Development of an Operating System for Smart
Cards

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Ravinder Shankesi

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

May, 2002

Certificate

This is to certify that the work contained in the thesis entitled “ Development
of an Operating System for Smart Cards ”, by Ravinder Shankesi, has been carried

out under our supervision and that this work has not been submitted elsewhere for a

degree.

May, 2002

(Dr. Deepak Gupta)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

(Dr. Rajat Moona)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

Smart cards are increasingly getting used in various identification and verification
applications. Traditionally, smart card operating systems were proprietary and ap-
plication specific. This made it very difficult to use the same operating system for
different applications or to use two cards with different operating systems for the

same application.

In this thesis we describe the design and implementation of a standard (compliant
to ISO 7816 standard and SCOSTA standard) application-independent smart card
operating system, Card Operating System. We have developed a linux port for
testing the operating system. We have ported the operating system to a few existing

smart card chips.

Acknowledgements

I take this opportunity to express my sincere gratitude and thanks to both of
my supervisors Dr. Deepak Gupta and Dr. Rajat Moona. But for their patience
and guidance, I would never have completed the project. Working under them was
a great learning experience. I would also like to thank Dr. Manindra Agarwal who
has helped us immensly during various phases of our project.

I would like to thank MoST (Ministry of Surface Transport), members of SCAFI
(Smart Card Association for India) and NIC (National Informatics Center) New
Delhi, for their assistance at various phases of the project. In particular, I would
like to thank Dr. B.K.Gairola of NIC for his support and guidance to the project.

I would like to thank Ankit Jalote and Marghoob Mohiyuddin who have imple-
mented the security module of the Operating System. I would also like to thank
Kapileshwar Rao Bolisetti who has ported the Operating System to Linux.

My batch here was really fun to be with. I would like to thank all of them for
their help, for the irrelevant spam, for all the parties, for all the movies and for the
Khajuraho trip. They had to put up with my laziness, absentmindedness and slight
absurdities at various occassions and yet were very helpful and generous towards
me. It was great being with all of you.

At last, I would like to thank members of my family who were there to support

me at all times.

Contents

1 Introduction

1.1 History e
1.2 Introduction
1.2.1 Different classifications of smart cards.
1.2.2 Physical layout
1.2.3 Standardso
1.2.4 Basicconcepts.o
1.3 Related Work
2 System Design
2.1 Designgoals
2.2 File System layout
2.2.1 Logical structure of the File system
2.2.2 Physical layout of the file system
2.2.3 Meta Data and File Control Parameters
2.3 Basic Architecture L
3 Implementation
3.1 Main Command Header Handler
3.2 Individual Command Handlers
3.3 Support routines
3.4 Security Architecture L L
3.5 Anti-tearing protectiono
3.6 Current implementations of the Card Operating System

il

10
10
11
11
12

3.6.1 Linux port of the Card Operating System

3.7 Limitations

4 Conclusion and Future Work
A Terminology

B Support Routines

B.1 Routines for accessing meta data

B.2 Routines for accessing the File Control Parameters of a file

B.3 Routines for Accessing the data of the Elementary Files

Bibliography

il

23

24

26
26
26
28

29

List of Figures

1.1
1.2

2.1
2.2
2.3

Physical interface of smart card 3
File System on the Card 5
Logical layout of the file system in the EEPROM 10
physical layout of the file system in the EEPROM 11
Major components of the Card Operating System 13

iv

Chapter 1
Introduction

Smart cards are cards with electronic chips embedded inside them. They are used
in different applications like identification, loyalty programs, SIM cards inside GSM
phones etc., Most of the modern smart cards have a micro-controller, non-volatile
memory for storing user data, ROM for storing the operating system code and
RAM for use by the operating system. Some cards also have an extra crypto-
co processor for improving the speed-up of cryptographic algorithms used by the
operating system. Most smart cards have 8-bit micro controllers with a ROM size of
4K to 32K, RAM size of 256 bytes to 1K and an EEPROM size of 4K to 8K. However,
newer cards with 16-bit and 32-bit micro-controllers with better configurations are

beginning to appear in the market [1].

It is obvious that in such a resource-constrained environment, the operating sys-
tem on the card must be developed to utilise these resources carefully. In this report
we describe our implementation of a portable Card Operating System compliant to
SCOSTA standard [2]. The ports of this card to a few architectures are also de-

scribed.

