides

hints about desired collection or the OSD manager can use other mechanisms to determine the

required collection.

7.2.1.2 Hints from Client

An OSD client can also provide hints for the prefetch data. This is useful when collection objects

are not supported in the system or where the RELATED objects do not share the membership of

a collection object. There are various hints which can be provided by the clients while requesting

credentials for an object. These include the following.

• objects created together along with the object in the OSD request.

• objects of specific object type, e.g., list of all partition objects required by utility such as df,

fdisk etc.

• objects with specific permission masks, e.g., list of all objects with READ_ONLY or WRITE_ONLY

permissions.

• objects with particular policy information.

• combinations of above

OSD manager looks up the object database depending upon the hints and send credentials for these

objects as prefetch data.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 60

7.2.2 Manager-defined relations

An OSD manager can use the object access history to establish access relations between objects.

This approach can be used in addition to the OSD client-defined relations but is particularly useful

when the client is not intelligent enough for defining relations among objects or for providing

prefetch hints. In this approach, OSD manager maintain the object access history and analyzes

this for prediction of objects that may be required in the near future. Access pattern analysis can

be done in following ways.

7.2.2.1 Closely spaced in terms of creation time

This method is useful for applications where client data processing is done in steps. For example,

the situations where required objects are created initially and then the operations are performed

in subsequent steps. OSD manager can treat all objects created within a close interval of time as

related.

7.2.2.2 Study of Object Access patterns

OSD manager can analyze object access history and object metadata stored in the object database.

It can then identify access pattern and group objects as related when their accesses are made within

small time duration. This however requires large processing at OSD manager side.

7.3 Optimizing Prefetch Data

Sending prefetch data is useful for reducing initial command processing delays for the prefetched

objects. It also reduces number of credential requests. However, there will be no optimization

with respect to the credential response traffic if complete credentials are sent for each prefetched

object. This can lead to a wastage of network bandwidth especially when prediction is not correct.

By noting the fact that prefetch data is always passed with credentials of the ORIGIN object, it

is possible to optimize prefetch data by sending just part of credentials for the prefetched objects.

Mechanism can be built at client side to reconstruct credentials for the prefetched objects from

partial credentials and the credentials of the ORIGIN object. There is a possibility of having

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 61

identical values of various fields in credentials of two objects only when they belong to the same

OSD LUN and partition, and credentials are created using same key specific data within close time

interval.

Common fields are generally related to the security key specific information, security token valid-

ity period, parent partition information etc. While comparing credentials for the ORIGIN object

and RELATED objects, it is observed that there are almost 50% identical fields. Therefore, in-

stead of sending entire credentials for each prefetched object, it is sufficient to send just 50% of

credentials unique for the prefetched object.

The OSD client gets a list of partial credentials as prefetch data along with the credentials for

the ORIGIN object. For each prefetched object, credentials are reconstructed and added to the

credential cache. This results in cutting down half the traffic between a client and manager in

OSD system.

7.4 Design of OSD Manager Integrated with Prefetching Model

We have described various modules of the OSD manager earlier. We now describe modules re-

lated to the implementation of prefetching module. Figure 7.1 shows modules of OSD manager

integrated with prefetching model.

Prefetching model is implemented by two new sub-modules in security manager and policy man-

ager modules. The communication module is extended to maintain the history of objects that is

used by the dependency engine (described in section 7.4.3.1) for predicting the prefetch data.

A new prefetch generator module is responsible for implementation of prefetching mechanism at

OSD manager side. This module generates the prefetch data. For the given ORIGIN object in the

credential request, it takes a list of RELATED objects from object dependency engine. Credentials

for each of the RELATED objects is obtained from credential generator module. For each of these

credentials, parts of credentials consisting of fields distinct from the credentials of the ORIGIN

object are used to generate prefetch data.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 62

Figure 7.1: OSD Manager Integrated with Prefetch Model

7.4.1 Policy Manager

As described earlier, the policy manager maintains two databases, namely, object database and

relation database. For each related datagroup, relation database contains the list of the objects

which form related object group. There is also a unique identifier associated with each relation.

Relation database is updated as per the relations defined by the object dependency engine (ODE).

The ODE module implements the core of the prefetching model. It is responsible for identifying

or defining relations among objects and it outputs the list of related object for a given ORIGIN

object.

As discussed earlier, there are various ways of defining dependency among objects. The easiest

way is when client defines dependency using common collection membership. In this case, collec-

tion identifier is used as the relation identifier. Objects belonging to the collection of the ORIGIN

object are considered as RELATED objects.

When dependency is specified using client hints, ODE requests database handler module for re-

lated objects using client provided hint information. Result of the queries provide the list of

RELATED objects.

