
Memory Management using Dynamic Memory
Switching

CS499 – Project Report

by

Sharad Chole and Sanchay Harneja
Y3101, Y3307

Under the guidance of

Prof. Rajat Moona

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

May 2007

Abstract

Memory can be efficiently utilized if the memory demands can be analyzed at
run-time and satisfied using dynamic memory switching. To provide a base for our
implementation we first do static analysis of system’s performance versus amount of
available memory. We also study the fragmentation of memory and usage of memory in
certain systems. Then we implement a kernel thread to dynamically control availability of
memory depending on system’s need. Further our implementation provides support for
reducing power consumed by memory. We also give an approach to calculate the most
suitable amount of memory for a given system given its performance requirements.

1. INTRODUCTION

This project studies the behavior of a given system (a system here is defined as: a
fixed platform, OS, and applications) as regards to its memory requirements. Specifically,
given some performance measure, we try to utilize memory efficiently. Performance
measures can be defined in various ways, for example, either time taken to execute the
program or benchmark, or it could be throughput in terms of number of bytes read, or it
could as simple as the total number of page faults. We define our performance measure to
be the page-cache hit ratio and power consumed by memory.

1.1 Motivation

We know that low memory hampers the performance of any system, but
intuitively, memory above a certain point doesn’t increase the performance of the system
by much. We want to test this intuition and understand the relationship between
performance degradation versus savings, power.

“If by giving extra memory to a process, the improvement in performance is
marginal, it is better to power down the extra memory to conserve energy. Optimizing
energy consumption of computing components has become important not only for
mobile, wireless and embedded devices due to short battery life, but also for high-end
systems to reduce electricity bills.”[8]

It has been observed by previous studies [9, 10, 11, 12] that the memory
subsystem is one of the dominant consumers of the overall system energy. “Recent
measurements from real server systems show that memory consumes as much as 50%
more power than processors.”[13] To address this problem, many modern memory
modules support multiple low-power operating modes to conserve energy [14].

1.2 Work done

In the first semester we did static analysis of the memory usage on Linux kernel.
By static analysis we mean, changing the total memory available to the system at the boot
time, and then plotting performance versus the total memory. We ran several benchmarks
and also made bitmaps of the whole memory to aid to our understanding of the memory
usage.

As this static analysis is impractical for systems (i.e. we cannot reboot system to
change memory while application is running), we want the system to be able to decide for
itself its most suitable amount of memory.

In the second semester we have implemented dynamic memory switching for
Linux kernel (specifically 2.6.15). First of all we divide the whole memory into banks
(contiguous segments of same size). Then using a page migration algorithm we can
migrate pages from one bank to another. A kernel thread runs, which monitors the total
memory usage of the system, if it finds reclaimable pages (PageCached and free) over a
certain limit, it migrates pages such that a whole bank becomes free, and then it turns this
bank off. This switched off bank is invisible to the system (i.e. this memory cannot be
used for any purpose). If the system needs memory beyond what it already has, the kernel
thread turns the switched off banks on, and this bank can be used as usual like free
memory. On a longer run this thread can plot the number of page faults (or page cache hit
ratio) versus the amount of memory available (number of banks which are on) from
which we can extract the most suitable amount of memory for this system.

2 Static Analysis

 In this section we try to analyze systems behavior by statically observing the
system and if necessary using reboot to change system memory.

2.1 Memory Usage Patterns

Before starting to implement dynamic memory we wanted to get an idea of how a
system uses its memory, for that we studied the meminfo and vmstat files in /proc
directory. These files give several parameters like total memory, free memory, buffers,
cached, active, inactive, page faults etc of the system. We chose to monitor a few of
these:
MemTotal: Total usable ram (i.e. Total RAM - few reserved bits - the kernel binary
code)
MemFree: Total free ram (The sum of LowFree + HighFree)
Buffers: Mem used by BufferCache (Relatively temporary storage for raw disk
blocks)
Cached: Cache for files read from the disk
SwapCached: Mem used by swap cache
PageCached: Buffers+Cached+SwapCached (This PageCached is reclaimable)
Pgfault: Faults (major+minor)

We ran a program for 12 hours on few of the select systems, recording meminfo and
vmstat every 5 secs. We then plotted the above parameters against time, and also
calculated their average. These graphs and table give us an indication as how the systems
use up their memory.

a) Time versus Memory Usage b) Time versus Memory Usage

 c) Time versus Memory Usage d) Time versus Memory Usage

TABLE 1: This table gives the average of the above parameters over a 12 hour period
(All figures are approximated to the nearest MB)