1.1 History

Smart cards were intended as a solution to the short-comings of magnetic cards.

These short-comings include, small memory (around 220 bytes in 3 rows of magnetic

1

stripe), risk of tampering, lack of any processing logic. The earliest patent for smart
cards was filed as early as 1968 by two German inventors, Jurgen Dethloff and
Helmut Grotruppi [3], . Similar patents were filed by various other people later
[4], [5]. Smart cards started getting used more prevalently in Europe in the 1980s.
For instance, the French PTT(Postal and Telecommunications services) started
circulating millions of smart cards by 1986 after a successful field trial in 1985.
Currently smart cards are widely employed in fields other than identification like,
payment cards, loyalty applications, health card applications etc., Certain innovative

uses of smart cards include Gaming for smart cards|6], Smart Flash Card [7].

1.2 Introduction

1.2.1 Different classifications of smart cards

Smart cards are categorised in different ways depending on different criteria.

e Access Mechanism: Depending on the access mechanism smart cards can be
classified as contact-based cards and contact-less cards. Contact-based cards
are physically connected to the terminal for communication to take place. Con-
tact less cards have communication with the terminal using radio frequencies.

Some cards have both these access mechanisms embedded into them.

¢ Functional grouping: Depending on the functionality provided smart cards
can be classified as memory cards or micro-processor cards. Memory cards
have only memory present inside the card. This might be read-only or read-
write. Some times they have certain extra logic for security like write-once
protection for memory. Micro-processor cards have a micro-processor embed-

ded into the card along with ROM, RAM and some non volatile memory.

e Applications present: Depending on the applications present inside the
card they are classifed as single-application or multi-application cards. Single-
application cards have only a single application present inside the card. Multi-

application cards have more than one application supported inside the card.

e Physical shape: Normal smart cards are shaped like credit-cards. There are
also SIM cards present inside GSM phones. There are also smart cards which

are present inside a ring [9)].

In the rest of the report we limit ourselves to micro-processor based contact smart

cards.

1.2.2 Physical layout

The physical interface of the contact-based smart card is given in the ISO 7816
standards [10, 11].

HEEE
AW]IN]|F-

Cl:\c C2:GND
C3:RST C4:\bp
C5:CLK C6:1/0
C7:RFU C8:RFU

Figure 1.1: Physical interface of smart card

The Vce pin is used to supply external voltage to the card. The Gnd pin is
connected to the ground of the external terminal. The Vpp pin is used to supply
programming voltage to the card. This was required because programming the
EEPROM required higher voltage than Vcc. However, these days most cards ignore
this pin and generate programming voltage internally. The I1/O pin is used for I/O
communication. This means that communication between the smart card and the
terminal is always half-duplex. The RST pin is used by the terminal to send the
Reset signal to the card.

1.2.3 Standards

There are many standards describing various aspects of smart cards. There are
standards which are relevant to the behaviour of the card and the commands it
must support. There are also standards for standardizing the access to the card.

Apart from these we also have standards relevant for particular industries.

The most basic of these standards are the ISO 7816 group of stanadards. There are
10 of them ISO 7816-1 to ISO 7816-10. These describe various things from physical
andcharachteristics of the card [10, 11] to the application commands [13, 18, 19| to
be used by application developers. There are also many standards for the SIM cards
used in GSM phones |20, 21].

Europay, Mastercard, Visa came up with a standard for smart cards for payment
systems called EMV [32].

The standards for writing terminal side applications to transparently access any
reader include PC/SC standard [29] and the Open Card Framework [30]. Currently
implementations of PC/SC standard are mostly limited to the windows platform,
although porting of the PC/SC standard for linux is also under way [31]|. The current

implementations of Open Card Framework are implemented in Java.

A part from this there are also standards for implementing the smart card oper-
ating system like Java Card [25] and MULTOS [26]

[IT Kanpur and a technical sub-committee of SCAFT (Smart Card Forum of India)
together have come up with a standard for the development of smart card operating
systems which is compliant with the ISO 7816 group of standards called, Smart
Card Operating System for Transport Applications (SCOSTA) standard [2]. The
Card Operating System described in this report is compliant to this standard.