When client does not provide the hints, ODE uses intelligent techniques to define relations among

objects. These include searching and analyzing access patterns in the access history maintained

by the communication module. If an access pattern is found, objects in the group are considered to

be related. The ODE assigns unique identifier for this relation and makes entry for each object in

the relation database. If no access pattern is found, ODE tries to collect information about objects

from the object database to find relations. This information includes object creation timings,

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 63

ACLs, policy data, etc. Task of defining relations among object is done as a background process

at the OSD manager. This, therefore, does not delay the processing of given credential request.

7.5 Performance Model

In this section, we look at the efficiency of the prefetching mechanism. In particular, we look at

the impact on reduction of traffic and processing time.

For calculations, we assume that after the first request, credentials for an object are stored in the

credential cache at OSD client side. Subsequent accesses for credentials of this object result in a

hit in the credential cache. In our analysis, we assume that credentials never expire and size of

credential cache is sufficiently large so that the entries once cached are never replaced. Therefore,

credential cache hit is 100% for subsequent accesses on all objects.

The following symbols are used in the performance modeling

• Tcred = Time required to get credentials from credential cache.

• Tmgr = Time required to get credentials from OSD manager.

• T 1
sec = Total time required by the security unit in an OSD client for the first access of an

object,

T 1
sec = Tcred +Tmgr.

• a = Number of accesses to an object done by an OSD client.

• T a
sec = Total time required by the security unit in an OSD client for “a” number of accesses

to an object with no prefetch.

• T pa
sec = Total time required by the security unit in an OSD client for “a” number of accesses

to an object with prefetching mechanism.

• Sr = Number of objects maintained at OSD manager for object relation group.

• pd = Probability of correctness of prediction of object relations by the OSD manager.

• N = Average number of objects accessed by a client within some time period.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 64

• Bsec = Total network traffic for credentials for an object without any prefetch hints,

Bsec = Creq +Crsp.

• Bp
sec = Total network traffic for credentials for an object with prefetch hints,

Bp
sec = Cp

req +Crsp.

• Bn
sec= Credential network traffic for n objects with no prefetch.

• Bpn
sec= Credential network traffic for n objects with prefetching mechanism.

• Crsp = Size of the response to the credential request in bytes.

• Creq = Size of credential request with no prefetch hints, in bytes, Creq = δCrsp.

• Cp
req = Size of credential request with prefetch hints in bytes. We assume Cp

req ' αCrsp.

• Cpartial = Size of optimized credentials of prefetched objects in bytes,

Cpartial = µCrsp.

Considering our implementation,

δ = 0.42 , α = 0.6 and µ = 0.45.

Note that, pd is 1 when relations are directly defined by the client.

7.5.1 Reduction of traffic between OSD Client and OSD Manager

With prefetch mechanism, for a credential request of an object, credentials for all objects from its
relation group are returned. Therefore, the total number of credentials returned as prefetch data is
Sr while the number of useful credentials of objects is expected to be n = pdSr .

Therefore,

Bpn
sec = Bp

sec +(Sr −1)Cpartial

⇒ Bpn
sec = (Crsp +Cp

req)+(Sr −1)Cpartial

In absence of a prefetching mechanism, the traffic for an object is Bsec. The traffic for all objects
is similar in nature therefore the total traffic for credentials of “n” objects without prefetching is

Bn
sec = nBsec = n(Crsp +Creq).

The reduction in traffic due to prefetching for n objects can be written as (Bn
sec − Bpn

sec) which
simplifies to

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 65

n.(Crsp +Creq)− (Crsp +Cp
req)− (Sr −1)Cpartial

or, [n(1+δ)− (1+α)− (Sr −1)µ]Crsp

For an effective prefetching mechanism, this value should be positive, i.e.,

[n(1+δ)− (1+α)− (Sr −1)µ]Crsp ≥ 0

⇒ n(1+δ) ≥ [(1+α −µ)+ µSr]

⇒ n ≥ (1+α −µ)
(1+δ)

+
µSr

(1+δ)

⇒ pd ≥ (1+α −µ)
(1+δ)Sr

+
µ

(1+δ)
(∵ n = pdSr)

Using µ w 0.45 , δ ' 0.42 ,α ' 0.6, this inequality reduces to

pd ≥ 1.15
1.42Sr

+
0.42
1.45

When pd is taken as 0.5, Sr must be at least four.

This gives an approximation to effective size of a relation object group maintained at the OSD
manager. Prefetching is useful even when the probability of prefetch data being useful is 0.5

provided that the size of relation group at the server side is least four.