Computer
Name

Total
Mem

Free
Mem

Used
Mem

PageCached Used-
Pagecached

cseserver1 4056 2800 1256 1090 166
csews100 1999 791 1208 891 317
csews102 1999 1525 474 221 253
csews103 1999 1215 784 548 236
csews106 1999 694 1305 995 310
csews111 1999 1080 919 674 245
csews112 1999 129 1870 1358 512
csews12 1001 30 971 465 506
csews14 1001 234 767 432 335
csews15 1001 62 939 542 397
csews16 1001 114 887 527 360

2.2 Memory Bitmaps

Memory bitmap is bitmap of memory taken per page, i.e. a bit in the bitmap
shows status of a particular page in physical memory.

The bitmap image is a grayscale image with one pixel per page stored in row major
format. This is constructed by traversing the /proc entry and assigning the following color
values:
Free=White, PageCache=Grey, Slab or Reserved or Non-Free=Black
Following are bitmaps of a machine with 1 GB ram at different times.

2.3 Effect of changing memory on performance

To see the effect of varying physical memory on the performance we ran some
standard and synthetic benchmarks like HPL, TPCC, Quick Sort, Java Garbage
Collection, Kernel Compilation etc on specific machines. We changed the amount of
physical memory by giving a boot-time option in the grub boot-loader and ran
benchmarks each time. Some of the benchmarks and there performance statistics are
given below.

2.3.1 HPL Benchmark

HPL is a software package that solves a (random) dense linear system in double
precision (64 bits) arithmetic on distributed-memory computers. It solves a linear system
of order n: A x = b.
Performance measure: Floating operations per second.
Input: A fixed value for the rank of the linear equation, we chose it to be 9000(n = 9000).
Platform: P4 2.8 GHz, 1 GB RAM, Kernel 2.6.5-1.358, Fedora Core 2.
Following graphs give us Performance Measures versus Memory. Here we can see
relation between performance and pagefaults.

 a) Giga Floating point operations versus Memory b) Time (minutes) versus Memory

 c) Major Pagefaults versus Memory d) Minor Pagefaults versus Memory

2.3.2 TPCC Benchmark
The TPC-C benchmark is a well-know benchmark used to measure the

performance of high-end systems. TPC-C simulates the execution of a set of distributed,
on-line transactions (OLTP), for a period between two and eight hours.
Performance measure: TPC-C transactions per minute (tpmC).
Input: 8 warehouses with 10 terminals per warehouse, measurement interval of 2 hours.
Platform: AMD 64 1.8ghz, 1 GB ram, 2.6.15 kernel, FC5

Following graph was obtained after plotting tpmC versus amount of memory.

2.3.3 Quick-Sort
The qsort() function is an implementation of C.A.R. Hoare's quick sort algorithm,

a variant of partition-exchange sorting. It has O(nlogn) average performance; this
implementation uses median selection to avoid the O(n^2) worst-case performance of
quick sort
Performance measure: The time to sort.
Input: We used integer array of size ~750MB to perform quick sort.
Platform: P4 2.8 GHz, 1 GB RAM, Kernel 2.6.5-1.358, Fedora Core 2

Following graphs give us Performance Measures versus Memory:

a) Time (minutes) versus Memory

 b) Major Pagefaults versus Memory c) Minor Pagefaults versus Memory

2.3.4 Java Garbage Collection
This is a synthetic benchmark. In this we take an array of linked list of some size.

In a single iteration, we dump the linked list in every array index and make a new linked
list at that index. This is repeated for a few iterations. This results in garbage at each step
which has to be collected by the Java Garbage Collection.
Performance measure: Time for execution (garbage collection).
Platform: P4 2.8 GHz, 1 GB RAM, Kernel 2.6.5-1.358, Fedora Core 2

Following graph give us Time versus Memory:

a)Time execution (garbage collection) versus Memory

2.3.5 Kernel Compilation
This is also a synthetic test. We measure the time taken to compile the linux

kernel.
Platform: Pentium D 1.8 GHz, 2 GB ram, 2.6.15 kernel, Fedora Core 5
Following graph give us Compilation Time versus Memory

a) Compilation Time versus Memory

3 Implementing Dynamic Memory Switching

The following steps constitute our whole process of implementing dynamic memory
switching in a linux kernel.

1. Introducing a new kernel zone, allocating kernel pages in it and making it dynamic.
2. Implementing page migration.
3. Creating banks & implementing bank turning off and on.
4. Making a kernel daemon which automatically turns banks on/off.