1.2.4 Basic concepts

1 ATR

Upon reset the the card returns a string to the terminal which indicates to the
terminal the transmission protocols it supports and the protocol parameters. This
string is called the Answer to Reset, ATR. The terminal can decide which protocol
to use, if multiple protocols are offered, by doing a Protocol Parameter Selection
PPS [12].

g File System

The file system in a Smart Card is organized as follows [13]| The file are organized

CORED

MF = Master File
DF = Dedicated File
EF = Elementary File

Figure 1.2: File System on the Card

into Dedicated Files (DFs) and Elementary Files(EFs). DFs are those files which
contain other DFs or EFs. EFs contain the actual application data that the user
want to store. Apart from Data Objects, at any DF we can also store Data Objects

which can be accessed by its Tag.

B Types of Files
EFs can be of many different types.
e Transparent
e Linear Fixed Length Record File
e Linear Variable Length Record File
e Cyclic Record File
A transparent file contains set of data units which can be accessed by their offset.

The offset of a the first data unit in a file is 0.

A record-oriented file contains data stored as records. These records can be ac-

cessed by their record numbers (starting from 01 to 254).

A linear record-oriented file contains records stored in the order of their creation.
Thus the most recently appended record is the last record of the file. Thus the first

written record is record number 1.

A variable length record-oriented file allows records to be of variable length until

the length is less than the max record length.

In a cyclic record file, the records are accessed in the opposite order of creation.
Thus the most recently written record overwrites the last record of the file an be-

comes record number 1.

g Security Architecture

The security of the smart card can be guaranteed by various mechanisms. The user
might be required to prove the knowledge of a key or a password or possible both
for some commands to be executed. If the user proves the knowlege of a key or
a password, that status (security status) is maintained until the user changes the

directory or after reset. Any file may be protected against certain commands by

giving some security attributes in the file at the time of creation of the file for that
command. These attributes might specify, for instance, that the user has to perform

External Authentication with Security Environment number 4.

A Security Environment (SE) is a set of templates specifying what conditions need
to be satisfied for certain operations to take place. For instance, it might specify
that we need to external authenticate should be done with key number 5 or user
authenticate should be done with password number 6. At any point during the

working of a program there is always a current SE.

1.3 Related Work

There are many implmentations of smart card operating systems. Many of the smart
card operating systems are built for single applications and are customized for that
application. These have a fixed files system and a few commands which are relevant
to that application. Most of the time they have proprietary commands for their
operation |22, 23|. The TCOS operating system is a ISO 7816 compliant operating
system which supports multiple applications [24].

The above operating systems have a fixed command set which is burned into the
ROM. As against these a number of implementations are present which allow the
user to program the card according to his need. The BasicCard from Zeitcontrol
[33] allows users to program applications in Basic and download them into the
card. Keycord once marketed a smart card called OSSCA (Operating System for
Smart Card Applications) which was programmable in Forth. A few vendors have
implemented the Java Card standard which would be programmable using the Java

language |27, 28]

The cost of such generality is the extra processing capability required on the
card for implementing the Virtual Machines for those languages. These cards are

typically 3 or more times costlier than the ordinary cards.

The Card Operating System described in this report is a fixed command set
operating system which is not application specific. Thus it is similar to the TCOS

operating system.

Chapter 2
System Design

In this chapter we describe the various issues involved in the design of the Card
Operating System. The physical and logical organization of the files in EEPROM
are explained. We also describe the different modules and their interaction with one

another.

2.1 Design goals

The following were the design goals while designing the Card Operating System.

e Portability:The Card Operating System must be portable to different archi-
tectures. This means that the operating system must be designed to use a
small interface for handling the hardware dependent support required from

the procoessor.

e Compactness:The Card Operating System must fit into a small size. This

means perferring simpler algorithms over efficient, but complicated algorithms.

e Maintainability:The Card Operating System must be easily maintainbale.

This involves the use of modular programming techniques.

2.2 File System layout

The file system stored in the EEPROM has the following properties:
The representation of any file in the EEPROM has the following 2 components.

1. A header containing all the meta-data of the file.

2. An optional body containing the data stored in the file. The data portion is

not present in the case of Dedicated Files.

The header will contain all the meta-data required for the file system structure that

we are maintaining and the File Control Parameters.

2.2.1 Logical structure of the File system

The File System maintaining by the Card Operating System has the following logical

layout.

Parent Pointer

Child Pointer
From EF to DF

From DF to EF

Parent Pointer
From DF to DF

Parent Pointer
From EF to DF

Sibling Sibling Sibling

BAD_PTR

Child = BAD_PTR
(No children present)

Figure 2.1: Logical layout of the file system in the EEPROM

Every file has a link to the next file (sibling) present in the same directory. Also
each file has a link to the parent DF. The master file’s parent file link points to
itself.