This means, there is benefit of prefetching model when for a credentials request of object, along
with Credentials response of given object, partial credentials of three objects are sent, out of which

only one object is actually useful.

A better value of pd can be achieved by making stronger relation discovery between objects and it

will yield even better performance.

Our analysis is however based on a single object relation group of size Sr. In general, client fetches

other objects too. Hence the credential requests are sent for the remaining (N −n) objects which

do not belong to this relation group. These objects form several other relation groups. If we take

the size of relation group i as Sri , the expected number of useful objects in relation group i is pdiSri

where pdi is probability of correctness of prediction.

Therefore, overall traffic for N objects is,

BpN
sec = ∑

i
Bpni

sec

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 66

Assuming all relation groups to be roughly equal in size and each containing n useful objects,

BpN
sec =

N
n

Bpn
sec

Traffic for N objects without prefetching is,

BN
sec = N(Crsp +Creq)

Therefore, reduction of overall traffic can be written as,

[
1− BpN

sec
BN

sec

]
which is equal to

[
1−

N
n Bpn

sec

N(Crsp+Creq)

]

Using µ w 0.45 , δ ' 0.42 ,α ' 0.6 and all group similar with size Sr and probability of correctness
as pd , this reduces to [

1− (1.15+0.45∗Sr)
1.42∗ pdSr

]
This shows that expected reduction in network traffic between OSD client and manager depends
on two factors– correctness of prefetched data, and size of object relation group. These two factors
are however related and increasing size of object relation group results in reduction in correctness
of the prefetch data pd especially when relations are not directly defined by the OSD client.

When relations are directly defined by the client using collection membership, pd = 1 and Sr = N.

In this case, reduction depends on N and it increases with N, saturating at around 66.7% for large

values of N.

7.5.2 Reduction in Command Processing time at security Unit

After the first access, credentials will be accessed from the credential cache. Hence,

T m
sec = (m−1)Tcred +T 1

sec

In absence of any prefetching mechanism, time for the first access to the object is T 1
sec, where

T 1
sec = Tcred +Tmgr

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 67

Therefore, the time for m accesses can be written as,

T m
sec = mTcred +Tmgr

With prefetching mechanism, credentials of the prefetched object are fetched along with the ORI-

GIN object earlier. Hence, the credentials are found in the Credential Cache. Therefore, the time

for m accesses is,

T pm
sec = mTcred

The total gain for the prefetched object can be written as,

[
1− mTcred

mTcred +Tmgr

]

Tmgr is usually a much larger value compared to Tcred . Therefore, for small values of m (around 5

to 10), the saving in the time is very high.

However, there are overheads associated with accessing the ORIGIN object. These overheads

are for identifying RELATED objects, for generating credentials for each of RELATED objects,

and for optimization and sending the prefetch data. If the correction of prediction is low, these

overheads may be significant and even result in negative gains.

7.6 Our Implementation

We have integrated our OSD system with the prefetching model. Currently, we have implemented

prefetching mechanism where prefetch hints are provided by the OSD client using collection mem-

bership.

7.7 Results

We have tested efficiency of the OSD system integrated with the prefetching model. Our experi-

ment include the measurement of execution time of different modules.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 68

7.7.1 Setup

We have used three machines, each for OSD client, manager and OSD target. Three machines

have the similar configuration as Intel 2.8 GHz CPU, 256 MB RAM and 100 Mbps network. All

machines run Linux kernel 2.6.

The following experiments were performed.

• Object Access Operation: OSD WRITE of 100 bytes. Write size is kept small so that the

effects of metadata and credentials operation are prominent compared to time needed to

transfer the actual data.

• Average number of distinct objects that are likely to be accessed together by the client at

particular instance (n) is varied in various experiments. We have performed experiment, for

different values of n. Values of n are 10, 20, 30, 40, 50. Experiment is repeated 10 times for

each value of n.

• Total number of accesses per object is taken as 5.

As mentioned earlier, our current prefetching mechanism is based on hints from client using col-

lection membership. This makes probability correct prediction at OSD manager as 1. To have

different values of correctness of prediction for the experiment, we have modified OSD client for

providing incorrect hints. Basically, OSD client provides over-estimation about objects as mem-

bers of collection. We are maintaining object relation group at OSD manager whose size depends

upon membership of collection objects as defined by the client. The results are shown in Table 7.1

for a value of n as 10. The values in the first column of this table are interpreted as follows.

• For no-prefetch, modified OSD client does not provide any prefetch hints. In this case,

size of object relation group at OSD manager can be considered as 1 (Sr = 1) because no

prefetch data is sent.