3.1 Introducing a new kernel zone

Slab allocations are contiguous in memory (size more than page-size). So we cannot
migrate slab pages using page migration based on single page. As we cannot reallocate
slab objects we need to allocate them into some region of memory which we will never
turn off. A simple solution lies in creating a new zone for allocation of kernel-pages
(kernel-page is pages allocated using GFP_KERNEL flag).

a. GFP-flags are used to allocate pages in potentially best region of memory.
There are flags defined for each zone of memory. We introduced a new flag
called __GFP_KERNEL corresponding to the new zone.

b. To initialize the zone we need to define (or calculate) its size. It should be
defined equal to maximum size of slab. We defined it to be 112 MB. So now
memory is fragmented into following zones

1. DMA 0-16 MB
2. Kernel 16-128 MB
3. Normal 128-896 MB
4. Highmem 896-4 GB

c. Now to allocate all kernel-pages in zone_kernel we add our zone flag to
GFP_KERNEL. Now when a page is allocated using GFP_KERNEL flag it is
situated either in zone_dma or zone_kernel i.e. below 128 MB limit. As all the
non-migrating pages are below 128MB we can turn off memory above
128MB. Zone_kernel can be made specific to only kernel-pages i.e. changes
can be made so that only kernel-pages are allocated in zone_kernel.

3.2 Implementing page migration

The migration function takes pointers to source page and destination page.
Implementation is based on migration algorithms for following cases.

1. When page is pointed by one or more page table entries we need to change all
of them to point to destination page. We use reverse mapping to find page
table entries form page pointers.

2. When page is in swap-cache or page-cache we delete it from cache and add
destination page in respective cache.

3. When page is in buffer-cache, we remove it from corresponding buffer_heads
and add destination page into it.

4. When page is in slab-cache or is in writeback or is locked we do nothing.

We copy relevant page flags and other fields to destination page. Last step is to

copy the source page data into the destination page. Note that the algorithm should be
such that it either does it all or does nothing otherwise we will end up with two copies of
same page.

3.3 Creating banks and implementing bank_on, bank_off

We divide memory into contiguous segments of same size. We call this a bank. Each
bank is a struct which contains information about whether bank is on or off, bank range
and number of free pages in it. Captured pages are those pages which can’t be allocated
to anyone on request. So when the number of free pages goes to zero, bank is turned off.
 Banks are stored in an array per node. For captured pages we use captured_area
defined per zone. Captured_area is used to capture pages using buddy system (exactly
similar to buddy allocator for free pages). This puts constraint on bank size to be multiple
of 4MB. This implementation makes it easy to exchange captured and free pages.

We have written two system calls, one for turn off and other for turn on. Both calls take
bank as argument.

a. Turn off:
1. Capture all free pages from buddy which are in the bank.

2. Hold zone lock and isolate all LRU pages (i.e. isolate pages in active
list and inactive list that belongs to bank.)
3. Try to migrate pages. If migration was successful, capture pages.
4. Calculate number of captured pages in this bank. If it is equal to bank
size, return success.

b. Turn on:
For each captured page in bank, free it.

3.4 Kernel daemon

To implement dynamic memory switching in a linux kernel we have written a kernel
daemon. We call it bmd (Bank Management Daemon). Its major functionality is to keep
track of system’s need and availability of memory and take action according to them.
Actions are

1. If system needs more memory than available then turn part of memory on.
2. If availability is more than system’s need then turn part of memory off.
3. If need and availability are compatible with each other then do nothing.

To understand systems memory requirement daemon needs to keep track of free

memory and reclaimable memory. And as it can increase memory available to system we
have to consider its effect and use in page reclamation algorithm. We implemented
turning part of memory on and off using banks, so change in amount of memory will
always be a multiple of bank size. Working of daemon can be explained in three steps.

1. Memory requirement:

Reclaimable pages are potential free pages as they can be reclaimed very easily
and used as free pages (note that other pages in LRU lists can also be reclaimed but they
will most likely cause disk write due to swapout). Reclaimable pages consist of
PageCached pages (i.e. cached pages + buffer cache pages + swap cache pages). Even
though all PageCached pages are potential free pages, it is not good to reclaim all
PageCached pages as it might lead to a large PageCache miss ratio. Watermarks for
allowable PageCached size can be defined using performance requirement of user and
type of applications running on system. Similarly we have to define watermarks for free
pages as too many free pages are not good for power and too few free pages are not good
for performance.

