
Development of an Operating System for SmartCards
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byRavinder Shankesi

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurMay, 2002

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled � Developmentof an Operating System for Smart Cards �, by Ravinder Shankesi, has been
arriedout under our supervision and that this work has not been submitted elsewhere for adegree.May, 2002
(Dr. Deepak Gupta)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

(Dr. Rajat Moona)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tSmart
ards are in
reasingly getting used in various identi�
ation and veri�
ationappli
ations. Traditionally, smart
ard operating systems were proprietary and ap-pli
ation spe
i�
. This made it very di�
ult to use the same operating system fordi�erent appli
ations or to use two
ards with di�erent operating systems for thesame appli
ation.In this thesis we des
ribe the design and implementation of a standard (
ompliantto ISO 7816 standard and SCOSTA standard) appli
ation-independent smart
ardoperating system, Card Operating System. We have developed a linux port fortesting the operating system. We have ported the operating system to a few existingsmart
ard
hips.

A
knowledgementsI take this opportunity to express my sin
ere gratitude and thanks to both ofmy supervisors Dr. Deepak Gupta and Dr. Rajat Moona. But for their patien
eand guidan
e, I would never have
ompleted the proje
t. Working under them wasa great learning experien
e. I would also like to thank Dr. Manindra Agarwal whohas helped us immensly during various phases of our proje
t.I would like to thank MoST (Ministry of Surfa
e Transport), members of SCAFI(Smart Card Asso
iation for India) and NIC (National Informati
s Center) NewDelhi, for their assistan
e at various phases of the proje
t. In parti
ular, I wouldlike to thank Dr. B.K.Gairola of NIC for his support and guidan
e to the proje
t.I would like to thank Ankit Jalote and Marghoob Mohiyuddin who have imple-mented the se
urity module of the Operating System. I would also like to thankKapileshwar Rao Bolisetti who has ported the Operating System to Linux.My bat
h here was really fun to be with. I would like to thank all of them fortheir help, for the irrelevant spam, for all the parties, for all the movies and for theKhajuraho trip. They had to put up with my laziness, absentmindedness and slightabsurdities at various o

assions and yet were very helpful and generous towardsme. It was great being with all of you.At last, I would like to thank members of my family who were there to supportme at all times.

i

Contents
1 Introdu
tion 11.1 History . 11.2 Introdu
tion . 21.2.1 Di�erent
lassi�
ations of smart
ards 21.2.2 Physi
al layout . 31.2.3 Standards . 41.2.4 Basi

on
epts . 51.3 Related Work . 72 System Design 92.1 Design goals . 92.2 File System layout . 102.2.1 Logi
al stru
ture of the File system 102.2.2 Physi
al layout of the �le system 112.2.3 Meta Data and File Control Parameters 112.3 Basi
 Ar
hite
ture . 123 Implementation 153.1 Main Command Header Handler . 153.2 Individual Command Handlers . 173.3 Support routines . 173.4 Se
urity Ar
hite
ture . 183.5 Anti-tearing prote
tion . 203.6 Current implementations of the Card Operating System 21ii

3.6.1 Linux port of the Card Operating System 213.7 Limitations . 224 Con
lusion and Future Work 23A Terminology 24B Support Routines 26B.1 Routines for a

essing meta data . 26B.2 Routines for a

essing the File Control Parameters of a �le 26B.3 Routines for A

essing the data of the Elementary Files 28Bibliography 29

iii

List of Figures1.1 Physi
al interfa
e of smart
ard . 31.2 File System on the Card . 52.1 Logi
al layout of the �le system in the EEPROM 102.2 physi
al layout of the �le system in the EEPROM 112.3 Major
omponents of the Card Operating System 13

iv

Chapter 1Introdu
tionSmart
ards are
ards with ele
troni

hips embedded inside them. They are usedin di�erent appli
ations like identi�
ation, loyalty programs, SIM
ards inside GSMphones et
., Most of the modern smart
ards have a mi
ro-
ontroller, non-volatilememory for storing user data, ROM for storing the operating system
ode andRAM for use by the operating system. Some
ards also have an extra
rypto-
o pro
essor for improving the speed-up of
ryptographi
 algorithms used by theoperating system. Most smart
ards have 8-bit mi
ro
ontrollers with a ROM size of4K to 32K, RAM size of 256 bytes to 1K and an EEPROM size of 4K to 8K. However,newer
ards with 16-bit and 32-bit mi
ro-
ontrollers with better
on�gurations arebeginning to appear in the market [1℄.It is obvious that in su
h a resour
e-
onstrained environment, the operating sys-tem on the
ard must be developed to utilise these resour
es
arefully. In this reportwe des
ribe our implementation of a portable Card Operating System
ompliant toSCOSTA standard [2℄. The ports of this
ard to a few ar
hite
tures are also de-s
ribed.1.1 HistorySmart
ards were intended as a solution to the short-
omings of magneti

ards.These short-
omings in
lude, small memory (around 220 bytes in 3 rows of magneti
1

