Certificate

This is to certify that the work contained in the B.Tech. Project report titled “Issues
with designing a dual core processor with a shared L2 cache on a

Xilinx FPGA board”. submitted by V Bhanu Chandra (Y3383) and Varun Sharma
(Y3393) has been carried out under my supervision and this work has not been submitted
elsewhere for a degree.

/(ke Clo M 03/05/20%
Dr. Mainak Chaudhuri

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
May, 2007

Issues with designing a dual core processor with a shared LZache on a Xilinx
FPGA board

V Bhanu Chandra (Y3383), Varun Sharma (Y3393)
{vbhanu,varunsf@cse.iitk.ac.in
Project Supervisors: Dr. Mainak Chaudhuri, Dr. Rajat Moona
{mainakc,moonp@cse.iitk.ac.in
Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Abstract

Dual core processors provide better performance than single core processors because of the support of the thread level
parallelism. We discuss the issues with designing a dual core processor with a private L1 cache and shared L2 cache on an
FPGA board.

1. Problem Statement

We discuss the issues involved with designing a MicroBlazseh dual core processor on Xilinx FPGA board. The first level
cache is implemented and is private to each core. So, wesabseproblems involved with designing the second level each
which would be shared by the two processors.

2. Introduction

As observed by the Moore’s law the transistor density is vapydly increasing. The performance that can be extracted f

a single core has neared it's threshold. So, in this sitogt@ople are looking at multi-core processor designs todngpthe
overall performance of the system. A multi-core micropssee is one which combines two or more independent procgssor
into a single package, often a single integrated circui).(KCdual-core device contains only two independent micoepr
cessors. Very often the applications exhibit thread leeghjelism (TLP) and multi-core microprocessors can enchahe
overall performance of the system by exploiting the TLP withincluding multiple microprocessors in separate plalsic
packages. This form of TLP is often known as chip-level nputicessing, or CMP.

International Business Machines(IBM)’'s POWER4 was thé fitml core module processor that came outin 2000. The most
recent advancement in this field is Intel’s Centrino Duo M®Bechnology [2] which is being used in Centrino notebook.

3. Simulation Environment Tools

3.1. Xilinx Platform Studio(XPS) and Embedded DevelopmenKit(EDK)

EDK [1] is an integrated software solution for designing embed processing systems and implementing on a Xilinx FPGA
device. The components of the Xilinx EDK are:

e Hardware (Intellectual Property) for the Xilinx Embedded&essors and their peripherals.

e Drivers, Libraries and a Micro Kernel for Embedded Softwasvelopment.
e Software Development Kit(SDK), Eclipse based IDE.
e GNU compiler and debugger for C development for MicroBlazd BowerPC.

XPS provides an integrated environment for creating sofiveand hardware specification flows for embedded processor
systems based on MicroBlaze and PowerPC processors. itdpsoa graphical system editor for connection of processors
peripherals and buses. The salient features of XPS are:

o Ability to add cores, edit core parameters, and make bus igndlsconnections to generate an MHS(Microprocessor
Hardware Specification) file.

o Ability to generate and modify the MSS(Microprocessor #afte Specification) file.
e Support for the following tools:

— Xilinx SDK

— Base System Builder(BSB) Wizard

— The create and import IP wizard

— Platform generator

— Library Generator

— Xilinx Microprocessor Debugger(XMD)
— Platform Specification Utility

o Ability to generate and view system design report.

e Process and tool flow dependency management.
3.2. Virtex 4 FPGA board

We used the Virtex 4 FPGA board and the ML403 Evaluation &tatf4] for implementing our designs. Some of the salient
features of the board are:

e 64 MB DDR SDRAM, 32 bit interface running up to 266-MHz datéera
e General purpose LEDs and push buttons.
e RS-232 serial port.
e One 4Kb IIC EEPROM.
e PS/2 mouse and keyboard connectors.
e JTAG configuration port for use with Parallel Cable Il anddl Cable IV cable.
e System ACE and Compact Flash Connector.
3.3. Integrated Software Environment(ISE)
ISE is a design software suite. ISE can be used to designferelift source types such as HDL, Schematic Design filess Stat

Machines and IP cores. HDL sources may be synthesized ugiing ®ynthesis Technology(XST). The Project Navigator
interface provides a visual design manager for the entoegss.

