An Approach towards Real-time Distance
Education using Web Server Streaming

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Ashwini Damle

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

August, 2001

Certificate

This is to certify that the work contained in the thesis entitled “An Approach
towards Real-time Distance Education using Web Server Streaming’, by Ashwini

Damle, has been carried out under my supervision and that this work has not been

submitted elsewhere for a degree.

August, 2001 (Dr. Rajat Moona)
Department of Computer Science & Engineering,
Indian Institute of Technology,

Kanpur.

Abstract

In the context of distance education, a remote student may expect quick playback
start-up and uninterrupted playback of a classroom lecture on his desktop. With the
streaming media, the quick playback start-up can be achieved where the player starts
playback without waiting for the whole media file to be downloaded to local storage.
The issue of the uninterrupted playback can be resolved by low bit-rate audio-video
coding. However, the simplistic approach to the low bit-rate video coding degrades
the quality of the lecture video, especially of the slides being explained by the
instructor.

We focus on the issue of the uninterrupted playback while maintaining the ex-
cellent quality of the slides, on the student’s desktop. In our approach, we see two
semantically different visual entities in the lecture video, i.e., the presentation slides
and the instructor’s body overlapping the slides. Normally the instructor occupies
small region of the frame, so the video of the instructor’s body movements is a
natural choice for low bit-rate coding. We use chroma-key based coding of the in-
structor’s video where background surface is represented by a chroma-key say green
color. We then interleave the low bit-rate voice of the instructor with the coded
video stream. The coded audio-video of the instructor can further be converted to
the streaming media. We assume the presence of the Microsoft Powerpoint slides
along with the timing information, recorded during the lecture. The presentation
file and audio-visuals of the instructor are made available through a web server.

For the playback of the lecture contents, a player, on the student’s desktop, first
downloads the presentation file from the web server. The download time is less
because of the small size of the presentation file. The player extracts the slides of
the original quality. The low bit-rate coded (i.e. highly compressed) audio-visuals
of the instructor are streamed through the player and are simultaneously decoded.
The player makes the chroma-key background, in the video frames, transparent and
superimposes the instructor’s body over the slide. The player displays the visual

output and simultaneously plays the instructor’s voice for the whole lecture. The

overall synchronization between the instructor’s audio-video and the running slides
is achieved by maintaining the recorded timing for each slide in the presentation file.

Our approach surpasses the real learning experienced in a classroom, because
the quality of the slides is excellent on the student’s desktop as compared with the

quality appeared from a certain distance in a classroom.

i

Acknowledgements

I have absolutely no role, but to accept His blessings!

I express my sincere gratitude towards my guide, Dr. Rajat Moona, for allowing
me to work on this particular topic and offering me the freedom and the necessary
resources to try out my ideas and learn on my own. I must also express that his
insightful guidelines and timely suggestions have immensely helped me to proceed
with the proper pace. I enjoyed working under him.

I am grateful to the staff of the television center as well as the Robotics lab at
[.I.T. Kanpur for providing the facilities required for my work. I am thankful to all
of the teaching, non-teaching elders and the young learners, of the CSE department,
for providing me with such an exciting and encouraging work place.

I express my deep respect to all of the caretakers of the institute for maintaining
the peace and security of this beautiful and industrious place.

I have no words to express my gratitude towards Dr. T.V. Prabhakar and Mrs.
Archana Prabhakar for their words of encouragement, whenever I needed it.

I very much appreciate the useful criticism and thought provoking discussion
that I enjoyed in the company of Souvik, my friend who kept me aware of various
branches of knowledge, apart from the thesis work. I also respect his active support
and encouragement that I keenly felt throughout my journey here.

I express my warm feelings towards my friends Padmaja, Tanuja, Swarna, Mal-
abika, Aamrapali, Trishla and a lot more for creating a dream-home for me in this
campus. I acknowledge the caring and support that I received from my guardians,
Bapat family and Pandit family, throughout my stay here.

Finally, T note down the deepest feelings of my heart for my parents and my

Master, for being with me unconditionally.

Abbreviations used 1n this document

e ACM: Audio Compression Manager

e AD: Audio Decoder

e AMOS: Active MPEG-4 Object Segmentation
e ANSI: American National Standards Institute
e API: Application Programming Interface

e AVI: Audio Video Interleave

e CBDM: Chroma-key Based Display Mixer

e codec: COder DECoder

e COM: Component Object Model

e DCI: Display Control Interface

e DIB: Device Independent Bitmap

o fps: frames per second

e GIF': Graphics Interchange Format

e TEC: International Electrotechnical Commission
e IP: Internet Protocol

e ISDN: Integrated Services Digital Network

i

ISO: International Standards Organization
JDK: Java Development Kit

JIT: Just In Time

KB: Kilo Bytes

kbps: kilo bits per second

KHz: Kilo Hertz

LBAE: Low Bit-rate Audio Encoder
LBVE: Low Bit-rate Video Encoder

MB: Mega Bytes

NTSC: National Television System Committee (a video standard used in
United States, Japan)

PAL: Phase Alternating Line (a video standard used in United Kingdom)
PCM: Pulse Code Modulation

RFC: Request For Comments

SDK: Software Development Kit

SDO: Source Data Object

SE: Slides Extractor

TCP: Transmission Control Protocol

UDP: User Datagram Protocol

URL: Uniform Resource Locator

VD: Video Decoder

il

Terminology used in this document

e ASF': Microsoft’s Advanced Streaming Format [6]. This audio-video format
supports low bit-rates such as 28.8 kbps, 56 kbps, 64 kbps and 128 kbps and

allows “progressive playback” using web server streaming. The AVI, MPEG-1

and .wav files can be encoded to ASF format using Windows Media Encoder

version 6.x. ASF format is based on MPEG-4 compression technology. This

is Microsoft’s proprietary format and not too many ASF editing/conversion

tools are freely available.

e Audio interleaving: Very few applications deal with digital video only. Nor-

mally digital video is accompanied by digital audio. Audio interleaving sug-

gests the way to integrate a video stream and an audio stream in order to

achieve synchronization between the two.

e Bit-rate: The rate at which the encoded bitstream is delivered from the

storage medium to the input of a decoder.

e DCI: The Diplay Control Interface (DCI) for the Microsoft Windows operat-

ing system is a driver-level software interface which provides access to display

devices. DCI provides access to the display device-independent benefits such

as improved video playback quality. DCI is the predecessor of the Microsoft

DirectDraw.

e GOP (Group Of Pictures): In a coded video stream, a sequence of encoded

pictures from one intra-coded picture to a picture just before next intra-coded

picture is called a GOP.

iv

HTTP: The HyperText Transfer Protocol [16] is an application-level protocol
designed for distribution of hypertext and multimedia documents over the
World Wide Web.