stripe), risk of tampering, la
k of any pro
essing logi
. The earliest patent for smart
ards was �led as early as 1968 by two German inventors, Jurgen Dethlo� andHelmut Grotruppi [3℄, . Similar patents were �led by various other people later[4℄, [5℄. Smart
ards started getting used more prevalently in Europe in the 1980s.For instan
e, the Fren
h PTT(Postal and Tele
ommuni
ations servi
es) started
ir
ulating millions of smart
ards by 1986 after a su

essful �eld trial in 1985.Currently smart
ards are widely employed in �elds other than identi�
ation like,payment
ards, loyalty appli
ations, health
ard appli
ations et
., Certain innovativeuses of smart
ards in
lude Gaming for smart
ards[6℄, Smart Flash Card [7℄.1.2 Introdu
tion1.2.1 Di�erent
lassi�
ations of smart
ardsSmart
ards are
ategorised in di�erent ways depending on di�erent
riteria.� A

ess Me
hanism: Depending on the a

ess me
hanism smart
ards
an be
lassi�ed as
onta
t-based
ards and
onta
t-less
ards. Conta
t-based
ardsare physi
ally
onne
ted to the terminal for
ommuni
ation to take pla
e. Con-ta
t less
ards have
ommuni
ation with the terminal using radio frequen
ies.Some
ards have both these a

ess me
hanisms embedded into them.� Fun
tional grouping: Depending on the fun
tionality provided smart
ards
an be
lassi�ed as memory
ards or mi
ro-pro
essor
ards. Memory
ardshave only memory present inside the
ard. This might be read-only or read-write. Some times they have
ertain extra logi
 for se
urity like write-on
eprote
tion for memory. Mi
ro-pro
essor
ards have a mi
ro-pro
essor embed-ded into the
ard along with ROM, RAM and some non volatile memory.� Appli
ations present: Depending on the appli
ations present inside the
ard they are
lassifed as single-appli
ation or multi-appli
ation
ards. Single-appli
ation
ards have only a single appli
ation present inside the
ard. Multi-appli
ation
ards have more than one appli
ation supported inside the
ard.2

� Physi
al shape: Normal smart
ards are shaped like
redit-
ards. There arealso SIM
ards present inside GSM phones. There are also smart
ards whi
hare present inside a ring [9℄.In the rest of the report we limit ourselves to mi
ro-pro
essor based
onta
t smart
ards.1.2.2 Physi
al layoutThe physi
al interfa
e of the
onta
t-based smart
ard is given in the ISO 7816standards [10, 11℄.
C5: CLK
C7: RFU

C3: RST
C1: V

C4: V
C2: GND

C6: I/O
C8: RFU

CC
PP

C1 C5

C6

C7

C8C4

C3

C2

Figure 1.1: Physi
al interfa
e of smart
ardThe V

 pin is used to supply external voltage to the
ard. The Gnd pin is
onne
ted to the ground of the external terminal. The Vpp pin is used to supplyprogramming voltage to the
ard. This was required be
ause programming theEEPROM required higher voltage than V

. However, these days most
ards ignorethis pin and generate programming voltage internally. The I/O pin is used for I/O
ommuni
ation. This means that
ommuni
ation between the smart
ard and theterminal is always half-duplex. The RST pin is used by the terminal to send theReset signal to the
ard.
3

1.2.3 StandardsThere are many standards des
ribing various aspe
ts of smart
ards. There arestandards whi
h are relevant to the behaviour of the
ard and the
ommands itmust support. There are also standards for standardizing the a

ess to the
ard.Apart from these we also have standards relevant for parti
ular industries.The most basi
 of these standards are the ISO 7816 group of stanadards. There are10 of them ISO 7816-1 to ISO 7816-10. These des
ribe various things from physi
aland
hara
hteristi
s of the
ard [10, 11℄ to the appli
ation
ommands [13, 18, 19℄ tobe used by appli
ation developers. There are also many standards for the SIM
ardsused in GSM phones [20, 21℄.Europay, Master
ard, Visa
ame up with a standard for smart
ards for paymentsystems
alled EMV [32℄.The standards for writing terminal side appli
ations to transparently a

ess anyreader in
lude PC/SC standard [29℄ and the Open Card Framework [30℄. Currentlyimplementations of PC/SC standard are mostly limited to the windows platform,although porting of the PC/SC standard for linux is also under way [31℄. The
urrentimplementations of Open Card Framework are implemented in Java.A part from this there are also standards for implementing the smart
ard oper-ating system like Java Card [25℄ and MULTOS [26℄IIT Kanpur and a te
hni
al sub-
ommittee of SCAFI (Smart Card Forum of India)together have
ome up with a standard for the development of smart
ard operatingsystems whi
h is
ompliant with the ISO 7816 group of standards
alled, SmartCard Operating System for Transport Appli
ations (SCOSTA) standard [2℄. TheCard Operating System des
ribed in this report is
ompliant to this standard.
4

1.2.4 Basi

on
eptsATRUpon reset the the
ard returns a string to the terminal whi
h indi
ates to theterminal the transmission proto
ols it supports and the proto
ol parameters. Thisstring is
alled the Answer to Reset, ATR. The terminal
an de
ide whi
h proto
olto use, if multiple proto
ols are o�ered, by doing a Proto
ol Parameter Sele
tionPPS [12℄.File SystemThe �le system in a Smart Card is organized as follows [13℄ The �le are organized