3.4. Hardware Used

We are using a Virtex 4 ML403 Evaluation Platform. The othardware components include:
e RS232 cable for the I/0O. This is connected to the RS232 path@hoard on one end and serial port on the other end.

e JTAG adapter for hardware debugging and also downloadmgitstream on to the board.

4. Design

4.1. Design of the processor

The processor that we have is a highly configurable 32-bitdBtaze[3] softcore. MicroBlaze processor uses Big endian
bit-reversed format to represent the data. The L1 cachepkemmented, it is private to the processor. If L1 cache is aded
then it can simply be enabled. The size of the L1 cache is corafiie, while the minimum size of the cache is 2kB.

Instruction-side Data-side
bus interface bus interface
oPE) N ALU <DDPE>
T L1 Program e 2 NI E
g <— Counter Special — Shift d g‘ ,
S Purpose . ~> :
EXC I__M < D Regisiers __J'\\ Barrel Shift g | DXCL_M
IXCL_S [> 7S 7S = Multiplier <1 oxcLs
Divider
'_r.
B FPU

B — B

|L|is Instruction EES k. OLMB >

[R SIS
— 1] | i

Instruction

Decode
; Register File ::> MFESL 0.7

32 X.32b ~ <: SFSL 0.7

17
i

<

Optional MicroBlaze feature

Figure 1 MicroBlaze Architecture

The processor is a master on an OPB [5] (on-chip periphesjldnd also on the LMB (local memory bus) each of which
addresses an address range. When the OPB bus is added istéra sye OPB arbiter is generated by the XPS. When the
processor does not find certain data in the first level cacheéiche is private to the processor), a complete requedidor t
data is sent on to the OPB bus which has access to that adanggs iThe local memory bus is connected to the local memory
which is a small memory made of BRAM blocks. It is a high speed &hd BRAM memory is also very efficient. Hence,
this memory can be used to host small programs which woulddugthe performance of the program.

4.2. System Design

The fact that OPB is a multi master bus allows one to connebtthe cores to the bus and then also have the cache controller
on the same bus. Optionally one can enable the L1 cache indleegsor, this would be private to the processor. If theeach
is enabled in the processor then the L2 cache mechanism wettlte second level cache else it would act as the first level

cache. The L2 cache could be implemented in the BRAM blockistiaa controller is also a peripheral which is connected
to the OPB bus.

The processors would generate request for certain act@eatain address location by setting the signals on the OR8.
respective device on the OPB bus would identify the requeistgbgenerated and process it as needed. When the request is
for certain data, the L1 cache controller, private to eadt@ssor, checks whether the data is in the L1 cache else detemp
request is sent on to the OPB bus. This could then be obsewtttth.2 cache controller and then if that data is present in
the L2 cache then that data is returned else the data shodiéddbed from the DDR SDRAM and the data be sent on the
OPB bus. This data is then sent to the processor, cachingd-it ion the way. The same data should be cached in the L2
cache by the cache controller.

AR L2 cache and
-!-_5 | controller
Bl
| == o o] [aa] %\
e g o3 B T T
SLAVES OF mb_oph
dalr
| bR sBRA s cFps iae LEDE Pokitions
A B C
! i
Push_Bitsy. Position S5 art g mockia
b E

Figure 2 Final Design

The processor puts the address from which the data has tedbedeon the Bus2iAddr port and at every clock cycle this
is examined and if the appropriate Read signals are set ardhth is available in the cache then it is put on the bus. Tte po
of the controller which has the data is IP2BData. If the data is not available in the cache then the dd&dked from the
DDR SDRAM by setting the DDRRAMP2BusAddr to the address from which the data is to be fetched. Theakn be
obtained by reading the port DDRRARus2IP Data.