IP multicast: IP multicast [11] allows very efficient delivery of streaming
content to large number of users. However, it only works on networks with

multicast-enabled routers.

Jitter: The variable network latency, normally caused by the queuing of pack-

ets at each router between source and destination, is called jitter.

JPEG: JPEG [20] is a standardized image compression mechanism. JPEG
stands for Joint Photographic Experts Group, the original name of the com-
mittee that wrote the standard. JPEG is designed for compression of either
full-color or gray-scale images of natural, real-world scenes. JPEG is “lossy”,
meaning that the uncompressed image isn’t quite the same as the original one.
JPEG is designed to exploit known limitations of the human eye, notably the
fact that small color changes are perceived less accurately than small changes
in brightness. The encoder can trade off file size against output image quality.

The decoder can trade off decoding speed against image quality.

Low bit-rate video coding: The video compression technique which outputs

a coded video stream of not greater than 64 kbps bit-rate.

Microsoft DirectX: DirectX [13| is an API supported by the Microsoft Win-
dows that enhances the multimedia capabilities of the computer. DirectX in-
cludes accelerated video card and sound card drivers. These drivers provide
better playback for different types of multimedia, such as full-color graphics,
video, 3-D animation, immersive music, and theater sound. DirectX enables
these advanced functions without requiring the programmer to identify the
hardware components in the computer and ensures that most software runs
on most hardware systems. DirectX is comprised of APIs that are grouped
into two classes. One is the DirectX Foundation layer, and other is the DirectX

Media layer.

The DirectX Foundation layer automatically determines the hardware capabil-
ities of the computer and then sets the program’s parameters to match those
capabilities. These APIs control low-level functions, including 2-D graphics
acceleration and control of sound mixing and sound output. The low-level
functions are supported by the components that make up the DirectX Foun-

dation layer. Some of these components are Direct Draw and DirectSound.

The DirectX Media layer works with the DirectX Foundation layer to provide
high-level services that support animation, media streaming and interactivity.
Like the DirectX Foundation layer, the DirectX Media layer is comprised of

several integrated components. One of the components is DirectShow.

Microsoft DirectDraw: The Microsoft DirectDraw API [13] supports ex-
tremely fast and direct access to the accelerated hardware capabilities of a
computer’s video adapter. It supports standard methods of displaying graph-
ics on all video adapters, and faster, more direct access when using accelerated
drivers. DirectDraw provides a device-independent way for programs, such as
digital video codecs, to gain access to the features of specific display devices
without requiring any additional information from the user about the device’s

capabilities.

Microsoft DirectSound: The Microsoft DirectSound API [13] provides a
link between programs and an audio adapter’s sound mixing and playback
capabilities. DirectSound provides multimedia applications with low-latency
mixing, hardware acceleration, and direct access to the sound device. It
provides these features while maintaining compatibility with existing device

drivers.

Microsoft ActiveMovie/DirectShow SDK: [12]

The Microsoft ActiveMovie SDK lets developers access ActiveMovie services,
which provide playback of multimedia streams from local files or Internet
servers. Specifically, this allows playback of video and audio content, com-

pressed in various formats including MPEG, QuickTime and AVI.

vi

The heart of the ActiveMovie services is a modular system of pluggable compo-
nents called filters arranged in a configuration called a filter graph. Normally
one filter handles a basic function in dealing with media files such as reading
from a media file, writing to a media file, transforming (e.g. compressing,
decompressing etc.) a media stream, rendering media on a surface etc. A
component called the filter graph manager oversees the connection of these
filters and controls the data flow of the stream. Figure 1 depicts a filter graph
that can render an Audio-Video Interleaved (AVI) file.

AVI AVI Video
Source Codec Renderer
Audio
Renderer

Figure 1: Generic filter graph used to render an AVI file

Applications control the activities of the filter graph by communicating with
the filter graph manager. This can be done indirectly using the ActiveMovie
ActiveX control or by calling COM interface methods directly. The SDK allows
developers to create their own filters using the ActiveMovie class library. The
base classes in the library implement the required COM interfaces on the filters

and provide the basic filter framework.
The ActiveMovie version 2.0 has been renamed as DirectShow.
MMX technology: MMX stands for MultiMedia eXtension. The high per-

formance multimedia processing instructions are provided as extension to Pen-

tium’s general purpose instruction set.

Network congestion: When the load offered to any network is more than
it can handle (when there are too many packets present in a network), the

performance degrades. This situation is called network congestion.

vii

¢ Real-time distance education: If the distance education experience matches
the time-bound learning experience of a classroom lecture, we call it real-time

distance education.

e Real-time transmission of data: If the actual rate of data transmission
matches the rate of data consumption, then it is called real-time transmission
of data.

e RTSP: The Real Time Streaming Protocol or RTSP [3], is an application level
protocol for control over the delivery of data with real-time properties. RTSP
provides an extensible framework to enable controlled, on-demand delivery
of real-time data, such as video and audio from live data and stored clips.
The protocol is intended to control multiple data delivery sessions, provide a
means for choosing delivery channels such as UDP, multicast UDP and TCP,
and provide a means for choosing delivery mechanisms based upon RTP (RFC
1889).

e RTT: For each connection, TCP maintains a variable, RTT, that is the best
current estimate of the round-trip-time to the destination in question. The
round-trip-time means time required for a segment to reach its destination

plus the time required for its acknowledgement to reach the source.

e Scalability option in video compression: This is one of the options speci-
fied while compressing a video using some codecs. When scalability is enabled,
video is compressed in a manner that allows playback visual quality to vary
automatically, based on the available processing power of the playback system.
If processing power is inadequate, the codec degrades visual quality incremen-

tally rather than dropping frames. This avoids jerky video playback.

e Streaming media: Streaming media file begins playing almost immediately,
while the data is being sent, without having to wait for the whole file to be

downloaded to the local storage.

e Web server streaming: A standard web server is used (instead of a stream-

ing server) to deliver the audio and video data, available in a “progressive

viil

playback” format, to the client. The data received is streamed through the
application. Web server streaming uses HTTP for communication between the

server and the client. HT'TP typically uses TCP for transport protocol.