EF EF

MF

EFDF

EF EF DF

EF

DF

MF = Master File

DF = Dedicated File

EF = Elementary FileFigure 1.2: File System on the Cardinto Dedi
ated Files (DFs) and Elementary Files(EFs). DFs are those �les whi
h
ontain other DFs or EFs. EFs
ontain the a
tual appli
ation data that the userwant to store. Apart from Data Obje
ts, at any DF we
an also store Data Obje
tswhi
h
an be a

essed by its Tag.
5

Types of FilesEFs
an be of many di�erent types.� Transparent� Linear Fixed Length Re
ord File� Linear Variable Length Re
ord File� Cy
li
 Re
ord FileA transparent �le
ontains set of data units whi
h
an be a

essed by their o�set.The o�set of a the �rst data unit in a �le is 0.A re
ord-oriented �le
ontains data stored as re
ords. These re
ords
an be a
-
essed by their re
ord numbers (starting from 01 to 254).A linear re
ord-oriented �le
ontains re
ords stored in the order of their
reation.Thus the most re
ently appended re
ord is the last re
ord of the �le. Thus the �rstwritten re
ord is re
ord number 1.A variable length re
ord-oriented �le allows re
ords to be of variable length untilthe length is less than the max re
ord length.In a
y
li
 re
ord �le, the re
ords are a

essed in the opposite order of
reation.Thus the most re
ently written re
ord overwrites the last re
ord of the �le an be-
omes re
ord number 1.Se
urity Ar
hite
tureThe se
urity of the smart
ard
an be guaranteed by various me
hanisms. The usermight be required to prove the knowledge of a key or a password or possible bothfor some
ommands to be exe
uted. If the user proves the knowlege of a key ora password, that status (se
urity status) is maintained until the user
hanges thedire
tory or after reset. Any �le may be prote
ted against
ertain
ommands by6

giving some se
urity attributes in the �le at the time of
reation of the �le for that
ommand. These attributes might spe
ify, for instan
e, that the user has to performExternal Authenti
ation with Se
urity Environment number 4.A Se
urity Environment (SE) is a set of templates spe
ifying what
onditions needto be satis�ed for
ertain operations to take pla
e. For instan
e, it might spe
ifythat we need to external authenti
ate should be done with key number 5 or userauthenti
ate should be done with password number 6. At any point during theworking of a program there is always a
urrent SE.1.3 Related WorkThere are many implmentations of smart
ard operating systems. Many of the smart
ard operating systems are built for single appli
ations and are
ustomized for thatappli
ation. These have a �xed �les system and a few
ommands whi
h are relevantto that appli
ation. Most of the time they have proprietary
ommands for theiroperation [22, 23℄. The TCOS operating system is a ISO 7816
ompliant operatingsystem whi
h supports multiple appli
ations [24℄.The above operating systems have a �xed
ommand set whi
h is burned into theROM. As against these a number of implementations are present whi
h allow theuser to program the
ard a

ording to his need. The Basi
Card from Zeit
ontrol[33℄ allows users to program appli
ations in Basi
 and download them into the
ard. Key
ord on
e marketed a smart
ard
alled OSSCA (Operating System forSmart Card Appli
ations) whi
h was programmable in Forth. A few vendors haveimplemented the Java Card standard whi
h would be programmable using the Javalanguage [27, 28℄The
ost of su
h generality is the extra pro
essing
apability required on the
ard for implementing the Virtual Ma
hines for those languages. These
ards aretypi
ally 3 or more times
ostlier than the ordinary
ards.7

The Card Operating System des
ribed in this report is a �xed
ommand setoperating system whi
h is not appli
ation spe
i�
. Thus it is similar to the TCOSoperating system.

8

Chapter 2System DesignIn this
hapter we des
ribe the various issues involved in the design of the CardOperating System. The physi
al and logi
al organization of the �les in EEPROMare explained. We also des
ribe the di�erent modules and their intera
tion with oneanother.2.1 Design goalsThe following were the design goals while designing the Card Operating System.� Portability:The Card Operating System must be portable to di�erent ar
hi-te
tures. This means that the operating system must be designed to use asmall interfa
e for handling the hardware dependent support required fromthe pro
oessor.� Compa
tness:The Card Operating System must �t into a small size. Thismeans perferring simpler algorithms over e�
ient, but
ompli
ated algorithms.� Maintainability:The Card Operating System must be easily maintainbale.This involves the use of modular programming te
hniques.
9

2.2 File System layoutThe �le system stored in the EEPROM has the following properties:The representation of any �le in the EEPROM has the following 2
omponents.1. A header
ontaining all the meta-data of the �le.2. An optional body
ontaining the data stored in the �le. The data portion isnot present in the
ase of Dedi
ated Files.The header will
ontain all the meta-data required for the �le system stru
ture thatwe are maintaining and the File Control Parameters.2.2.1 Logi
al stru
ture of the File systemThe File System maintaining by the Card Operating System has the following logi
allayout.
DF

EF DF EF

Child Pointer
From DF to EF

Parent Pointer
From DF to DF

Sibling Sibling Sibling

BAD_PTR
Child = BAD_PTR
(No children present)

From EF to DF
Parent Pointer

From EF to DF
Parent Pointer

Figure 2.1: Logi
al layout of the �le system in the EEPROM
Every �le has a link to the next �le (sibling) present in the same dire
tory. Alsoea
h �le has a link to the parent DF. The master �le's parent �le link points toitself.