• For pd = 0.5, modified OSD client makes 2n objects as members of the collection group

with only n objects are useful. This scenario therefore simulates a case with Sr = 2n and

pd = 0.5.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 69

• For pd = 0.66, modified OSD client makes 1.5n objects as members of the collection group

with only n objects are useful. In this case, Sr = 1.5n.

• For pd = 1, n objects which are likely to be accessed together are made member of collection

by modified OSD client (Sr = n). This represents scenario where a real client would provide

hints for the prefetch.

• Similarly, pd = 0.58, and pd = 0.86,

The second column provides the time (in microseconds) to acquire the credentials by the OSD

client for the ORIGIN object. To ensure that the effects of the Credential Cache do not show up in

this table, the time is shown only for the first access for the object.

The third column of the table provide the time (in microseconds) for the entire operation including

the acquisition of token, generation of MIC for the OSD request, and the time needed to process

the request at the OSD target side to provide response.

The fourth and the fifth columns provide the same values for the RELATED objects. Without

prefetching (when Sr = 1), the RELATED objects are treated independently and hence the creden-

tials for these objects are acquired independent of the ORIGIN object. The time for the acquisition

of the token remains the same as that of the ORIGIN object. With prefetching, the token of RE-

LATED objects are acquired along with the ORIGIN object and hence the values in the fourth

column are not applicable. The values in the fifth column therefore include only the time needed

to perform operation on the object.

Further, Table 7.2 describes the time for the first access of the ORIGIN object for various values

of n with different correctness of prediction. Figure 7.6 shows the same values in the graph.

7.8 Analysis of Prefetching Model

We have observed the fact that efficiency of prefetching mechanism depends on two factors– cor-

rectness of dependency prediction and size of object relation group. We have analyzed efficiency

in terms of reduction in processing time of command and traffic between OSD client and manager.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 70

Origin Object Related Object
Credentials Total Credentials Total

no prefetch 661.13 2341.38 661.13 2341.38
p=1 3821.94 5542 - 1700.2

p=0.85 4530.34 6352.81 - 1700.2
p=0.66 5287.64 7032.09 - 1700.2
p=0.58 6034.5 7780.23 - 1700.2
p=0.5 6680.71 8460.74 - 1700.2

Table 7.1: Time in Microseconds for OSD Accesses with and without Prefetching when number
of useful object in the group is kept constant at 10.

n=10 n=20 n=30 n=40 n=50
no prefetch 2341.38 2300.52 2266.72 2247.78 2350.81

p=1 5542 8361.03 11265.44 14060.66 16336.90
p=0.87 6352.81 9960.79 13421.05 17137.15 21385.39
p=0.66 7032.09 11343.72 15192.26 19595.56 23786.81
p=0.58 7780.23 12891.47 17936.38 24306.91 31254.94
p=0.5 8460.74 14051.01 19571.29 25964.86 32679.9

Table 7.2: Command Execution Time in Micro-seconds for Origin Object

Figure 7.2: Overall Command Time for First Access of ORIGIN Object for n.

We notice that the prefetching reduces traffic between the OSD client and manager. In terms of

time needed to process the OSD requests, the prefetching results in reduction of time because the

credential requests are not sent to the security manager. However, there are additional overheads

associated with processing of credential requests of the ORIGIN objects for generating prefetch

data. Results can be improved dramatically when client participates in the process of defining

relations. This imposes need of smart client for feedback of objects access.

Table 7.1 shows advantages of prefetching for access of RELATED objects. At the same time,

Table 2 describes overheads of prefetching in acquisition of the ORIGIN object for the first time.

CHAPTER 7. SERVER SIDE PREFETCHING MODEL 71

With larger values of n, these overheads increase. However, as indicated earlier, the overall time

for all the objects is expected to be lower as can be seen in Table 7.1.

For example, with pd = 0.66, total time for getting 50 objects (the number of useful objects in the

relation group with 1 ORIGIN and 49 RELATED) is 23786.81+49∗1700 or 107086µs. Without

prefetching, this time becomes 50 ∗ 2350.8 or 117540µs with an overall effective gain of about

10%.

Chapter 8

IBM Object Controller (OC)

Object store [40] team at IBM Haifa Lab in Israel is working on the implementation of various

components of OSD system.

IBM object based controller (OC) is a part of object store project. This was designed to provide

object storage device capabilities on top of a block-based storage controller. OC works over the

iSCSI protocol and runs on a standard Linux server.

OC originally did not support collection objects. We introduced this support to the OC project and

tested efficiency of our server side prefetching mechanism as discussed earlier.

8.1 OC Architecture

OC is a user mode program consisting of sub-modules such as iSCSI target module, T10 front

end, OSD module and OSD-target-FS as shown in figure 8.1.