10

In addition every DF will have a pointer to the first child (if present). Thus given
a DF, we can access all the children (other DFs/EFs) by first looking at its child
pointer and then looking at all the siblings of the child (if present). In case no child

is present, or no sibling is present we store a constant in its place, BAD PTR

2.2.2 Physical layout of the file system

File Data (for EF)
(meta—data + data)

File Data (for DF)
(meta—data)

Free Space

File Data (for EF)
(meta—data + data)

Figure 2.2: physical layout of the file system in the EEPROM

The File system comprises of individual files, stored as blocks (of variable length),
laid out next to each other in the EEPROM. The files as part of their meta-data
contain the total length of the file (including the header). Thus we can traverse the
entire EEPROM to check out the files in the order they are stored in the EEPROM.
This can be useful, for instance, when we are searching for a file with a given DF
Name in the entire file system. It is also possible that we might have free space in
between two files. We indicate that the current block is free (by the first byte) and
the length of free space (2 bytes).

2.2.3 Meta Data and File Control Parameters

Each file contains the following meta-data stored in the header of the file.

11

1. The FDB is the first byte. Its value is equal to the file descriptor byte of the
file. It also stores whether a the current block is free by storing a value which
is an invalid FDB.

2. The length (the next 2 bytes). Its value is equal to the total length of the file
(meta-data and data of the file).

3. Every file contains the link to its sibling and parent.

Apart from the meta-data for maintaining the logical structure, we also have File
Control Parameters like File Identifier, Life Cycle Status Integer and Security-
Attributes (variable length) at fixed offsets from the file starting. The security
attributes are stored in their TLV format as given in the ISO 7816-9 documentation
[19].

Depending on the file descriptor byte, the file specific meta-data follows.

e For a DF, we have a pointer to the first child of this DF, File Id of a file
containing SE templates (Invalid File Id, if none is specified in the FCP) DF

Name.

e For an EF, we have the Short File Identifier, Data Coding byte. Depending
on the type of file we have further meta-data like, for a transparent file, the
total no of bytes. No of records, Max length of records in case of a Record
based file. If the file is write once, we also have a bit-vector indicating whether
the given byte (in case of transparent file) or given record (in case of a record

oriented file) is written to or not.

Following the meta-data for a DF, we have block of the next file. In case of an EF,
we have the data for the given file. This would be equal to total number of bytes
(incase of transparent file), Max.Record Length * Max Number of Record (incase
of record based file) of data.

2.3 Basic Architecture

The following are the major components of the operating system.

12

reset entry

Main Command
Header Handler

Individual Command
Handlers

command command
handlerl) handler n

Figure 2.3: Major components of the Card Operating System

Support
routines

Processor-specific
support routines

e Main Command Header Handler: The main command handler receives
the control when the Reset is sent to the card. It sends the ATR to the terminal
and starts receiving the individual commands. After receiving a command ,
it calls the appropriate command handler in the module Command Handlers.
After returning from the individual Command Handler, the response, if any,

of the Command Handler along with the status bytes is sent to the terminal.

e Individual Command Handlers: This module contains the individual com-
mand handlers for handling the individual commands. Some command han-

dlers handle multiple commands.

e Support Module: This module contains the support routines used to access
the data of the file system. These routines include functions to access the File

Control Parameters of any file and routines to access the individual data of the

13

files. These routines make the internal layout of the file system transparent
to other entities, like, the command handlers. Thus we can later change the

internal layout of the file system with out changing these routines.

Processor specific support module: This module contains processor spe-
cific support for handling the architecture specific routines. These routines
include terminal 1/O, EEPROM reading and writing, timing, random number

generation and accessing the chip serial number.

14

Chapter 3
Implementation

In this chapter we give a brief description of the software developed to implement
the design proposed in the previous chapter. The software implements a SCOSTA
compliant smart card operating system which is largely architecture independent.
We describe the various modules present and give details about their implemen-
tation. We also describe the existing ports of the operating system for different

architectures.

3.1 Main Command Header Handler

After reset, the first thing performed by the Card OS is to initialize the variables that
it requires. This consists of both hardware dependent and hardware independent
initialization. The hardware independent initialization consists of setting the cur-
rentFile, currentDF to point to Master File and clearing the security status. Then
a function, initparam() is called which does the hardware dependent initialization.
These include, setting the appropriate values in I/O control registers, setting the
timer register with appropriate values and any other processor specific initialization

required.