10

In addition every DF will have a pointer to the �rst
hild (if present). Thus givena DF, we
an a

ess all the
hildren (other DFs/EFs) by �rst looking at its
hildpointer and then looking at all the siblings of the
hild (if present). In
ase no
hildis present, or no sibling is present we store a
onstant in its pla
e, BAD_PTR2.2.2 Physi
al layout of the �le system
File Data (for DF)
(meta−data)

Free Space

File Data (for EF)
(meta−data + data)

File Data (for EF)
(meta−data + data)

Figure 2.2: physi
al layout of the �le system in the EEPROMThe File system
omprises of individual �les, stored as blo
ks (of variable length),laid out next to ea
h other in the EEPROM. The �les as part of their meta-data
ontain the total length of the �le (in
luding the header). Thus we
an traverse theentire EEPROM to
he
k out the �les in the order they are stored in the EEPROM.This
an be useful, for instan
e, when we are sear
hing for a �le with a given DFName in the entire �le system. It is also possible that we might have free spa
e inbetween two �les. We indi
ate that the
urrent blo
k is free (by the �rst byte) andthe length of free spa
e (2 bytes).2.2.3 Meta Data and File Control ParametersEa
h �le
ontains the following meta-data stored in the header of the �le.11

1. The FDB is the �rst byte. Its value is equal to the �le des
riptor byte of the�le. It also stores whether a the
urrent blo
k is free by storing a value whi
his an invalid FDB.2. The length (the next 2 bytes). Its value is equal to the total length of the �le(meta-data and data of the �le).3. Every �le
ontains the link to its sibling and parent.Apart from the meta-data for maintaining the logi
al stru
ture, we also have FileControl Parameters like File Identi�er, Life Cy
le Status Integer and Se
urity-Attributes (variable length) at �xed o�sets from the �le starting. The se
urityattributes are stored in their TLV format as given in the ISO 7816-9 do
umentation[19℄.Depending on the �le des
riptor byte, the �le spe
i�
 meta-data follows.� For a DF, we have a pointer to the �rst
hild of this DF, File Id of a �le
ontaining SE templates (Invalid File Id, if none is spe
i�ed in the FCP) DFName.� For an EF, we have the Short File Identi�er, Data Coding byte. Dependingon the type of �le we have further meta-data like, for a transparent �le, thetotal no of bytes. No of re
ords, Max length of re
ords in
ase of a Re
ordbased �le. If the �le is write on
e, we also have a bit-ve
tor indi
ating whetherthe given byte (in
ase of transparent �le) or given re
ord (in
ase of a re
ordoriented �le) is written to or not.Following the meta-data for a DF, we have blo
k of the next �le. In
ase of an EF,we have the data for the given �le. This would be equal to total number of bytes(in
ase of transparent �le), Max.Re
ord Length * Max Number of Re
ord (in
aseof re
ord based �le) of data.2.3 Basi
 Ar
hite
tureThe following are the major
omponents of the operating system.12

Header Handler
Main Command

Individual Command
Handlers

command
handler 1

command
handler n. . . .

Support
routines

Processor−specific
support routines

reset entry

Figure 2.3: Major
omponents of the Card Operating System� Main Command Header Handler: The main
ommand handler re
eivesthe
ontrol when the Reset is sent to the
ard. It sends the ATR to the terminaland starts re
eiving the individual
ommands. After re
eiving a
ommand ,it
alls the appropriate
ommand handler in the module Command Handlers.After returning from the individual Command Handler, the response, if any,of the Command Handler along with the status bytes is sent to the terminal.� Individual Command Handlers: This module
ontains the individual
om-mand handlers for handling the individual
ommands. Some
ommand han-dlers handle multiple
ommands.� Support Module: This module
ontains the support routines used to a

essthe data of the �le system. These routines in
lude fun
tions to a

ess the FileControl Parameters of any �le and routines to a

ess the individual data of the13

�les. These routines make the internal layout of the �le system transparentto other entities, like, the
ommand handlers. Thus we
an later
hange theinternal layout of the �le system with out
hanging these routines.� Pro
essor spe
i�
 support module: This module
ontains pro
essor spe-
i�
 support for handling the ar
hite
ture spe
i�
 routines. These routinesin
lude terminal I/O, EEPROM reading and writing, timing, random numbergeneration and a

essing the
hip serial number.