As PageCached pages are potential free pages, watermark for them are decided
while considering them free pages. i.e. watermark is decided for number of PageCached
pages (nr_cache)+ number of free pages (nr_free). These watermarks are called
CACHE_FREE_HIGH and CACHE_FREE_LOW. Similarly two watermarks for number
of free pages are FREE_HIGH and FREE_LOW. Now we define actions for daemon as
follows.
Action 1: If(nr_free + nr_cache < CACHE_FREE_LOW && nr_free < FREE_LOW)

Turn smallest indexed bank on.
Action 2: If(nr_free + nr_cache > CACHE_FREE_HIGH || nr_free > FREE_HIGH)

Turn largest indexed bank off.

 Condition for action 1 can be explained as: after turning bank on neither free
pages nor potential free pages are more than certain limit. Condition for action 2 is either
free pages or potential free pages are more than certain limit. So, allowable PageCached
size is bounded by CACHE_FREE_HIGH.

Note that to avoid clashing, difference between pair of watermarks should be
greater than bank size i.e. FREE_HIGH should be greater than FREE_LOW + bank size.
Otherwise as soon as we turn bank on (action 1) condition for turning bank off (action 2)
is satisfied and vise versa.

2. Page reclamation algorithm:

 The daemon which implements page reclamation is called kswapd. As LRU lists
are stored zonewise, kswapd also works per zone as it needs to scan LRU lists. But the all
data-structures for implementing bmd are stored per node. So we need to somehow
communicate changes done by bmd to kswapd.

As the job of kswapd is to increase number of free pages in zone (above certain
limit) it should call action 1 from our daemon if the condition is satisfied. Now action 2
needs free pages and this need may wake up kswapd. Again if condition for action 1 is
satisfied kswapd will call action 1. Now we are simultaneously turning bank on and off.
To avoid this race condition we have to use locks per node.

3. Other Parameters:

 a. Timeout is time after which bmd will be rescheduled. It affects both
performance and power. If timeout is too small bmd will be rescheduled much frequently.
This will certainly increase load on system. It may also cause to turning memory on and
off too frequently. As both this actions are quite heavy this will certainly decrease
system’s performance. If timeout is too large effect of change in system’s memory
requirement on power will be very late. Timeout should be decided considering how
frequently system’s memory requirement changes and how much cpu-time a turning bank
off operation needs.
 b. Bank_size is size of a bank. If it is too small them it may cause too may bank
turn on and off. If it is too large then precision to which we manage power will decrease.
So it should be determined considering smallest block size on RAM that can be turned
off and the frequency of turning bank off. (The Rambus rdram has memory with
bank_size of 128MB, 32MB, 16MB [2,8])

3.5 Power Considerations

Rambus RDRAM differs from the rest by allowing a finer-grained unit of control in
power management, i.e. it has bank architecture and has support to change power to
individual banks.

Following tables give specifications of Rambus RDRAM:

Power State/Transition Power Time Active Components
Active 300mW - Refresh, clock, row, col decoder
Standby 180mW - Refresh, clock, row decoder
Nap 30mW - Refresh, clock
Powerdown 3mW - Refresh
Standby To Active 240mW +6ns
Nap To Active 160mW +60ns
Powerdown To Active 150mW +6000ns

Switching a bank off means that a bank is transitions from Active to Nap, similarly bank
on means transition from Nap to Active.

An Example:

Now an example of how much power we can save. Consider all 2 GB machines in
table 1. Average value of Used – PageCached is 310 MB. Now if we set watermark
CACHE_FREE_HIGH = 200MB, we get bound on PageCached equal to 200MB (this
will decrease some performance due to less cache hits). So, average total use of memory
is bounded by 510 MB. This means on an average 3/4th of memory is switched off. So,
total power consumed by memory will be 33% of original (considering nap and active
modes instead of total on and off). 2GB RDRAM consumes approximately 16 W. Out of
which we are saving 10 W. A general desktop pc uses approximately 150 W. Hence we
may save approximately 7% of systems power.

Note, here we are not claiming that we can save 7% of systems power in our cse
lab. This claim would require much more data (probably duration of months) collected
over different seasons on majority of cse machines. Again limiting value for PageCache
chosen here is random. To get exact limit we need to have understanding of behavior of
PageCache hit ratio depending on PageCache size and our expectation for performance.

4. FUTURE WORK

1. As slab pages can only be allocated below zone_kernel we need to keep some
extra space so that in future all requests are satisfied. A better way to do this
will be to make the boundary between zone_normal and zone_kernel
dynamic.

2. In page migration algorithm when a page is in only in cache (and its not dirty)
and memory is almost full we should just delete it, instead of copying
somewhere else as it would evoke page reclamation daemon and may cause a
disk write. We also need to consider TLB-flushes for better implementation.