ix

Contents

1 Introduction 1
1.1 Introduction to the problem 1
1.2 Motivation e 2
1.3 Ourapproach 3
1.4 Related work 6

1.4.1 “NetCast” project 6
1.4.2 Live Intranet distance learning system using MPEG-4 over

RTP/RTSP 6

1.4.3 Segmentation of the instructor’s body using edge detection . . 6

1.4.4 Some techniques for low bit-rate video coding 7

1.4.5 Low bit-rate speech coding 8

1.5 Organization of the thesis 8

2 Overall architecture 10
2.1 Content-development phase 11
2.2 Architecture of the player L. 13

3 Introduction to the technologies we used 18
3.1 Pinnacle digital video capture card 18
3.2 MPEG-1 standard 18
3.3 AMOS: Active MPEG-4 Object Segmentation system 19
3.4 Chroma-key shape coding technique 21
3.5 Microsoft’s AVI format L. 21
3.6 RDX: Realistic Display miXer SDK 3.02 22

3.7 Indeo Video Interactive oL
3.8 Microsoft Powerpoint COM Object Library

4 Implementation details
4.1 Content-development methodology
4.1.1 Issues resolved by the selection of Indeo 4.1
4.1.2 System requirements for content-development
4.1.3 Scheme for the development of the lecture contents
4.2 Implementation of the player
4.2.1 System requirements to execute the player
4.2.2 Slides Extractor (SE) 0oL
4.2.3 Chroma-key Based Display Mixer (CBDM)

5 Results and conclusion
5.1 Visual outcome at various stages of the content-development
5.2 Visuals generated by the components of the player
5.3 Analysis of theresults
5.3.1 Achievements
5.3.2 Limitations
54 Futurework

5.4.1 Future extension based on the current framework

5.4.2 Other approaches

5.5 Concluding remarks oo

A Software tools used

Bibliography

xi

52

58

60

List of Figures

1.1

1.2

2.1
2.2

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9

Generic filter graph used to render an AVIfile

Poor quality video frame due to simplistic approach to low bit-rate
videocoding

General description of a model-based coding system

Content-development procedure

Architecture of the player 0.

Sample input-output of AMOS software
Sample frame used for chroma-key shape coding
Architecture of Intel RDX core

The scheme followed during the content-development

Our usage model for Intel RDX objects

Frame before discarding the redundant information
Frame after discarding redundant information
Outcome of the preprocessing, done before the actual segmentation
Outcome of the active object segmentation
Outcome of the chroma-key screening
Outcome of the video decoder, i.e., a decoded frame
Outcome of the slides extractor
Outcome, of the CBDM, displayed by the player
Filter graph for rendering progressive download Indeo 5.11 video on
RDX surface

xii

Chapter 1

Introduction

1.1 Introduction to the problem

With the advent of streaming media technology, “Distance Education” mechanisms
have got a new dimension. Today’s student expects classroom lecture contents on
his desktop. However current technologies don’t cope well with Internet congestion.
In addition, slow player start-up forces user to wait for some time initially. It is
very difficult to quickly start uninterrupted playback of a typical one hour class-
room lecture video on a remote student’s desktop even with the streaming media
technology.

The challenge before content-developers seems to be real-time transmission and
quick playback start-up on client machine while maintaining reasonable quality of
the lecture contents. The present work explores ‘bit-rate’ as the dimension of the
computer-based distance education mechanism and strives to achieve the low bit-
rate (hence possibly real-time) distance education using web server streaming. In
other words, we come up with a scheme to get the compressed lecture video stream

which does not exceed 64 kbps bit-rate.

1.2 Motivation

g8 The noble cause of education

We typically learn about a new concept by listening to an expert’s talk explaining
the concept with the aid of its model. Using the technology today, it is possible to
provide models, lecture material etc. in some form. But the role of the instructor
seems to be essential in a complete learning experience provided the instructor is

clearly seen and heard.

B Time-tested distance education efforts

Today’s technology provides with various means to preserve the lectures in the
archives and reuse them whenever needed. Video cassette and television broadcast-

ing have been time-tested means of distance learning.

p Future distance education using streaming media

The Multimedia technology makes the information available in the form of graph-
ics, images, audio, video etc. Various compression-decompression techniques solve
the problem of huge storage required for audio-visual information. Internet-based
streaming media technology has the potential to dominate media distribution among
the currently used technologies such as broadcast TV distribution, cable TV distri-

bution and physical video rental via cassettes and CDs.

i Current technical issues in streaming media [2]

Current streaming protocols don’t cope well with Internet congestion at high rates.
This results in annoying display quality with occasional interruptions.

The other major technical issue is the start-up time of the streaming media
player. The buffering, on the player side, may result in slow start-up of the player.

The reason for using a buffer is to absorb network “jitters” with time.

1.3 Our approach

In the context of distance education application, the remote student may expect the

quick playback start-up and uninterrupted playback of a classroom lecture video on

his desktop. With the streaming media, the first issue of the quick playback can be

handled where the player can start playback without waiting for the whole media

file to be downloaded to local storage. In order to resolve the issue of uninterrupted

playback over today’s narrow communication channels, the low bit-rate audio-video

coding is a natural choice.

B Salient features of a classroom lecture movie used in our approach

1.

The lecture is captured from a fixed point of view. Hence a fixed major portion

of each video frame is occupied by the presentation slide.

The common presentation format is slide driven. In our approach, the slides

are in the Microsoft Powerpoint format.
Usually the contents of the slide change slowly and at discrete time intervals.

During the actual recording of the lecture, the transition timing per slide
can be noted and the same timing information can be saved along with the

presentation.

The only moving object in the video is the instructor (typically the upper
body of the person).

The instructor’s body usually overlaps the slide and the region occupied by

the instructor is small as compared to the size of the whole video frame.

Usually the only audio component is the voice of the instructor.

p Limitations of simplistic approach to low bit-rate video coding

The simplistic approach to the low bit-rate video coding certainly degrades the

quality of the lecture contents. Figure 1.1 shows one decoded frame provided in

low bit-rate coded Microsoft’s Advanced Streaming Format (ASF). In this case, the
slide being explained by the instructor is not clearly visible to the remote student
after decoding such a highly compressed lecture video. The decoded audio is noisy

and unclear due to the high compression.