14

Chapter 3ImplementationIn this
hapter we give a brief des
ription of the software developed to implementthe design proposed in the previous
hapter. The software implements a SCOSTA
ompliant smart
ard operating system whi
h is largely ar
hite
ture independent.We des
ribe the various modules present and give details about their implemen-tation. We also des
ribe the existing ports of the operating system for di�erentar
hite
tures.3.1 Main Command Header HandlerAfter reset, the �rst thing performed by the Card OS is to initialize the variables thatit requires. This
onsists of both hardware dependent and hardware independentinitialization. The hardware independent initialization
onsists of setting the
ur-rentFile,
urrentDF to point to Master File and
learing the se
urity status. Thena fun
tion, initparam() is
alled whi
h does the hardware dependent initialization.These in
lude, setting the appropriate values in I/O
ontrol registers, setting thetimer register with appropriate values and any other pro
essor spe
i�
 initializationrequired.After initialization is done, the
ard must return the ATR. We assume that the
ard has Master File and ATR �le pre-present in the EEPROM. We read the ATR�le and return the ATR string present in it. Currently the Card Operating System15

returns an ATR whi
h is non-negotiable. This means that it does not support anyproto
ol parameter sele
tion as de�ned in ISO 7816-3 [12℄.After sending the ATR, it
he
ks the life
y
le status of the Master File. If theMaster File is terminated, it goes into an in�nite loop and be
ome unresponsive.Otherwise, it enters into the
ommand header handling loop.Command Header handling loopFor every
ommand, it �rst reads the
ommand header of 5 bytes. If the
lassbyte is wrong, or Instru
tion byte is not found in the
ommand table then it returnsthe appropriate error. The
ommand table
ontains Instru
tion byte, the fun
-tion pointer of the fun
tion whi
h handles that instru
tion and a �eld whi
h tellswhether the
ommand needs input data and/or sends output data. If the lengthof input/output is greater than the maximum bu�er length (whi
h is
ompile time
on�gurable) then the error Wrong Length is returned and we go ba
k to beginningof the
ommand-handling loop.If the
ommand, requires some input data to be read then an ACK (whi
h is thesame as INS byte) is sent ba
k and all the input data is read and stored in a bu�er(inputBu�er).The values of sendLength (length of the output to be returned by the
ommand)and the status bytes are initialized to their most
ommon values (0 in
ase ofsendLength, 90, 00 for status bytes).The appropriate fun
tion, whi
h handles this
ommand, is
alled. Upon returningfrom the fun
tion it
ommits the
hanges made by the
ommand handler to theEEPROM. The output, if any, to be sent is stored by the
ommand handler fun
tionin a global bu�er (sendBu�er, whi
h is the same as inputBu�er). This output issent to the terminal.
16

The status bytes are set by
ommand handler in the global variables bSw1, bSw2.These are sent to the terminal and the
ontrol goes ba
k to the starting of the
ommand header handling loop.3.2 Individual Command HandlersAll the
ommand handlers written follow a
ertain proto
ol.If the
ommand handler fun
tion is handling an output
ommand and it needsto send some output, it stores the output in a bu�er (sendBu�er). Then it setsthe value of sendLength to indi
ate the total number of bytes available for sending(ex
luding the status bytes).If the
ommand handler fun
tion is an input
ommand then it already has the
ommand data given in inputBu�er.If the
ommand handler fun
tion requires both input and output (Case 4
om-mand), then it already has the input in inputBu�er when it is
alled. If it needs tosend some output, it stores the output to be sent in a global bu�er (storeBu�er forretrieval by a an immediately followed GetResponse
ommand. It also indi
ates thelength of data stored (in storeLength).Every
ommand-handler should set the value of the status bytes it needs to sendin the global status variables (bSw1, bSw2), before returning. (Ex
ept, when theresponse is normal ending, ie.,when the status bytes are 0x90, 0x00). The
ommandhandler use the support routines for doing the �le spe
i�
 operations that it requires.3.3 Support routinesThe
ommand-handlers use these support routines to a

ess the �le system datatransparently to the
ommand handler. This makes the
ommand handler fun
tionimmune to
hanges in the �le system layout.17

These in
lude routines that
an a

ess the meta-data (required for maintainingthe �le system), �le
ontrol parameters and the data of the �le. For instan
e wehave routines to a

ess and modify the meta-data like the Total length of the �le(header + data), the Sibling of the �le, the parent of the �le et
.We also have routines to a

ess/modify the �le
ontrol parameters like File De-s
riptor byte, Data Coding Bytes, Short File Identi�er, Se
urity Attributes, DFName, Max Re
ord Length, Maximum Number of re
ords File Id of the �le
ontain-ing SE template �les.We also have routines to a

ess/modify the a
tual data like read/write given rangeof bytes (for a transparent �le), read or write given re
ord (for a re
ord-oriented �le),read or write the length of a given re
ord (for variable length re
ord-oriented �le).3.4 Se
urity Ar
hite
tureThe se
urity ar
hite
ture of the operating system was implemented by AnkitJalote and Marghoob Mohiyuddin [34℄. It is in
luded here for
ompleteness' sake.The
ard at, any point, maintains the se
urity status for every �le in the pathfrom the Master File to the
urrently sele
ted �le. The se
urity status of the MasterFile is always present.Every DF has a respe
tive password and key �le [2℄. A maximum of 32 pass-words/keys are possible for ea
h depth. Thus ea
h bit in the 4 bytes for pass-word/key status represents a unique password/key. If Verify/External Authenti
atesu

eeds, the
orresponding password/key status bit is set indi
ating that the par-ti
ular password/key has been authenti
ated.When a dire
tory is
hanged the Current Se
urity Status is
leared on the pathstarting from the lowest
ommon an
estor of the
urrent and previous dire
tory tillthe previous dire
tory. 18