5. Implementation

We have created a design which has two processors, eachtwithwin local memory and two separate programs each of
which prints a separate string. Each program is loaded irgddcal memory corresponding to one of the cores and is exe-
cuted on the corresponding core. The expected and the actipalt is a jumbled string.

*?- test - HyperTerminal
File Edit Wiew Call Transfer Help

Dl| 515] 05| o

|ARRARARARARARAAARAA
AAARAARARARAARARAR
BABABABABABABABABBABBABBARBB]

Figure 1 MicroBlaze Architecture

Due to a bug in the 8.2i version of the software it was not fegb create a peripheral which could be coded in verilog.
We have found a workaroud for this, the workaround requiresto change the MPD and PAO files generated by the software.

5.1. Cache Implementation

Focus of our work so far has been to implement a second legbkctmr a single processor. The idea is to implement the
cache using BRAM blocks and the controller written in vegild@he IPIC (intellectual property interconnect) makesrit-s
pler for one to address the signals that are needed to acatsfram BRAM blocks and also the information on OPB is
more easily addressable. The idea is to have separate BRadWdfor cache and for the tags.

The address sent onto the OPB by the processor can be rebgivied cache controller and then sent to the BRAM to see
if the corresponding data is available. If it is then the datsent to the processor else the data is obtained from the DDR
memory and written to the cache before it is sent to the psme$he data read from DDR SDRAM is read in units of eight
words and the cache is write through.

The cache that we have discussed and implemented has twifalstructure:
1. Six tag bits are associated with each cache line.
2. Ten bits have been allocated for the index.

3. Five bits have been taken for the block offset.

| First 11 bits are (6 tag bits| 10 index bits| 5 block offset bits]

Note that with the above structure we would need 32KB of sfiaceache and 2KB for the tag, half of which is for the
state bits. The tags are stored in a BRAM block and the cactaeiglatored in 16 BRAM blocks. Hence we take 17 BRAM
blocks. In the tag BRAM block the first line is assigned to thg 4nd the second one is given to the corresponding state bits
This continues, so half of the BRAM block is taken by the tagpil@vthe other half is assigned to the state bits.

6. Issues with the design

As soon as our cache controller was compiled, we were stutkavwroblem in our initial design. The address generated
by the processor for getting the data belonged to the DDRR3iNce the cache controller was also a peripheral attached to
the same bus, it had a different address range. Hence it teapiwre the signals of the DDRRAM. Also we cannot have an
overlap of addresses for the cache controller and the DDRR3dthere was no way, we could run the system with a fully
functioning L2 cache.

We had overlooked this problem in it's initial stages hopimat we could have different disjoint address spaces focdlcbe
controller and the DDRRAM. The idea was to configure the pseoeto generate addresses in the range of the controller and
then translate the address that comes to the controllerdbsémding it to the DDRRAM. Later we discovered that it is not
possible to change the whole set of addresses generated pyoitessor since the processor would always have ingtngcti
which would require it to address the absolute address anjdstahe offset.

7. Alternate Designs

We discussed the following designs after we realised tleag#rlier design does not work:

1. This design had 2 OPB buses. The Microblaze processorthed peripherals(except DDRRAM) were attached on
one of the bus and the DDRRAM was attached on the second ORB'bad.2 cache controller was slave on the first
bus and master on the second. The idea was that all the sipaalsre directed towards the DDRRAM will have to
pass through the cache controller and thus here the cactemaninto the picture if it has the requested data.