Figure 1.1: Poor quality video frame due to simplistic approach to low bit-rate video
coding

8 Our approach using chroma-key based low bit-rate video coding

In our approach, we focus on the issue of uninterrupted playback, while maintaining
the excellent quality of the slides, on the remote student’s desktop. The approach, if
coupled with the streaming media technology, results in achieving real-time distance
education with the existing web server infrastructure.

In our approach, we see two semantically different visual entities in the lecture
video, i.e., the presentation slides and the instructor’s body movements overlapping
the slides. The instructor normally overlaps the slide and occupies small region in
a video frame. Therefore the area containing the instructor’s visual part is a good

choice for applying low bit-rate video coding technique.

We propose an approach similar to the chroma-keying. A well-known example
of chroma-keying is the television weather forecaster standing in front of a satellite
weather picture. In reality, the forecaster stands in front of a blue screen and video
gadgetry replaces the blue color with another video signal. Anything that is not the
blue “key” is left unchanged in the final output.

During the content-development, we segment out the visuals of the instructor’s
body movements and replace the background with a fixed chroma key such as green
color. The by-product of this segmentation, i.e., the chroma-key information, the
size of the display window etc., serve as the display parameters during the playback.
We apply a low bit-rate coding (i.e. high compression) technique on the segmented
video of the instructor and interleave the low bit-rate coded voice of instructor with
the coded video stream. We assume the presence of the slides (e.g. the Microsoft
Powerpoint file) along with the transition timing per slide recorded during the lec-
ture. The presentation file, the coded audio-visuals of the instructor and the display
parameters, representing the lecture contents altogether, are made available through
a web server.

For the playback of the lecture contents, the player on the remote student’s desk-
top first downloads the presentation file and the display parameters from the web
server. The download time is very small because of the relatively small size of the
presentation file. The player extracts the slides of the original quality from the pre-
sentation file. The low bit-rate coded (i.e. highly compressed) audio-visuals of the
instructor are also streamed through the player. The player then simultaneously de-
codes the audio and the video of the instructor, replaces the chroma key in the video
frames with transparent color and superimposes the instructor’s body movements
over the slide. The overall synchronization between the instructor’s audio-video and
the running slides is achieved by maintaining the transition timing per slide of the
presentation.

Our approach surpasses the real learning experienced in a classroom, because
the quality of slides is excellent on student’s desktop as compared with the quality

appeared from a certain distance in a classroom.

1.4 Related work

1.4.1 “NetCast” project

One of the major attempts for distance education is the ‘NetCast’ project [17] by a
group of technicians with the support of University of South Florida. In this attempt,
streaming audio-video and TP multicast technologies have been used. ‘NetShow’ (a
product from Microsoft) [10] is used as the streaming server to multicast the lecture

contents.

1.4.2 Live Intranet distance learning system using MPEG-4
over RTP/RTSP

A recent attempt [15] uses MPEG-4 to realize distance education application. MPEG-
4 is a recent standard from ISO/IEC for the coding of natural and synthetic audio-
visual data in the form of audio-visual objects that are arranged into an audio-visual
scene by means of a scene description.

The scenario involves the video and audio of a classroom instructor where the
overhead foils, the instructor may use, are sent as a separate data stream. The three
streams are encapsulated in MPEG-4 systems, which adds synchronization, among
the streams, and a combined composition (i.e. positioning and sizing) into a single
multimedia presentation.

This attempt uses RTP/RTSP and HTTP as the transport mechanisms to deliver

the lecture contents to the remote student’s desktop.

1.4.3 Segmentation of the instructor’s body using edge de-

tection

We experimented with a simple approach for segmenting out the instructor’s body
(i.e., head, shoulders and arms mainly) from the lecture video. In this approach,
we first apply the canny filter (an image processing algorithm that is used to detect
edges), with suitable values of input parameters namely sigma and threshold, on each

frame of the video. To detect the boundary of the person accurately, the person’s

clothes must be in contrast with the color of the background surface. The shadow
of the person should also be avoided in the frame. The next step is to replace the

background, with a fixed color say green.

1.4.4 Some techniques for low bit-rate video coding

We studied two techniques for the low bit-rate coding of the video. Though they
appear promising we could not use them for our approach, as no standard tool that

we used had a support for the same.

B Model-based techniques for low bit-rate video coding [7]

Model-based video coding is a technique, which is suitable to achieve low bit-rate
coding of a video that contains the repeated/similar actions of a human object in
the video. The model-based approach entails to model the human body in some way
and send only the model information on the other side. The human body image
is reconstructed on the other side using this information. It results in a fairly low
bit-rate as the model data and not the real image is sent over the network.

Various methods to create 2-d or 3-d models of human face and human body
have been studied. The general description of a model-based coding system is shown
in the figure 1.2.

Encoder Decoder
Network
Analysis e Synthesis
Input image Analysis data Output image
Image source model Image source model

Figure 1.2: General description of a model-based coding system

MPEG-4 standard supports very low bit-rate coding of virtual human animation

[18], using model-based approach, with bit-rate requirements as low as 1 kbps.

B Low bit-rate video coding using watershed segmentation and control

point tracking [1]

Some work has been undertaken by Mr. B. Prabhakar to implement low bit-rate
video coding. In his M.Tech. thesis, the author discussed about his implementation
of the watershed segmentation algorithm and control point tracking. He presented
the results for a sample video, which contains the upper part of the human body
(face and shoulders). In this approach, the data rate achieved is between 10 and 20
kbps for a frame rate of 7.5 fps.

1.4.5 Low bit-rate speech coding

There are two approaches that we looked at for speech coding. In one approach, the
coders are called waveform coders that can maintain better quality of human voice
at high bit-rates. In another approach, the coders are named as vocoders (voice
coders) that can achieve low bit-rate, but degrades the quality of the voice to some
extent.

CELP (Code Excitation Linear Prediction) technique combines the high quality
of the waveform coding with the compression efficiency of the model-based vocoders.
It covers the bit-rate range from about 6 to 24 kbps. In MPEG-4, linear predictive
coding (LPC) is realized by means of CELP coding technique.

We tested the CELP coding technique in its regular pulse excitation (RPE) mode
using a sample audio file representing the voice of the instructor. The audio takes
a storage space of 5.69 MB in .au format. The size of the CELP coded audio file
(.mp4) is 307 KB that requires 21.5 kbps channel for transmission in real-time. The

quality of the voice, after decoding, is acceptable for distance education application.