The
urrent se
urity status is used by VerifySE() fun
tion to tell whi
h
ommands
an be exe
uted under the
urrent se
urity status. Thus before preforming theoperating, the
ommand handler
alls this fun
tion to
he
k if the se
urity
onditions
orresponding to this
ommand are satis�ed.In our implementation, we are handling only the Cryptographi
 Che
ksum Tem-plate (CCT), Con�dentiality Template (CT) and the Authenti
ation Template (AT).The SEs
an be stored as re
ords (and a

essed by their number) in the SETemplate �les in DFs or in the FCP of the
urrent DF. SE is a
on
atenation of allthe
omponents (CRTs) present in the SE Template. The
urrent SE (en
oded inthe variable
urrentSE)
ontains the SE as a
on
atenation of CRTs.An SE is modi�ed expli
itly through the MANAGE SECURITY ENVIRON-MENT (MSE)
ommand (set, restore, erase, store SE). In
ase of `set' in the MSE
ommand, all the
omponents (DOs) in the new value of the CRT spe
i�ed in thedata �eld, should already be present in the
urrent SE. Furthermore, the lengths ofthe DOs in the data �eld should also mat
h with the lengths of the
orrespondingDOs in the
urrent SE. Only when these
onditions are satis�ed, the
urrent SEwill be
hanged. In the implementation of the MSE 'restore'
ommand, we load there
ord with the mat
hing SE number from the SE Template �le in the
urrent DF.MSE 'store' is similarly implemented by
opying the
urrent SE into a re
ord inthe SE Template �le. MSE 'erase' results in the deletion of the re
ord for the SEnumber being deleted from the SE Template �le.Whenever, the
urrent SE
hanges or a
omponent of the
urrent SE
hanges,we look at the SE to generate the session key (if required). The data requiredto generate the session key (also known as the derived key) is given as part of a
omponent of the SE. The session key me
hanism is spe
i�ed in the SE whi
h isused to generate it and keep it in the RAM as long as it is valid.Only 3DES is being used in all the
ryptographi
 algorithms. The
urrent SE isa

essed when se
urity operations like en
ipher, de
ipher,
ryptographi

he
ksum,19

authenti
ation are performed.The use of the SE in di�erent
ontexts is des
ribed below:� Authenti
ation: The AT in the SE spe
i�es the key referen
e (tags 83 and84) and whether the key is to be used dire
tly or for generating a session key,the algorithm referen
e (tag 80) (3DES is used by default), data for
omputingthe session key (tag 94). The key referen
e is mandatory while the rest areoptional. The CRT usage quali�er DO in the AT gives further informationabout the appli
ability of the CRT (whether it
an be used for external au-thenti
ation, internal authenti
ation). If the key is to be used dire
tly then itis dire
tly used to authenti
ate. If the use is for
omputing a session key, thenall referen
es to this key impli
itly mean that the session key is to be used.� Con�dentiality: The CT in the SE spe
i�es the key referen
e (tag 83 and84) and whether the key is to be used dire
tly or for generating a sessionkey, the algorithm referen
e (tag 80) (3DES is used by default), the mode ofoperation and data for
omputing the session key (tag 94). The key referen
eis mandatory while the rest are optional. 3DES in
hained blo
k mode is usedfor en
ryption/de
ryption. As in AT, the CRT usage quali�er DO in the CTgives information about the appli
ability of the CRT (whether it
an be usedfor en
ryption, de
ryption). The use of the session key is same as mentionedin authenti
ation. Furthermore, only CT-sym is being supported.� Cryptographi
 Che
ksum: The CCT in this
ase gives the required infor-mation whi
h is the same as in Con�dentiality
ase.3.5 Anti-tearing prote
tionAnti-tearing prote
tion refers to the me
hanisms used by the
ard operating systemto ensure that the data stored inside the �les of the
ard is not in
onsistent be
ause ofabnormal interruptions in the fun
tioning of the
ard like power-o�, for
ible removalof the
ard from the terminal. 20