OC has in-built implementation of iSCSI target module. The iSCSI target module provides support

for exporting OSD LUNs as SCSI devices to the iSCSI initiator. T10 front end is a communica-

tion interface between iSCSI target module and OSD module and provides compliance with T10

standard. OSD module performs role of OSD command interpreter. It accepts OSD commands

from iSCSI target and implements them on OSD-target-FS.

OSD-target-FS module implements a user mode file system. This file system accepts commands

from OSD module and converts them into block operation. OC allows exporting of any file or

72

CHAPTER 8. IBM OBJECT CONTROLLER (OC) 73

device as OSD device. The block operations are implemented on the given file or device.

Figure 8.1: OC Modules

8.2 Differences between OC and IITK-OSD-SIM

OC implements block based storage controller while IITK-OSD-SIM implements file based stor-

age controller. OSD module of OC passes OSD command to OSD-target-FS which maps them to

block operations. In case of IITK-OSD-SIM, the OSD commands are mapped onto file operations

which are performed on the files associated with the object. OC comes with built-in support of

iSCSI module and OSD-target-FS. These modules communicate internally with the OSD module.

This saves kernel-user context switches and makes OC faster than IITK-OSD-SIM. This fact is

observed also in results as described later.

In OC, OSD target is a mix of iSCSI target module and OSD module while IITK-OSD-SIM

provides a clear separation of these modules. This separation allows OSD simulator (section 3.1)

module of IITK-OSD-SIM to work with any iSCSI target software. As compared to this the OC

provides a tighter integration between OSD simulator and iSCSI target. To make OC work with

new iSCSI target software requires major changes in the code.

CHAPTER 8. IBM OBJECT CONTROLLER (OC) 74

8.3 Collection Support in OC

Collection support in OC required to implement support of collection commands and handling of

operations to add/remove objects from collection as defined in T10 standards. In our implementa-

tion, we also provide additional support for collection hierarchy.

T10 standard supports three collection commands – CREATE COLLECTION, REMOVE COL-

LECTION and LIST COLLECTION. It however does not specify any command for addition or

removal of objects from collection. In OC, we have implemented these operations using get/set

attribute commands.

In our implementation, we allowed to create hierarchy among objects. Defining hierarchy allows

to have better classification of objects. It is useful in many applications where we want intelligent

OSD target managing low level storage and operations on the objects according to their quality of

service and access behavior.

8.4 Results

We discussed the testing of server side prefetching model in section 7.8 where we used IITK-

OSD-SIM as OSD target. We carried out same tests with OC as OSD target.

In our test procedure, the initiator side setup is same as mentioned in section 7.8. On the target

side, we use OC with Linux kernel 2.6 running on Intel 2.8 GHz CPU, 256 MB RAM and 100

Mbps network.

The following experiments were performed which are the same as those performed on IITK-OSD-

SIM based OSD target.

• Object Access Operation: OSD WRITE of 100 bytes. Write size is kept small so that the

effects of metadata and credentials operation are prominent compared to time needed to

transfer the actual data.

• Average number of distinct objects that are likely to be accessed together by the client at

particular instance (n) is varied in various experiments. We have performed experiment, for

CHAPTER 8. IBM OBJECT CONTROLLER (OC) 75

different values of n. Values of n are 10, 20, 30, 40, 50. Experiment is repeated 10 times for

each value of n.

• Total number of accesses per object is taken as 5.

Experiments are performed for no-prefetch and different values of probability as 0.5, 0.58, 0.66,

0.86, and 1.

The results are presented in table 8.1 and 8.2. Table 8.1 shows time for OSD object accesses

without prefetching and prefetching with different values of probability when number of useful

object in the group are 10. The second column provides the time (in microseconds) to acquire the

credentials by the OSD client for the ORIGIN object. The third column of the table provide the

time (in microseconds) for the entire OSD operation for ORIGIN object. The fourth and the fifth

columns provide the same values for the RELATED objects. This table is same as table 7.1.

As mentioned earlier, it is clear that without prefetching, the RELATED objects are treated in-

dependently and hence the credentials for these objects are acquired independent of the ORIGIN

object. The time for the credential acquisitions remains the same as that of the ORIGIN object.

While with prefetching, the token of RELATED objects are acquired along with the ORIGIN ob-

ject and hence the values in the fourth column are not applicable. The values in the fifth column

therefore include only the time needed to perform operation on the object.

Further, table 8.2 describes the time for the first access of the ORIGIN object for various values

of n with different correctness of prediction. This table is same as table 7.2. Figure 8.2 shows the

same values in the graph.