1.5 Organization of the thesis

The rest of the thesis is organized as follows.
In chapter 2 we discuss the overall architecture of our approach. In chapter 3

we discuss the various technologies used by us along with their programmable and

non-programmable features. In chapter 4 we discuss the scheme followed during the
content-development and the implementation of the player. We discuss the results
of the current work and conclude this work with some suggested future extensions

in chapter 5.

Chapter 2
Overall architecture

In the context of distance education, over the existing web infrastructure, a remote
student expects two things, i.e., the quick playback start-up and the smooth (i.e.,
uninterrupted) playback of the lecture contents, on his desktop. The streaming me-
dia technology resolves the issue of playback start-up time where the player starts
the playing immediately without waiting for the whole media file to be downloaded
on the client side. In our approach, we focus on the second issue of smooth playback
of the lecture contents, on the remote student’s desktop. Our approach, when cou-
pled with the streaming media technology, achieves the real-time distance education
over the existing narrow communication channels of bandwidth say 128 kbps.

The low bit-rate audio-video coding of the lecture contents resolves the issue of
smooth playback. However, the simplistic approach to the low bit-rate video coding
degrades the quality of the lecture video, especially of the slides being explained by
the instructor. So our approach aims to achieve smooth playback of the low bit-rate
coded lecture contents, yet maintain the excellent quality of the slides on the remote
student’s desktop.

In order to achieve these conflicting goals, our approach incorporates an elaborate
methodology for developing the lecture contents and a dedicated player, which plays
the lecture contents on the remote student’s desktop (i.e., on the client side). The
player executes each time a remote student accesses the lecture contents kept on a

web server.

10

2.1 Content-development phase

The role of the content-developer (i.e., an expert person) is to code the lecture
contents such that the bit-rate of the developed lecture contents doesn’t exceed 128
kbps at the same time the original quality of the slides is maintained on the remote
student’s desktop. The content-developer uses the digital movie of a classroom
lecture for the development of the lecture contents. In the movie, a fixed major
portion of each video frame is occupied by presentation slide with the instructor’s
body movements occupying the small region and frequently overlapping the slide.
The content-developer sees two semantically different entities, in the lecture movie,
i.e., the running presentation and the instructor. The presentation file (made by
using the Microsoft Powerpoint), used in the lecture, contains the contents of all the
slides along with the transition timing per slide rehearsed during the actual lecture
event. The presentation file, when kept on the web server, directly serves as the part
of the lecture contents to be used by the player. So the development of the contents
is nothing but generating the encoded audio-visuals of the instructor, having bit-rate
not more than 128 kbps, as the remaining part of the lecture contents.

Figure 2.1 shows the pictorial representation of the content-development proce-
dure. Following is the high-level description of the software components used in this

procedure.

1. Splitter: The splitting of the original lecture movie is essential because we
process the audio and the video separately. The splitter takes the digital movie
of the captured lecture content as input. It splits the input into separate audio

and video streams and saves those streams into separate audio and video files.

2. Segmentor: The segmenting of the instructor’s visual part is essential because
it is the only visual part of the lecture which can be highly compressed without
much affecting the quality of the overall playback. The segmentor takes the
video file generated by the splitter as input. It goes through each frame of the
video file and decides which part of the frame represents foreground object.
The segmentor component executes semi-automatically, where the content-

developer specifies some input parameters to decide about the boundary of

11

the object. The remaining part of the frame is treated non-significant. The
output of the segmentation is the video with only foreground object in front
of a fixed color background. The fixed background color is called chroma-key
and the information about the chroma-key is saved as one of the display pa-
rameters for the player’s reference. Sometimes the segmentor applies cropping
on input video for separating the rectangular region in the video frame where
the foreground object is most likely to be present. The segmentor discards
the remaining part of each video frame. This helps the segmentor execute
faster. However, this may require repositioning of foreground object on any
background surface. In that case, the segmentor generates cropping param-
eters, i.e., top, bottom, left and right margins, as the display parameters for

the player’s reference.

. Low Bit-rate Video Encoder (LBVE): The LBVE is required to highly
compress the instructor’s visual part. The LBVE takes the video file of the in-
structor’s body movements, generated by the segmentor, as input. It also takes
specifications, namely the destination frame size and the destination frame
rate, from the content-developer. LBVE then generates a highly compressed
video file of bit-rate not more than 64 kbps. To achieve this compression,
LBVE throws away the redundant information from the input video. It tries
to minimize the spatial redundancy as well as temporal redundancy from the

input video.

. Low Bit-rate Audio Encoder (LBAE): The LBAE is required to throw
away the redundant information in the audio of the instructor and convert
it into a compact format. The LBAE takes the audio file of the instructor’s
narration, generated by the splitter, as input. It also requires the content-
developer to specify the destination sample rate, i.e., samples per second, and
the destination sample precision (i.e., number of bits used to represent each
sample). It generates highly compressed audio file of bit-rate not more than 64
kbps. To achieve this compression, LBAE uses some characteristics of audio

specific to the human voice.

12

d.

Synchronizer: This component is required by the content-developer to main-
tain the consistency, between the instructor’s body movements and the nar-
ration, as observed in the original digital movie of the lecture. Synchronizer
takes the low bit-rate encoded video file and the low bit-rate encoded audio
file as input and generates the synchronized low bit-rate encoded audio-video
file. The synchronization is achieved by using the implicit timing information

present in the input video and audio streams.

2.2 Architecture of the player

The role of the player is to play the lecture contents, available on the web server,

on the remote student’s desktop each time a student accesses the lecture contents.

The player takes the audio-video of the instructor, the presentation file and the

display parameters saved in a separate text file as its inputs. It plays the voice of

the instructor and displays the visuals of the lecture, i.e., the slides along with the

instructor explaining the slides.

The player needs to fulfill the following major expectations of the remote student.

1.

Ease in using the player with very little user intervention.

Facility to save slides to local storage for student’s future reference.
Clarity of the slides.

Clarity of the instructor’s narration.

Consistency/accuracy in the instructor’s body movements with respect to the

contents on the slide.

Uninterrupted playback of the lecture contents.

Figure 2.2 represents the architecture of the player.

13

The player consists of following software components.

1. Slides Extractor (SE): The main job of the SE is to extract the displayable
information, i.e., the lecture material on slides, from the Microsoft Powerpoint
file. In other words, the SE decodes the Powerpoint presentation file to get the
slides, as separate images, and the transition timing per slide. The SE takes
the presentation file as its input. It generates the slides as separate bitmap
images and a separate file containing the transition timing per slide. The

output generated by the SE serves as input to the display mixer (CBDM).