When ever a
ommand has to write into a �le or in the EEPROM the data iswritten in a temporary
a
he instead of the EEPROM. A �ag is asso
iated withthe
a
he data, whi
h is invalid before the
ommand starts exe
ution. When the
ommand
ompletes exe
ution, we set the �ag in the
a
he to valid. The data in the
a
he is written into the
orresponding EEPROM lo
ation by the main
ommandloop. The
a
he is
he
ked for the availability of the required data during a read fromEEPROM and if found then data is read from the
a
he instead of the EEPROM.Thus when a
ommand doesn't
omplete and the Operating System resets due tosome possible error (
ard taken away from the reader, power lost et
.,), the datawritten by the
ommand is not updated in the EEPROM. However, if the
ommand
ompletes and then as the valid bit is left set, upon the next power up the EEPROMis updated. This preserves the
onsisten
y of the data in the Smart
ard.3.6 Current implementations of the Card OperatingSystemThe Card Operating System is
urrently ported for three di�erent ar
hite
tures.The �rst implementation is on a linux platform, where the
ard operating systemworks as a program
ommuni
ating with other programs through the standard inputand standard output.3.6.1 Linux port of the Card Operating SystemThe Card Operating System is ported on Linux by implementing the pro
essordependent part of the OS in Linux. The initializations
orresponding to Linux aredone in initparam() fun
tion. External reset is handled as a signal to the OS pro
ess.The signal handler restarts the working of OS on
e it re
eives a signal.The hardware spe
i�
 routines that are required by the Card Operating Systemare handled as follows.
21

� EEPROM: EEPROM is implemented as a memory mapped �le in Linuximplementation. The �le name and the size of EEPROM is known by look-ing at a
on�gruration �le whose name is stored in the environment variableSCOSTACONF. The
on�guration �le
ontains two variables EEPROMFILEand EEPROMSIZE. Memory is mapped to the EEPROMFILE with EEP-ROMSIZE of memory. Any update to the EEPROM is done by assigning thevalues to memory lo
ations that is re�e
ted in
orresponding byte in the �leto whi
h memory is mapped as EEPROM.� Random No:In Linux implementation random number is generated by read-ing a byte from /dev/random whi
h gives random bytes. The fun
tion ge-tRandomByte() is implemented by reading a single byte from /dev/randomand returning the byte.� Input/Output: Input and output between the external world Card OS isdone by terminal I/O. The Card Operating System reads the input bytes fromthe standard input and writes the output to standard output.� Chip Serial No: The
hip serial number in
ase of the linux implementationis the
on
atenation of its IP address (4 bytes) and the inode number of the�le whi
h is mapped to the EEPROM.3.7 LimitationsThe following are some of the limitations of our
ode.Currently only the T=0 proto
ol with the default parameters is supported.There is a limit on the depth of the �le system supported. This is stored in the
ompile-time
on�gurable
onstant MAX_DEPTHThe maximum size of a �le, whi
h we
an allow is 64K. The total EEPROM sizeis also assumed to �t in this size. 22

Chapter 4Con
lusion and Future WorkIn this report, we have des
ribed the design and implementation of a SCOSTA-
ompliant operating system for smart
ards. We have also des
ribed the implemen-tation of our operating system on the linux platform. We have observed that veryfew
hanges needed to be made to the original
ode to port it to another ar
hite
ture.Future work will be in the dire
tion of porting the operating system for di�erentar
hite
tures as well as adding to the basi
 fun
tionality of the operating system byimplementing more fun
tionality to support payment appli
ations et
.,

23

Appendix ATerminologyThis appendix des
ribes the terminology used in the report. Further des
riptions ofthese terms are present in the ISO standards [12, 13, 18, 19℄� ATR: Answer to Reset� PPS: Proto
ol Parameters Sele
tion� CRT: Control Referen
e Template� AT: Authenti
ation Template� CT-sym: Cryptographi
 Template, symmetri
� CCT: Cryptgraphi
 Che
ksum Template� DF: Dedi
ated File� EF: Elementary File� SE: Se
urity Environment� SIM: Subs
riber Identity Module� CLA: Class byte� INS: Instru
tion byte 24

� FDB: File Des
riptor byte� LCSI: Life Cy
le Status Integer� SFI: Short File Identi�er

25

Appendix BSupport RoutinesThe following are the important support routines present in the support module.B.1 Routines for a

essing meta data� GetLength: Gets the total length of the given �le� SetLength: Sets the total length of the given �le� GetParent: Gets the parent DF of the given �le� SetParent: Sets the parent DF of the given �le� GetSibling: Gets the sibling of the
urrent �le� SetSibling: Sets the sibling of the
urrent �le� GetChild: Gets the
hild of a DF, if present.� SetChild: Sets the
hild of a DF to the given �leB.2 Routines for a

essing the File Control Param-eters of a �le� GetFDB: Gets the �le des
riptor byte of a �le26

� SetFDB: Sets the �le des
riptor byte of a �le� GetLCSI: Gets the Life Cy
le Status Integer of a �le� SetLCSI: Sets the Life Cy
le Status Integer of a �le� GetSETemplateId: Gets the File Identi�er of the �le whi
h
ontains the SEtemplate for a DF� SetSETemplateId: Sets the SE Template Identi�er of a DF to the given value� GetDFNameLength: Gets the length of the DF Name for a DF� SetDFNameLength: Sets the length of the DF Name for a DF� GetSe
urityAttrLength: Gets the length of the se
urity attributes of a �le� SetSe
urityAttrLength: Sets the length of the se
urity attributes of a �le tothe given value� GetSe
urityAttrAddr: Gets the address of the beginning of the Se
urity At-tributes� GetSFI: Gets the Short File Identi�er of the given EF� SetSFI: Sets the SFI of the EF to the given value� GetDCB: Gets the Data Coding byte of the given EF� SetDCB: Sets the Data Coding byte of the given EF� GetDataLength: Gets the length of the data of a Transparent EF� SetDataLength: Sets the length of the data of a Transparent EF� GetMNR: Gets the Maximum Number of Re
ords of a re
ord-oriented EF� SetMNR: Sets the Maximum Number of Re
ords of a re
ord-oriented EF
27