Origin Object Related Object
Credentials Total Credentials Total

no prefetch 593.84 1985.36 593.84 1985.36
p=1 3402.1 4868.87 - 1410.22

p=0.85 4146.42 5524.31 - 1410.22
p=0.66 4602.727 5978.12 - 1401.22
p=0.58 5537.93 6920.72 - 1401.22
p=0.5 5936.571 7328.72 - 1401.22

Table 8.1: Time for OSD Accesses with and without Prefetching when number of useful object in
the group is kept constant at 10.

CHAPTER 8. IBM OBJECT CONTROLLER (OC) 76

n=10 n=20 n=30 n=40 n=50
no prefetch 1985.36 1998.07 2019.71 2039.56 2023.21

p=1 4868.87 7424.55 9800.86 12479.62 15274.7
p=0.87 5524.31 8956.57 12223.13 15465.41 19186.44
p=0.66 5978.12 10161.46 13784.46 18549.18 22946.36
p=0.58 6920.72 11625.55 16634.33 21552.49 27119.591
p=0.5 7328.72 13272.1 18832.52 24335.136 30255.31

Table 8.2: Command Execution Time in Micro-seconds for Origin Object

Figure 8.2: Overall Command Time for First Access of ORIGIN Object for n.

8.4.1 Analysis of results

Since experiments are carried out for testing of prefetching implementation at initiator side, be-

havior of tests on OC is almost to that of IITK-OSD-SIM as given in section 7.8.

Major difference is with respect to the time for processing of command after acquisition of cre-

dentials. It is clear that OC is about 20% faster than IITK-OSD-SIM. This, as explained earlier,

is because OC has a built-in mapping between the objects and disk blocks while IITK-OSD-SIM

implements objects as files local to the host.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

OSD enables creation of self-managed, heterogeneous, shared storage by moving low-level storage

functions into the storage device itself. Major advantage of the OSD is that it combines direct

access feature of SAN with security advantages of NAS. Object is exposed as a storage unit with

abstraction for data and metadata. It provides security at object granularity.

We discussed the design and implementation of IITK OSD simulator with a few unique features

such as support for exporting unlimited number of OSD LUNs with a single instance of iSCSI

target, support for collection objects etc. We have presented design and implementation of an

OSD client and manager.

We discussed prefetching techniques according to method of access analysis and location of im-

plementation and addressed the need of prefetching of credentials in OSD system to minimize

delay in the object access. We discussed the use of graph-based techniques for prediction of fu-

ture accesses from the analysis of past accesses. Our algorithm works on object access graphs

and generates sets for prefetch data. We discussed the integration of this model at OSD client for

prefetching of the credentials from OSD manager.

We also implemented server side prefetching mechanism based on identifying relations among

objects. We identified various ways for defining relations among objects and making better pre-

diction of required data. We also implemented a mechanism for transferring partial credentials of

77

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 78

prefetched objects for optimization of the response traffic. This makes prefetching model effective

even when only 50% of prefetched data is useful.

We tested our server side prefetching model on IITK OSD simulator and IBM object controller

(OC). For this we also extended OC to support collection objects mechanism.

9.2 Future Work

IITK-OSD-SIM is an implementation of file based object simulation where OSD commands are

mapped to the file operations and performed on a file system local to the host. It is possible to

implement an in-built block mapping from the objects in the IITK-OSD-SIM like OC which will

make these object operations faster.

The OSD system make it feasible to use strategies of management and storage at OSD target side

according to the object category. Objects can be categorized in terms of access type (random

access/sequential access) and access frequency (more frequent/less frequent). OSD storage com-

ponent can then do better storage management of objects according to the category. For example,

frequently accessed objects can be stored in the faster media zones of hard-disk.

Server initiated and client initiated prefetching models can be implemented in the proxy envi-

ronment. Further, prefetching models, described in the thesis, can be implemented for object

prefetching to reduce data traffic between OSD client and OSD target.

Bibliography

[1] T10 Technical Committee. Information technology-SCSI Object-Based Storage Device

Commands-2 (OSD-2). Working draft, project T10/1729-D, Revision 2., July 2007.

http://www.t10.org/ftp/t10/drafts/osd2/osd2r02.pdf.

[2] Eric Riedel. OSD Architecture and Systems. SNIA Technical Tutorial. April 2006.

http://www.snia.org/education/tutorials/2006/spring/storage/Object-based_Storage-

Devices-OSD_Architecture_and_Systems.pdf.

[3] Riyaz Shiraguppi. OSD Technology survey paper. CS697 course report.

http://www.cse.iitk.ac.in/gsdl/collect/cse/index/assoc/HASHb573.dir/doc.pdf.