After initialization is done, the card must return the ATR. We assume that the
card has Master File and ATR file pre-present in the EEPROM. We read the ATR
file and return the ATR string present in it. Currently the Card Operating System

15

returns an ATR which is non-negotiable. This means that it does not support any

protocol parameter selection as defined in ISO 7816-3 [12].

After sending the ATR, it checks the life cycle status of the Master File. If the
Master File is terminated, it goes into an infinite loop and become unresponsive.

Otherwise, it enters into the command header handling loop.

i Command Header handling loop

For every command, it first reads the command header of 5 bytes. If the class
byte is wrong, or Instruction byte is not found in the command table then it returns
the appropriate error. The command table contains Instruction byte, the func-
tion pointer of the function which handles that instruction and a field which tells
whether the command needs input data and/or sends output data. If the length
of input /output is greater than the maximum buffer length (which is compile time
configurable) then the error Wrong Length is returned and we go back to beginning

of the command-handling loop.

If the command, requires some input data to be read then an ACK (which is the
same as INS byte) is sent back and all the input data is read and stored in a buffer
(inputBuffer).

The values of sendLength (length of the output to be returned by the command)
and the status bytes are initialized to their most common values (0 in case of
sendLength, 90, 00 for status bytes).

The appropriate function, which handles this command, is called. Upon returning
from the function it commits the changes made by the command handler to the
EEPROM. The output, if any, to be sent is stored by the command handler function
in a global buffer (sendBuffer, which is the same as inputBuffer). This output is

sent to the terminal.

16

The status bytes are set by command handler in the global variables bSw1, bSw2.
These are sent to the terminal and the control goes back to the starting of the

command header handling loop.

3.2 Individual Command Handlers

All the command handlers written follow a certain protocol.

If the command handler function is handling an output command and it needs
to send some output, it stores the output in a buffer (sendBuffer). Then it sets
the value of sendLength to indicate the total number of bytes available for sending

(excluding the status bytes).

If the command handler function is an input command then it already has the

command data given in inputBuffer.

If the command handler function requires both input and output (Case 4 com-
mand), then it already has the input in inputBuffer when it is called. If it needs to
send some output, it stores the output to be sent in a global buffer (storeBuffer for
retrieval by a an immediately followed GetResponse command. It also indicates the

length of data stored (in storeLength).

Every command-handler should set the value of the status bytes it needs to send
in the global status variables (bSwl, bSw2), before returning. (Except, when the
response is normal ending, ie.,when the status bytes are 0x90, 0x00). The command

handler use the support routines for doing the file specific operations that it requires.

3.3 Support routines

The command-handlers use these support routines to access the file system data
transparently to the command handler. This makes the command handler function

immune to changes in the file system layout.

17

These include routines that can access the meta-data (required for maintaining
the file system), file control parameters and the data of the file. For instance we
have routines to access and modify the meta-data like the Total length of the file
(header + data), the Sibling of the file, the parent of the file etc.

We also have routines to access/modify the file control parameters like File De-
scriptor byte, Data Coding Bytes, Short File Identifier, Security Attributes, DF
Name, Max Record Length, Maximum Number of records File Id of the file contain-

ing SE template files.

We also have routines to access/modify the actual data like read /write given range
of bytes (for a transparent file), read or write given record (for a record-oriented file),

read or write the length of a given record (for variable length record-oriented file).

3.4 Security Architecture

The security architecture of the operating system was implemented by Ankit

Jalote and Marghoob Mohiyuddin [34]. It is included here for completeness’ sake.

The card at, any point, maintains the security status for every file in the path
from the Master File to the currently selected file. The security status of the Master

File is always present.

Every DF has a respective password and key file [2]. A maximum of 32 pass-
words/keys are possible for each depth. Thus each bit in the 4 bytes for pass-
word /key status represents a unique password/key. If Verify /External Authenticate
succeeds, the corresponding password/key status bit is set indicating that the par-

ticular password/key has been authenticated.

When a directory is changed the Current Security Status is cleared on the path
starting from the lowest common ancestor of the current and previous directory till

the previous directory.

18

The current security status is used by VerifySE() function to tell which commands
can be executed under the current security status. Thus before preforming the
operating, the command handler calls this function to check if the security conditions
corresponding to this command are satisfied.