B.3 Routines for A

essing the data of the Elemen-tary Files� GetFileBytes:Gets given number of bytes from the Transparent File, startingfrom an o�set.� WriteFileBytes: Writes the given number of bytes in the transparent �le,starting from an o�set. The type of write behaviour is determined by theDCB of the �le.� UpdateFileBytes: Updates the given number of bytes in the transparent �le,startingfrom an o�set.� EraseFileBytes: Erases the given number of bytes in the transparent �le, start-ing from an o�set.� GetIthRe
ord: Gets the re
ord number given from a Re
ord Oriented File� WriteIthRe
ord: Writes the re
ord number given to a Re
ord Oriented File.The type of write behaviour is determined by the DCB of the �le.� UpdateIthRe
ord: Updates the re
ord number given to a Re
ord OrientedFile.

28

Bibliography[1℄ Gemplus R&D Topi
s page http://www.gemplus.
om/smart/enews/st3/32bit.html[2℄ The SCOSTA standards page http://www.
se.iitk.a
.in/ moona/s
osta/[3℄ Jurgen Dethlo�, Helmut Grottrup "Identi�kanden/Identi�kationss
halter",German Patent, DE 19 45 777 C2, February 1969.[4℄ Ellinboe Jules, "A
tive Element Card", US Patent, US 3,637,944, January 1972.[5℄ Paul Castru
i, "Information Card", US Patent, US 3,702,464, November 1972.[6℄ Gaming for smart
ards, home page of Kaos
. http://www.kaos
.
om/[7℄ The SmartFlash Cards page http://www.britneyspears.
om/smart�ash
ard/index.php[8℄ The respironi
s home page http://www.respironi
s.
om/[9℄ The IButton introdu
tion page http://www.ibutton.
om/ibuttons/[10℄ ISO/IEC 7816-1:1998 Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 1: Physi
al
hara
teristi
s[11℄ ISO/IEC 7816-2:1999 Information te
hnology � Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 2: Dimensions and lo
ation of the
onta
ts[12℄ ISO/IEC 7816-3:1997 Information te
hnology � Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 3: Ele
troni
 signals and transmissionproto
ols 29

[13℄ ISO/IEC 7816-4:1995 Information te
hnology � Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 4: Interindustry
ommands for inter
hange[14℄ ISO/IEC 7816-4:1995/Amd 1:1997 se
ure messaging on the stru
tures of APDUmessages[15℄ ISO/IEC 7816-6:1996 Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 6: Interindustry data elements[16℄ ISO/IEC 7816-6:1996/Cor 1:1998[17℄ ISO/IEC 7816-6:1996/Amd 1:2000 IC manufa
turer registration[18℄ ISO/IEC 7816-8:1999 Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 8: Se
urity related interindustry
ommands[19℄ ISO/IEC 7816-9:2000 Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 9: Additional interindustry
ommands and se
urity attributes.[20℄ Digital
ellular tele
ommuni
ations system (Phase 2+); Subs
riber IdentityModule Appli
ation Programming Interfa
e (SIM API); Servi
e des
ription;Stage 1[21℄ Digital
ellular tele
ommuni
ations system (Phase 2+); Se
urity me
hanismsfor the SIM appli
ation toolkit; Stage 1[22℄ S
hlumbeger Mi
roPay�ex
ard http://www.
ardstore.slb.
om/[23℄ Gemplus GemSafe
ards home page http://www.gemsafe.
om/[24℄ Deuts
he Telekom Multifun
tion Card TCOS Cryptographi
 Cardhttp://www.telese
.de/[25℄ The Java Card Management Spe
i�
ations Version 1.0bhttp://www.java
ardforum.org/Do
uments/J
ms10.PDF[26℄ The MULTOS home page http://www.multos.
om/[27℄ The S
hlumberger's Cyber�ex
ard home page http://www.
ardstore.slb.
om30

[28℄ The Gemplus GemXpresso RAD 211 http://www.gemplus.
om/[29℄ The p
s
 work group home page http://www.p
s
workgroup.
om/[30℄ The open
ard group home page http://www.open
ard.org/[31℄ The M.U.S.C.L.E home page http://www.linuxnet.
om/[32℄ The EMV home page http://www.emv
o.org/[33℄ The Basi
Card from ZeitControl home page http://www.basi

ard.
om/[34℄ Ankit Jalote and Marghoob Mohiyuddin "Implementing the Se
urity Module ofa Smart Card Operating System", BTP 2002, Department of CSE, IIT Kanpur.http://www.
se.iitk.a
.in/resear
h/btp2002/s
osta.ps.gz

31