[4] SNIA Object-Based Storage Device Technical Working Group, Home Page.

http://www.snia.org/tech_activities/workgroups/.

[5] ITtoolbox Wiki. Direct Attached Storage.

http://wiki.ittoolbox.com/index.php/Direct_Attached_Storage.

[6] Heng Liao. Storage Area Network Architectures, Technology White Paper. PMC-2022178.

April, 2003.

http://www.pmc-sierra.com/cgi-bin/document.pl?docnum=2022178.

[7] Gibson, et.al., A Case for Network-Attached Secure Disks. CMU SCS Technical Report

CMU-CS-96-142, September 1996.

http://www.pdl.cmu.edu/PDL-FTP/NASD/TR96-142.pdf.

[8] B. Callaghan, B. Pawlowski, P. Staubach. NFS Version 3 Protocol Specification RFC-1813.

http://www.ietf.org/rfc/rfc1813.txt.

79

BIBLIOGRAPHY 80

[9] Sun Microsystems, Inc. NFS: Network File System Protocol Specification RFC-1094.

http://www.ietf.org/rfc/rfc1094.txt.

[10] SCSI Architecture Model-3 (SAM-3). Project T10/1561-D, Revision 14. T10 Technical

Committee NCITS, September 2004.

http://www.t10.org/ftp/t10/drafts/sam3/sam3r14.pdf.

[11] IBM Inc., IBM OSD Initiator. https://sourceforge.net/projects/osd-initiator/.

[12] Stephen Smaldone, Aniruddha Bohra, and Liviu Iftode. FileWall: Implementing File Access

Policies Using Dynamic Access Context. Workshop on Spontaneous Networking. May 2006.

http://olab.rutgers.edu/workshops/2006/helsinki/slides/smaldone.pdf.

[13] E. E. Chang, R. H. Katz. Exploiting inheritance and structure semantics for effective cluster-

ing and buffering in an object-oriented DBMS. Proceedings of the ACM SIGMOD interna-

tional conference on Management of data. Portland, Oregon, United States. 1989. pp. 348 -

357.

[14] Jung-Ho Ahn, Hyoung-Joo Kim. SEOF: An Adaptable Object Prefetch Policy for Object-

Oriented Database Systems. Proceedings of the Thirteenth International Conference on Data

Engineering. IEEE Computer Society Washington, DC, USA, 1997, pp. 4 - 13.

[15] G. H. Kuenning. The Design of the SEER Predictive Caching System. Proceedings of Mobile

Computing Systems and Applications, Santa Cruz, CA, December 1994.

[16] IITK OSD Simulator Project Home Page. http://iitk-osd-sim.sourceforge.net/.

[17] INCITS Technical committee T10 Home Page. http://www.t10.org/.

[18] Panasas Inc Home Page. http://www.panasas.com/.

[19] Lustre Home Page. http://www.lustre.org/.

[20] Sage A. Weil, et. al., Ceph: a scalable, high-performance distributed file system. Proceedings

of the 7th conference on USENIX Symposium on Operating Systems Design and Implemen-

tation - Volume 7. Seattle, WA. 2006. pp. 307 - 320.

[21] The Intelligent Storage Consortium in the University of Minnesota’s Digital Technology

Center (DISC). http://www.dtc.umn.edu/disc/.

BIBLIOGRAPHY 81

[22] Object store project at IBM Haifa research Labs.

http://www.haifa.il.ibm.com/projects/storage/objectstore/.

[23] Intel’s Open Storage Toolkit. http://sourceforge.net/projects/intel-iscsi/.

[24] Kevin KleinOsowski, Tom Ruwart, and David J. Lilja, Communicating Quality of Service

Requirements to an Object-Based Storage Device. Proceedings of the 22nd IEEE / 13th

NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05), Mon-

terey, California USA. pp. 224-231.

[25] Garth A. Gibson and Rodney Van Meter. Network Attached Storage Architecture. Commu-

nications of the ACM, Nov. 2000, vol. 43, issue 11. ACM Press New York, NY, USA. pp.

37-45.

[26] Bill King. LUN Masking in a SAN. QLogic White paper 1.952.932.4000.

http://www.virtual.com/whitepapers/QLogic_LUN_Masking_In_A_SAN_wp.pdf.

[27] Chris King. Zoning: The Key to Flexible SAN Management. QLogic White Paper

022202/Rev C.

www.qlogic.com/documents/datasheets/knowledge_data/whitepapers/whitepapers.zoning.pdf.

[28] Gibson, et. al., File Server Scaling with Network-Attached Secure Disks. Proceedings of

the ACM International Conference on Measurement and Modeling of Computer Systems

(Sigmetrics ’97), Seattle, Washington, June 15-18, 1997. pp. 272-284.