In our implementation, we are handling only the Cryptographic Checksum Tem-
plate (CCT), Confidentiality Template (CT) and the Authentication Template (AT).

The SEs can be stored as records (and accessed by their number) in the SE
Template files in DFs or in the FCP of the current DF. SE is a concatenation of all
the components (CRTS) present in the SE Template. The current SE (encoded in

the variable currentSE) contains the SE as a concatenation of CRTs.

An SE is modified explicitly through the MANAGE SECURITY ENVIRON-
MENT (MSE) command (set, restore, erase, store SE). In case of ‘set’ in the MSE
command, all the components (DOs) in the new value of the CRT specified in the
data field, should already be present in the current SE. Furthermore, the lengths of
the DOs in the data field should also match with the lengths of the corresponding
DOs in the current SE. Only when these conditions are satisfied, the current SE
will be changed. In the implementation of the MSE ’restore’ command, we load the
record with the matching SE number from the SE Template file in the current DF.
MSE ’store’ is similarly implemented by copying the current SE into a record in
the SE Template file. MSE ’erase’ results in the deletion of the record for the SE
number being deleted from the SE Template file.

Whenever, the current SE changes or a component of the current SE changes,
we look at the SE to generate the session key (if required). The data required
to generate the session key (also known as the derived key) is given as part of a
component of the SE. The session key mechanism is specified in the SE which is

used to generate it and keep it in the RAM as long as it is valid.

Only 3DES is being used in all the cryptographic algorithms. The current SE is

accessed when security operations like encipher, decipher, cryptographic checksum,

19

authentication are performed.

The use of the SE in different contexts is described below:

e Authentication: The AT in the SE specifies the key reference (tags 83 and
84) and whether the key is to be used directly or for generating a session key,
the algorithm reference (tag 80) (3DES is used by default), data for computing
the session key (tag 94). The key reference is mandatory while the rest are
optional. The CRT usage qualifier DO in the AT gives further information
about the applicability of the CRT (whether it can be used for external au-
thentication, internal authentication). If the key is to be used directly then it
is directly used to authenticate. If the use is for computing a session key, then

all references to this key implicitly mean that the session key is to be used.

e Confidentiality: The CT in the SE specifies the key reference (tag 83 and
84) and whether the key is to be used directly or for generating a session
key, the algorithm reference (tag 80) (3DES is used by default), the mode of
operation and data for computing the session key (tag 94). The key reference
is mandatory while the rest are optional. 3DES in chained block mode is used
for encryption/decryption. As in AT, the CRT usage qualifier DO in the CT
gives information about the applicability of the CRT (whether it can be used
for encryption, decryption). The use of the session key is same as mentioned

in authentication. Furthermore, only CT-sym is being supported.

e Cryptographic Checksum: The CCT in this case gives the required infor-

mation which is the same as in Confidentiality case.

3.5 Anti-tearing protection

Anti-tearing protection refers to the mechanisms used by the card operating system
to ensure that the data stored inside the files of the card is not inconsistent because of
abnormal interruptions in the functioning of the card like power-off, forcible removal

of the card from the terminal.

20

When ever a command has to write into a file or in the EEPROM the data is
written in a temporary cache instead of the EEPROM. A flag is associated with
the cache data, which is invalid before the command starts execution. When the
command completes execution, we set the flag in the cache to valid. The data in the
cache is written into the corresponding EEPROM location by the main command
loop. The cache is checked for the availability of the required data during a read from
EEPROM and if found then data is read from the cache instead of the EEPROM.
Thus when a command doesn’t complete and the Operating System resets due to
some possible error (card taken away from the reader, power lost etc.,), the data
written by the command is not updated in the EEPROM. However, if the command
completes and then as the valid bit is left set, upon the next power up the EEPROM

is updated. This preserves the consistency of the data in the Smart card.

3.6 Current implementations of the Card Operating

System

The Card Operating System is currently ported for three different architectures.
The first implementation is on a linux platform, where the card operating system
works as a program communicating with other programs through the standard input

and standard output.

3.6.1 Linux port of the Card Operating System

The Card Operating System is ported on Linux by implementing the processor
dependent part of the OS in Linux. The initializations corresponding to Linux are
done in initparam() function. External reset is handled as a signal to the OS process.

The signal handler restarts the working of OS once it receives a signal.

The hardware specific routines that are required by the Card Operating System

are handled as follows.