2. Audio Decoder (AD): The AD is required to decode the audio of the lecture,
i.e., the instructor’s voice before playing it on the remote student’s desktop.
The AD takes the audio part of synchronized audio-video of the instructor
as input. It decompresses the input audio and generates the voice of the
instructor as uncompressed audio. A sound device is required to play this

audio.

3. Video Decoder (VD): The VD is required to decode the video of the in-
structor before playing it. The VD takes the video part of the synchronized
audio-video of the instructor as its input. It decompresses the video and gen-
erates the displayable video frames as output. The generated video contains
only the instructor’s body movements in front of a fixed chroma-key back-
ground. The VD decides the frame rate (i.e., decoded frames per second) and
the frame size in pixels of uncompressed video frames from the information

present in the input video stream.

4. Chroma-key Based Display Mixer (CBDM): The CBDM is the core
component of the player. The task of this component is to present the visual
aspects of the lecture, i.e., the slides and the instructor’s body movements
overlapping the slides, in a realistic way on the remote student’s desktop. The
CBDM takes the uncompressed video frames (output of the VD), the bitmap
images representing the slides (output of the SE), the stored transition timing
per slide extracted by the SE and the display parameters (i.e., chroma-key

and positioning information etc.), generated during the content-development,

14

as its input. The video representing the instructor’s body movements is su-
perimposed on top of the slide images using the positioning information where
the chroma-key is replaced with the transparent color. The synchronization
between the running slides and the instructor’s body movements is achieved
by updating the slide image at appropriate time. The output generated by this
component is displayed on the screen. The voice of the instructor is played in

synchronization with the instructor’s video.

15

digital movie of

|ecture audio/
instructor’ s voice

the lecture
Splitter
lecture
video
|
[Segmentorj
chromakey, video of the
positioning instructor’'s
information body
movements
e

presentation file
with the timing

information

-

Video Encoder

Audio Encoder

L ow Bit-rate] [Low Bit-rate }

|low bit-rate encoded
video of the instructor

low bit-rate encoded

voice of the instructor

(Synchronizer)

synchronized low bit-rate
encoded audio-video
of the instructor

(Uploading on aWeb server)

Figure 2.1: Content-development procedure

16

downloaded downloaded downloaded
; chroma-key
audio-video presentation Omarkey,
ositionin
of e filewith ipnformati ogn
Instructor timing information
T@ Video c Slides Player
xtractor
Decoder Decoder
uncompressed uncompressed didesas timing information
voiceof the video frames of separate for each dide
instructor the instructor bitmap
images

Chroma-key Based Display M ixer}

audio
output

displayable
output

Figure 2.2: Architecture of the player

17

Chapter 3

Introduction to the technologies we

used

3.1 Pinnacle digital video capture card

The classroom lecture video is typically available on a video cassette recorded in
an analog format. To convert the audio-visual information into digital format, we
use Pinnacle video capture card. The card comes with M-JPEG (Motion JPEG)
compressor implemented in the hardware. It compresses each video frame separately
using JPEG compression algorithm and stores the sequence of such compressed video
frames, after interleaving with audio, into an AVI file. The compressor executes
reasonably fast because of its hardware implementation. However, since it doesn’t
consider interframe difference in the video sequence, the size of the resulting AVI
file is rather large. For example, for a 4 minutes lecture video, the AVI file takes
260 MB disk storage.

3.2 MPEG-1 standard

MPEG is an international standard for the generic coding of motion pictures and
associated audio. The MPEG standard specifies the coding and multiplexing of

video and audio with synchronization. MPEG encoded video is made up of three

18

types of pictures namely I, P, B.

e [-pictures are Intra-coded, i.e., they are spatially coded like still images using
information only from that frame and can be reconstructed without referring

to the other frames.

e P-pictures are Predictive coded, i.e., they are coded with reference to a past
picture (forward prediction) which is either an I-picture or a P-picture. The

referred picture (P or I) has to be decoded first before decoding a P-picture.

e B-pictures are Bi-directionally coded, i.e., they are coded with reference to a
past picture (forward prediction) and a future picture (backward prediction).
The referred pictures have to be non-B pictures. In this case, both past and
future referred pictures have to be decoded before decoding a B-picture. A

B-picture can never be used as a reference to code any other picture.

Of the three types of coding listed above, I-pictures result in the best quality
but suffer from low compression whereas B-pictures have the advantage of high
compression though they result in poor quality. P-picture strike a balance between
I and B-pictures in terms of picture quality, compression ratio and computational
complexity.

A set of encoded pictures from one I-picture to a picture just before the next
[-picture form a GOP (Group of Pictures). A sequence of GOPs form an MPEG
video stream. The first picture in a GOP is always an I-picture.

We use AVItoMPEG converter to convert audio-visual information from AVI
format to MPEG-1 format. For a 4 minutes sample lecture video, the output file in
MPEG-1 format takes around 60 MB disk storage.

3.3 AMOS: Active MPEG-4 Object Segmentation

system

AMOS [21] is an active object segmentation and tracking system for general video
sources. It combines low level automatic region segmentation with an active method

for defining and tracking high-level semantic video objects.

19

The system allows users to identify a semantic object by using mouse in the
starting frame of a video object. The object is defined by an outline polygon whose
vertices and edges are roughly along the desired object boundary. To tolerate user-
input error, a snake algorithm [14] is used to align the user-specified polygon to
the actual object boundary. The snake algorithm is based on minimizing a specific
energy function associated with edge pixels. Users may also choose to skip the snake
module if a relatively accurate outline is already provided. Users can then start the
object tracking process by specifying a few parameters such as color threshold and
motion threshold. At any frame, users may stop the tracking process to refine the
object boundary, change the tracking parameters and resume the tracking process.

The tracking process is carried out in two stages. The first stage is an initial
object segmentation stage where the user input is used to create a semantic ob-
ject with underlying homogeneous regions. The second stage is an object tracking
stage where the homogeneous regions and the object are tracked through successive
frames.

The input video can be PPM picture sequence or MPEG motion picture. The
system generates a binary-mask in the PGM (i.e., Portable GrayMap) format, for
the tracked object, at each frame. Figure 3.3 shows the results of the AMOS system

for a sample input image.