Slav OPB bus
Microblaze aveon o

1
| /
L2 cache
controller

/ﬁ |
Master on DIR, BUBAM
OPB bus 2

Design with multiple OPB buses

2. In the next design, we thought of removing the DDRRAM frdra system. Instead we can use the BRAMSs in the L2
cache controller to emulate the DDRRAM. The existing BRANtaehed to the L2 cache controller can be broken into
two parts. Some acting as a DDRRAM and the others acting amtRec The access to the first part can be delayed
using delay signals while the other part can be fast as BRAMhat it looks like a faster memory, which a cache
should be.

Microblaze

L2 cache controller

|
BRAMs BEAMs= acting

-y | =
enmlating DDR| | ¢ L2 cache

Design with DDR emulated in BRAM

Each of the above designs met with problems because of whéghdannot be implemented either. The first design again
heads into the problem of two different peripherals havimgtame address space while the second one does not work due
to the limited number of BRAM blocks on the system. The syskas a total of 36 BRAM blocks, 17 of which are being
used by the cache, assuming that we use a BRAM block eachdblefiel cache for each of the processors we would be left
with 17 BRAM blocks to emulate DDRRAM. Thus due to the limitedmber of BRAM blocks this design also has to be
discarded.

8. Suggested Solutions

As we discussed these problems we came to believe that {beiiog approaches would help solve the problems that have
been mentioned above:

1. Thefirstdesign change that was proposed to overcomedbéepns address above are to use the user defined processor.
The advantage of using our own processor is that we can dgerntbe addresses as we require. So we can add a
translator in the processor and the addresses which reEDRmemory will be appropiately mapped to the address
range in L2 cache controller. Then we can even do away withs2$and all the IPs would be attached to the same
bus.

2. The second design proposal is to add the functionalitysthadard IBM bridge protocol in the L2 cache controller
connected to both the buses. It will be slave on the bus tradrisected the processor and master on the second bus.
The bus protocol requires only an address range that hast@pped to the second bus. It has no address range of its
own. If the L2 cache controller has this protocol built inwibnt overlap with DDR. It can respond to the data request
if the data is present in cache in a tranparent manner whitteifunctionality of the cache.

9. Conclusion

The implementation of an L2 cache is not possible in the ciiseenario because of software restrictions. The L2 cactie a
the DDR cannot have the same address range because botratteched on the bus and their address range cannot overlap.
Therefore a need for more flexible system is required. Thig beadone using a user defined processor which generates
addresses for L2 cache or it can be done using OPB20OPB btitigieg a bridge will help in communicating across 2 buses.
The bridge can also act like a L2 cache controller which ismeated to BRAMSs. It can capture the signals and reply on its
own based on whether it has the data or not. And if it does nat tiee data, it can request the DDR to furnish the data.

For testing the correctness of the current user logic of thedche controller, either of the designs needs to be imple-
mented. Various issues have to be kept in mind while desigsame of which are:

1. Failure of the software to make proper entries into théesys
2. Behavior of the processor or the bridge should be dep¢iotethe OPB bus protocol.

3. While using the bridge, the cache controller should belaa transparent manner.

We have listed a number of issues that we faced while desighisystem and the methods to overcome them. These issues
should be considered while implementing a fully functiotadl core system with a shared L2 cache.

References
[1] Embedded System Tools Reference Manual

Webreference http://www.xilinx.com/ise/embeddedtesipdf

[2] Intel Technology Journal, Intel Centrino Duo Mobile Temlogy
Volume 10, Issue 02, May 15,2006
Webreference http://www.intel.com/technology/itj/Bd@lumel0issue02/artdthtro_to_core duo/pOlabstract.htm

[3] MicroBlaze Processor Reference Guide
Webreference http://www.xilinx.com/ise/embeddedirahguide.pdf

[4] ML40x EDK Processor Reference Design
Webreference http://www.xilinx.com/bvdocs/userguidg®82.pdf

[5] OPB IPIF Architecture
Webreference http://www.xilinx.com/ipcenter/catalogicore/docs/oplipif. pdf

	certi.pdf
	final_report.pdf