3. Writing a /proc entry for changing the bank_on, bank_off watermarks.
4. Finding PageCache hit ratio in the kernel.

5. Writing a user level program which changes watermarks and scans PageCache
hit ratio.

6. Plotting PageCache hit ratio versus watermarks, active memory versus time.
This active memory versus time graph gives us the most suitable amount of
memory of the system.

7. Extensive testing for the suitable values of various parameters.

5. CONCLUSION

These conclusions follow from our static analysis:

1. Some of the memory in a typical system is used by the PageCached (which is
reclaimable, i.e. even if it were not there the system will continue to function,
although with a performance degradation), and relatively lesser amount of the
total memory is being used by the processes. So there is scope that we should be
able to reduce the total amount of memory without affecting the performance by
much.

2. Using memory bitmaps we found that the free pages are scattered around in the
physical memory. Thus we have to migrate the free pages using some ‘page
migration algorithm’ so that they become contiguous in the physical memory, to
be able to switch (that bank) on/off.

3. By running some benchmark tests we found that after a certain limit, increasing
the size of physical memory does not improve the performance by a significant
amount. The loss in performance when the memory is low can be accredited to
the increase in major and minor page faults. Thus if the work to be done on a
system in known from advance, we may assign that system suitable amount of
memory according to its need.

From dynamic memory switching we may conclude that using our
implementation, for a given system, given sufficient time we can get suitable
amount of memory for the system, as governed by the user’s requirements and the
system applications. Also our implementation may be used to reduce the power
consumption of the memory subsystem given the hardware support [14].

From the active memory versus time graph (here active memory means the total
number of banks that are in on state at a given time) the user may deduce the most
suitable amount of memory as he deems fit. Of course a user may change the
watermarks if he feels that the PageCache hit ratio is less, thus affecting active
memory.

6. REFRENCES

1. Pratap Ramamurthy, Ramanathan Palaniappan: Performance Directed Energy Management
using BOS, proceedings of SLOW’05.
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/Pratap-Ram/bos.pdf

2. Hai Huang, Padmanabhan Pillai and Kang G. Shin: Design and implementation of Power –
Aware Virtual Memory, proceedings of USENIX 2003 Annual Technical Conference.
http://www.usenix.org/events/usenix03/tech/full_papers/huang/huang_html/index.html

3. Mel Gorman, Understanding the Linux Virtual Memory Manager.
http://www.skynet.ie/~mel/projects/vm/guide/pdf/understand.pdf

4. HPL Benchmark
http://www.netlib.org/benchmark/hpl/

5. TPCC Benchmark
http://www.infor.uva.es/~diego/tpcc-uva.html
http://www.tpc.org/tpcc/detail.asp

6. Cross-Referencing Linux – a Linux kernel code browser.
http://lxr.linux.no/blurb.html

7. Bruno Diniz, Dorgival Guedes, Wagner Meira Jr. , Ricoardo Bianchini: Limiting the power
consumption of main memory. Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2007.
http://www.cs.rutgers.edu/~ricardob/papers/isca07.pdf

8. Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman, Yuanyuan Zhou and
Sanjeev Kumar: Dynamic Tracking of Page Miss Ratio Curve for Memory Management.
Proceedings of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004.
carmen.cs.uiuc.edu/paper/ASPLOS04-Zhou.pdf

9. F. Catthoor, S.Wuytack, E. Greef, F.Balasa, L.Nachtergaele, and A. Vandecappelle. Custom
memory management methodology exploration of memory organization for embedded
multimedia systems design, Boston, MA: Kluwer Academic Publ., 1998.
http://www.kap.nl/book.htm/0-7923-8288-9

10. M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of compiler
optimizations on system power.
Proceedings of the 11th international conference on Architectural support for programming
languages and operating systems, 2004, Boston, MA, USA.
http://portal.acm.org/citation.cfm?id=1024393.1024415

11. A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. Proceedings of
Architectural Support for Programming Languages and Operating Systems, 2000.
http://www.cs.duke.edu/~alvy/papers/papa.pdf

12. N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy-driven integrated
hardware-software optimizations using simplepower, ISCA 2000: pp 95-106.
http://ieeexplore.ieee.org/iel5/6892/18551/00854381.pdf

13. C. Lefurgy, K. Rajamani, F. Rawson, W. F. elter, M. Kistler, and T. W. Keller. Energy
management for commercial servers, IEEE Computer, pp. 39-48, December, 2003.
www.research.ibm.com/people/l/lefurgy/Publications/computer2003.pdf

14. Rambus' RDRAM® memory interface.
http://www.rambus.com/us/products/rdram/index.html