[29] Gobioff, et. al., Security for Network Attached Storage Devices. CMU SCS Technical Report

CMU-CS-97-185, 1997.

[30] Gibson, et. al., Filesystems for Network-Attached Secure Disks. CMU SCS Technical Report

CMU-CS-97-118, 1997.

[31] Gibson, et. al., NASD Scalable Storage Systems. USENIX99, Extreme Linux Workshop,

Monterey, CA, June 1999.

[32] Andrew Leung, Ethan L. Miller, Stephanie Jones. Scalable Security for Petascale Parallel

File Systems. Proceedings of SC ’07, November 2007.

BIBLIOGRAPHY 82

[33] Andrew Leung. Scalable Security for High Performance, Petascale Storage. Technical Report

UCSC-SSRC-07-07, June 2007.

[34] Feng Wang. Storage Management in Large Distributed Object-Based Storage Systems. Ph.D.

thesis, University of California, Santa Cruz, December 2006.

[35] Sage Weil, et. al., Ceph: A Scalable Object-Based Storage System. Technical Report UCSC-

SSRC-06-01, March 2006.

[36] Christopher Olson, Ethan L. Miller. Secure Capabilities for a Petabyte-Scale Object-Based

Distributed File System. Proceedings of the ACM Workshop on Storage Security and Sur-

vivability (StorageSS 2005), November 2005. pp. 64-73.

[37] Girish Moodalbail, et. al., Backup Aware Object based Storage. DTC Research Report

2007/25, June 2007.

[38] David Du, et. al., Experiences in Building an Object-Based Storage System based on the

OSD T-10 Standard, Proceedings of the IEEE Conference on Mass Storage Systems and

Technologies, MSST, 2006, College Park, Maryland, USA.

[39] Ying-ping Lu, et. al., QoS Provisioning Framework for OSD-based Storage, Proceedings of

the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technolo-

gies (MSST’05), 2005, Monterey, California USA. pp.28-35.

[40] Object Store Project at IBM Haifa research Lab Home Page.

http://www.haifa.ibm.com/projects/storage/objectstore/.

[41] Dave Hitz, et. al., File system design for an NFS file server appliance. Proceedings of the

USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical Confer-

ence,1994, San Francisco, California USA. pp. 235 - 246.

[42] James Griffioen, KY Randy Appleton. Reducing file system latency using a predictive ap-

proach. Proceedings of the USENIX Summer 1994 Technical Conference on USENIX Sum-

mer 1994 Technical Conference - Volume 1. Boston, Massachusetts. pp. 197 - 208.

[43] Peng Gu, et. al., Nexus: A Novel Weighted-Graph-Based Prefetching Algorithm for Meta-

data Servers in Petabyte-Scale Storage Systems. Proceedings of the Sixth IEEE International

BIBLIOGRAPHY 83

Symposium on Cluster Computing and the Grid (CCGRID’06) - Volume 00. Singapore. 16-

19 May 2006. pp. 409 - 416.

[44] Pallis G., et. al., A Clustering-based Prefetching Scheme on a Web Cache Environment.

International Journal Computers & electrical engineering, Elsevier, 2007.

[45] Carl D. Tait et al., "Detection and Exploitation of File Working Sets," International Confer-

ence on Distributed Computing Systems, IEEE, Arlington, Texas, USA. May 20-24, 1991.

pp. 2-9.

[46] Cluster File System Inc Home page. http://en.wikipedia.org/wiki/Cluster_File_Systems.

[47] Sun Microsystems Inc Home Page. http://www.sun.com/.

[48] The iSCSI Enterprise Target Project Home Page. http://iscsitarget.sourceforge.net/.

[49] SNIA Europe IP Storage Initiative. IP Storage Technology Paper.

http://www.snia-europe.org/downloads/ipstorage/IP_Stor_Tech_paper_Final.pdf.

[50] Information technology - SCSI Primary Commands - 4 (SPC-4). Project T10/1731-D, Revi-

sion 14. T10 Technical Committee NCITS, March 2008.

www.t10.org/ftp/t10/drafts/spc4/spc4r14.pdf.

[51] Douglas Gilbert. The Linux 2.4 SCSI subsystem HOWTO.

http://sg.torque.net/scsi/SCSI-2.4-HOWTO/.

[52] NetLink Sockets. Linux Man Pages. http://linux.die.net/man/7/netlink.

[53] GNU General Public License. http://www.gnu.org/licenses/gpl.html.

[54] R.C. Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal 36 (November 1957), pp 1389-1401.