21

¢ EEPROM: EEPROM is implemented as a memory mapped file in Linux
implementation. The file name and the size of EEPROM is known by look-
ing at a configruration file whose name is stored in the environment variable
SCOSTACONE. The configuration file contains two variables EEPROMFILE
and EEPROMSIZE. Memory is mapped to the EEPROMFILE with EEP-
ROMSIZE of memory. Any update to the EEPROM is done by assigning the
values to memory locations that is reflected in corresponding byte in the file

to which memory is mapped as EEPROM.

¢ Random No:In Linux implementation random number is generated by read-
ing a byte from /dev/random which gives random bytes. The function ge-
tRandomByte() is implemented by reading a single byte from /dev/random
and returning the byte.

e Input/Output: Input and output between the external world Card OS is
done by terminal I/O. The Card Operating System reads the input bytes from

the standard input and writes the output to standard output.

e Chip Serial No: The chip serial number in case of the linux implementation
is the concatenation of its IP address (4 bytes) and the inode number of the
file which is mapped to the EEPROM.

3.7 Limitations

The following are some of the limitations of our code.
Currently only the T—=0 protocol with the default parameters is supported.

There is a limit on the depth of the file system supported. This is stored in the
compile-time configurable constant MAX DEPTH

The maximum size of a file, which we can allow is 64K. The total EEPROM size

is also assumed to fit in this size.

22

Chapter 4
Conclusion and Future Work

In this report, we have described the design and implementation of a SCOSTA-
compliant operating system for smart cards. We have also described the implemen-
tation of our operating system on the linux platform. We have observed that very

few changes needed to be made to the original code to port it to another architecture.

Future work will be in the direction of porting the operating system for different
architectures as well as adding to the basic functionality of the operating system by

implementing more functionality to support payment applications etc.,

23

Appendix A

Terminology

This appendix describes the terminology used in the report. Further descriptions of
these terms are present in the ISO standards [12, 13, 18, 19|

e ATR: Answer to Reset

e PPS: Protocol Parameters Selection

e CRT: Control Reference Template

e AT: Authentication Template

e CT-sym: Cryptographic Template, symmetric
e CCT: Cryptgraphic Checksum Template
e DF: Dedicated File

e EF: Elementary File

e SE: Security Environment

e SIM: Subscriber Identity Module

e CLA: Class byte

e INS: Instruction byte

24

e FDB: File Descriptor byte
e LCSI: Life Cycle Status Integer

e SFI: Short File Identifier

25

Appendix B

Support Routines

The following are the important support routines present in the support module.

B.1 Routines for accessing meta data

e GetLength: Gets the total length of the given file
e SetLength: Sets the total length of the given file
e GetParent: Gets the parent DF of the given file
e SetParent: Sets the parent DF of the given file

e GetSibling: Gets the sibling of the current file

e SetSibling: Sets the sibling of the current file

e GetChild: Gets the child of a DF, if present.

e SetChild: Sets the child of a DF to the given file

B.2 Routines for accessing the File Control Param-

eters of a file
o GetFDB: Gets the file descriptor byte of a file

26

SetFDB: Sets the file descriptor byte of a file
GetLCSI: Gets the Life Cycle Status Integer of a file
SetLCSI: Sets the Life Cycle Status Integer of a file

GetSETemplateld: Gets the File Identifier of the file which contains the SE
template for a DF

SetSETemplateld: Sets the SE Template Identifier of a DF to the given value
GetDFNameLength: Gets the length of the DF Name for a DF
SetDFNameLength: Sets the length of the DF Name for a DF
GetSecurityAttrLength: Gets the length of the security attributes of a file

SetSecurity AttrLength: Sets the length of the security attributes of a file to

the given value

GetSecurityAttrAddr: Gets the address of the beginning of the Security At-

tributes

GetSFI: Gets the Short File Identifier of the given EF

SetSFT: Sets the SFI of the EF to the given value

GetDCB: Gets the Data Coding byte of the given EF

SetDCB: Sets the Data Coding byte of the given EF

GetDatalLength: Gets the length of the data of a Transparent EF
SetDatalLength: Sets the length of the data of a Transparent EF
GetMNR: Gets the Maximum Number of Records of a record-oriented EF

SetMNR: Sets the Maximum Number of Records of a record-oriented EF

27

B.3 Routines for Accessing the data of the Elemen-
tary Files

o GetFileBytes:Gets given number of bytes from the Transparent File, starting

from an offset.

o WriteFileBytes: Writes the given number of bytes in the transparent file,
starting from an offset. The type of write behaviour is determined by the
DCB of the file.

e UpdateFileBytes: Updates the given number of bytes in the transparent file,starting

from an offset.

e EraseFileBytes: Erases the given number of bytes in the transparent file, start-

ing from an offset.
e GetlthRecord: Gets the record number given from a Record Oriented File

o WritelthRecord: Writes the record number given to a Record Oriented File.
The type of write behaviour is determined by the DCB of the file.

e UpdatelthRecord: Updates the record number given to a Record Oriented
File.