Original frame Binary mask

Figure 3.1: Sample input-output of AMOS software

20

3.4 Chroma-key shape coding technique

This shape coding technique was inspired from the blue screen technique used in
film and TV studios. In this technique, the color of a pixel is used to distinguish
between foreground object and background object. The object to be coded is placed
on a static single color background. The color of the background (chroma-key) has
to be the one not used by the texture of the object. Usually highly saturated colors
fulfill this requirement. The image or sequence of images with the object in front
of this one-colored background is then encoded using a conventional encoder in full
frame mode. Chroma-key is transmitted to the decoder. The decoder decodes the
images and makes transparent the pixels of color given by the chroma-key. The
transparent colored pixel is one that doesn’t get modified in its intensity. Figure
3.2 shows a sample video frame. Here the background is green color key (shown in
gray variation) which is communicated to the decoder to treat the green pixels as

transparent while decoding.

Figure 3.2: Sample frame used for chroma-key shape coding

3.5 Microsoft’s AVI format

In the current work, we use the Microsoft AVI format [6] of coding the audio-video
because the interactive AVI codecs are freely available. Moreover, these codecs
fulfill the requirements, of our approach, namely chroma-key based transparency,
reasonably good audio-video synchronization and scalability.

AVT stands for Audio Video Interleave and is defined by Microsoft. It is one of

the most common format for audio and/or video data on the PC.

21

Web authors, planning to use AVI, must provide highly compressed video at low
bit-rates because of the limited bandwidth available (from 28.8 kbps for phone line
to 128 kbps for ISDN lines).

To compress the AVI video at low bit-rate, some of the options are as following.
e Use smaller frame sizes (e.g. 160x120 pixels)
e Use lower frame rates (10-15 frames per second)

e Use of the newer codecs such as Indeo 4.1/5.1 [6].

The AVI format was developed for playback of audio and video from local storage
on personal computers. It is also adequate for downloading a video file from a remote
site on the Internet for subsequent playback from the computer’s hard drive. It is not
well suited for streaming video playback over networks. The AVI file format lacks
time stamps embedded in the audio and video streams. There is no mechanism to
resynchronize the audio and video streams if data is lost in the network. Because of

these limitations of the AVI format, it can’t be used as a streaming media.

3.6 RDX: Realistic Display miXer SDK 3.02

We use RDX technology [4] to implement the Chroma-key Based Display Mixer
(CBDM) in the player. The display mixer mixes the slides and the decompressed
frames of the instructor’s video and displays each frame of the lecture in a realistic
fashion.

Intel’s Realistic Display miXer SDK provides a set of basic routines for multime-
dia applications. The libraries are designed for use on Intel Pentium class processors
with or without MMX technology. The system provides object-oriented support for
multimedia objects. RDX technology is designed for Win32 API (i.e. Windows 95,
98, Windows NT 4.0 etc.) and uses the Microsoft DirectX and ActiveMovie SDK
for enhanced performance while dealing with the video.

RDX architecture lets the developer access RDX technology directly or through
COM-compliant interfaces, through ActiveX controls or through the Microsoft Java
Virtual Machine.

22

§ Benefits of the Intel RDX system

The RDX system provides ease of use, extensibility, ease of display mixing, high
performance, coordination of displayable and non-displayable activities and support
for performance improvements in underlying software components.

Display Mixing: The use of display mixing had been somewhat limited because
video and graphics were treated as independent entities. As a result, many multi-
media Windows applications use one data type or the other but not both. However,
in Intel RDX system, the display mixing is achieved whereby the programmer needs
to create a set of objects, define their generic attributes, map them to a surface
and then draw the surface. Each of these operations is accomplished by high-level
function calls. The display mixing is software-based and is performed in real-time
without requiring any special hardware.

Coordinated Activities: Multimedia applications are primarily based on dis-
playable objects, but they also need audio objects and devices and the ability to co-
ordinate their interplay easily and accurately. For this, Intel RDX provides ‘timers

and events’ mechanism to support scheduling and synchronization.

8 Components of the Intel RDX system

Figure 3.3 shows the architecture of Intel RDX core.

In the figure, following are the programmable components of Intel RDX system.

e Base objects: The base objects provide base class attributes, surfaces and
the display mixer. Programmable base class attributes are visibility, draw
order, current image in multiple-image object, destination rectangle, position
etc. Surfaces are typically used as destinations for displayable objects. The
Display Mixer consolidates all the modifications and renders the resulting
image to a surface or window using DirectDraw. Audio data is played through
DirectSound.

e 2D objects: 2-d objects are used for the creation of sprites (i.e., foreground

objects such as tree, car, building etc.), backgrounds and tiles.

23

4[Intel RDX Core AP } @

Timers

and

Base 2D AV Objects [RD_XAM RDXAM
Events Objects Objects _J | | Object Renderer
and
Properties Viw
Video
Codecs
Effects ACM
| | | Drivers
Display Mixer

{ DirectDraw or DCI { DirectSound }
J

Figure 3.3: Architecture of Intel RDX core

RDX AM objects: The AM objects are used for attaching the Microsoft
ActiveMovie streams to an Intel RDX surface and playing video available from

files, video cameras or networks.

RDXAM Renderer: This component is used to terminate the filter graph
built with ActiveMovie/DirectShow SDK and COM interface. The renderers
in the newly built filter graph must be associated to AM objects.

ACM Drivers: These components are Audio Compression Manager (ACM)

drivers used to decompress audio data.

ActiveMovie filters: These components are software modules provided with
the Microsoft ActiveMovie. The modules include the functions such as reading
from a media file, writing to a media file, transforming (e.g. compressing,
decompressing etc.) a media stream, rendering video on a surface etc. These

filters are used to generate ActiveMovie streams.

24

e Source Data Objects: By default, an Intel RDX object has no source data
and cannot be displayed. To make source data available to an Intel RDX
object, programmer must associate it with a Source Data Object (SDO). The
SDO is then associated with the Intel RDX object. The system supports four
kinds of SDOs. They are bitmap objects, sequence objects, file objects and
filtergraph objects.

The bitmap objects encapsulate a single bitmap image. The sequence objects
encapsulate multiple bitmap files and are used to create sequenced sprites and
backgrounds. The file objects encapsulate the audio and/or video streams in
an AVI or .wav file on local storage. The filtergraph objects represent the
interconnection of active software components, called filters and are used to
create audio and video objects. The main objective of filter graph mechanism is
to be able to support future image/movie formats and technologies. The filter
graphs provide a mechanism of attaching pluggable components called filters.
A filter normally performs a basic function such as reading from a media file,
writing to a media file, transforming (e.g. compressing, decompressing etc.) a

media stream, rendering video on a surface etc.