28

Bibliography

[1] Gemplus R&D Topics page http://www.gemplus.com/smart/enews/st3/32bit.html
[2] The SCOSTA standards page hitp://www.cse.iitk.ac.in/ moona/scosta/

[3] Jurgen Dethloff, Helmut Grottrup "Identifikanden /Identifikationsschalter",
German Patent, DE 19 45 777 C2, February 1969.

[4] Ellinboe Jules, "Active Element Card", US Patent, US 3,637,944, January 1972.

[5] Paul Castruci, "Information Card", US Patent, US 3,702,464, November 1972.

[6] Gaming for smart cards, home page of Kaosc. http://www.kaosc.com/

[7] The SmartFlash Cards page http://www.britneyspears.com/smartflashcard /index. php
[8] The respironics home page hitp://www.respironics.com,/

[9] The IButton introduction page http://www.ibutton.com/ibuttons/

[10] ISO/IEC 7816-1:1998 Identification cards — Integrated circuit(s) cards with

contacts — Part 1: Physical characteristics

[11] ISO/IEC 7816-2:1999 Information technology — Identification cards — Integrated

circuit(s) cards with contacts — Part 2: Dimensions and location of the contacts

[12] ISO/IEC 7816-3:1997 Information technology — Identification cards — Integrated
circuit(s) cards with contacts — Part 3: Electronic signals and transmission

protocols

29

[13] ISO/IEC 7816-4:1995 Information technology — Identification cards — Integrated

circuit(s) cards with contacts — Part 4: Interindustry commands for interchange

[14] ISO/IEC 7816-4:1995/Amd 1:1997 secure messaging on the structures of APDU

messages

[15] ISO/IEC 7816-6:1996 Identification cards — Integrated circuit(s) cards with

contacts — Part 6: Interindustry data elements
[16] ISO/IEC 7816-6:1996/Cor 1:1998
[17] ISO/IEC 7816-6:1996/Amd 1:2000 IC manufacturer registration

[18] ISO/IEC 7816-8:1999 Identification cards — Integrated circuit(s) cards with

contacts — Part 8: Security related interindustry commands

[19] ISO/IEC 7816-9:2000 Identification cards — Integrated circuit(s) cards with

contacts — Part 9: Additional interindustry commands and security attributes.

[20] Digital cellular telecommunications system (Phase 24); Subscriber Identity
Module Application Programming Interface (SIM API); Service description;
Stage 1

[21] Digital cellular telecommunications system (Phase 2+); Security mechanisms
for the SIM application toolkit; Stage 1

[22] Schlumbeger MicroPayflex card hitp://www.cardstore.slb.com/

[23] Gemplus GemSafe cards home page http://www.gemsafe.com/

[24] Deutsche Telekom Multifunction Card TCOS Cryptographic Card
http:/ /www.telesec.de/

[25] The Java Card Management Specifications Version 1.0b
http:/ /www.javacardforum.org/Documents/Jems10.PDF

[26] The MULTOS home page http://www.multos.com/

[27] The Schlumberger’s Cyberflex card home page http://www.cardstore.slb.com

30

[28] The Gemplus GemXpresso RAD 211 http://www.gemplus.com/

[29] The pcsc work group home page http://www.pcscworkgroup. com/

[30] The open card group home page hitp://www.opencard.org/

[31] The M.U.S.C.L.E home page http://www.linuznet.com/

[32] The EMV home page http://www.emuvco.org/

[33] The BasicCard from ZeitControl home page http://www.basiccard.com/

[34] Ankit Jalote and Marghoob Mohiyuddin "Implementing the Security Module of
a Smart Card Operating System", BTP 2002, Department of CSE, II'T Kanpur.
hittp:/ /www. cse.iitk.ac.in/research/btp2002/scosta.ps. gz

31