1 Usage models for RDX ActiveMovie (AM) objects

In RDX, AM objects can be used in one of the two use models. In the first use
model, the application uses high-level functions to create and manipulate streams.
In the second use model the developer creates a filter graph using ActiveMovie COM
interface and renders the movie onto an RDX surface.

The first model hides the complexity of the filter graph creation from the devel-
oper by providing higher-level functionality. The second model provides the devel-
oper with flexibility and more control on handling the variety of audio/video.

The first model uses the filters provides by the Microsoft ActiveMovie 1.0. This
limits the audio-video formats which can be attached to the RDX AM object. For
example, Indeo Video Interactive (Indeo 4.1) decompressor filter is provided by
ActiveMovie 1.0. The first model can attach Indeo 4.1 compressed AVI file (either

available from the local storage or from the network) to an RDX AM object. To use

25

Indeo Video 5.11 decompressor filter, which is a DirectShow (i.e., ActiveMovie 2.0)

filter, we need to use the second model.

3.7 Indeo Video Interactive

Indeo Video Interactive, Indeo 4.1, [6], [8] is a video codec from Intel. It can be
installed either as a Video for Windows (VfW) codec, or as an ActiveMovie filter.
Indeo 4.1 supports transparent pixels in video frames. These can be used to
implement effects such as chroma-keying. The application can provide a bitmap
image or even another video as a background in the transparent areas of the image.
Indeo 4.1 video streams are identified by the four character code ‘iv41’ in the
video stream header for the AVT file. Indeo 4.1 claims to implement a hybrid wavelet

transform.

3.8 Microsoft Powerpoint COM Object Library

The Microsoft Powerpoint COM objects provide properties and methods which are
accessible in Visual Basic programming environment. Some of the classes provided
by this library are application, presentation and slide. Using Powerpoint object
model, the programmer can start Powerpoint application, close the application,
maximize/minimize the application window, open a local or remote presentation
file, save the slides of the active presentation as a sequence of images in GIF, BMP,
JPEG formats, read the advance time of each slide etc.

The size of bitmap files supported by Powerpoint is 720 x 540 pixels. The number
of bits used to represent color of a pixel (BPP) is decided separately by Powerpoint
for each slide depending on the range of colors present in the respective slide. For
example, one slide may be saved as a BMP file with BPP as 4 (at most 16 distinct
colors), another slide with BPP as 8 (at most 256 distinct colors) or some other slide
with BPP as 24 (at most 16777216 distinct colors).

26

Chapter 4
Implementation details

In the context of real-time distance education, a remote student expects both the
quick playback start-up and the uninterrupted playback of the lecture contents on
his desktop. We assume that the lecture contents are available normally in the form
of a digital movie of a classroom lecture. In the movie, a fixed portion of each video
frame is occupied by the presentation slide with the instructor’s body movements
occupying the small region and frequently overlapping the slide. If the lecture con-
tents are delivered in the streaming media format, then the client starts showing it
immediately, before downloading it completely. Thus the issue of playback start-
up time is resolved by the use of streaming media technology. In order to achieve
the uninterrupted playback of the lecture contents, over the existing narrow com-
munication channels of bandwidth say 128 kbps, the low bit-rate coding (i.e. high
compression) of the lecture contents is a natural choice. However, the simplistic ap-
proach to low bit-rate coding degrades the quality of the lecture contents, especially
of the slides used in the lecture.

The current implementation gives the partial solution towards real-time distance
education. Here we follow a scheme for the content-development such that the
slides maintain their original quality at the same time the coded audio-video of
the lecture contents does not exceed 128 kbps bit-rate. Even though we have not
integrated the streaming media technology with the current implementation, it is

rather an independent issue. Depending upon the availability of the codec, future

27

implementation may incorporate this technology also. Therefore to achieve the real-
time playback of the lecture contents, on the remote student’s desktop, the future
implementation should use the streaming media for coding the audio-video of the
lecture contents.

The content-developer needs to fulfill two conflicting goals. The first goal is
to maintain the original quality of the slides on the remote student’s desktop and
the second goal is to compress the audio-video of the lecture contents to low bit-
rate (i.e. not higher than 128 kbps of ISDN channels). For this, the content-
developer sees two semantically different entities in the digital movie of the lecture,
i.e., the slides and the instructor who is explaining the slides. In our approach,
these two entities are treated separately throughout the development of the lecture
contents. The developed lecture contents, namely the presentation file (made using
the Microsoft Powerpoint) used in the lecture and the separate low bit-rate coded
audio-video of the instructor, are made available through a web server. Additionally
the presentation file contains the timing information for each slide already recorded
during the lecture event.

In order to play the lecture contents on the remote student’s desktop, we have
implemented a dedicated player. The player treats the presentation slides and the
instructor as two separate inputs and achieves the realistic synchronization between
the running slides and the instructor’s explanation of the slides on the remote stu-
dent’s desktop.

4.1 Content-development methodology

The role of the content-developer is to develop the lecture contents in a format
which is supported by the player. For this, the content-developer needs to choose
the suitable audio-video processing tools and integrate them to generate the lecture
contents in the desired format. The main choice is that of the audio-video codec
(i.e. COder DECoder pair) for compressing and decompressing the instructor’s
audio-visuals. We need a video codec that supports low bit-rate coding (i.e. high

compression) and chroma-key based transparency. Intel’s Indeo Video Interactive

28

(Indeo 4.1) is the only codec, supported by the player, which supports both chroma-
key based transparency and low bit-rate video coding. Hence we propose to use
Indeo 4.1 for low bit-rate video coding of the instructor’s visuals.

Moreover, the next version of Indeo Video codec, i.e., Indeo Video 5.11 8],
supports an additional feature of progressive playback along with the low bit-rate
coding and the chroma-key based transparency. This allows an easy extension to
the current implementation to incorporate streaming media technology.

While authoring the media contents, usually the selection of the video codec
guides the decisions, namely the selection of accompanying audio format, the audio-
video synchronization format, the frame rate and the frame size in pixels etc. With

the selection of Indeo 4.1, as the video codec, most of these parameters are fixed.

4.1.1 Issues resolved by the selection of Indeo 4.1

e Selection of the media file format: Indeo 4.1 is an AVI (described in the
section 3.5) codec. So the content-developer uses AVI format for developing

the instructor’s audio-video.

e Selection of the audio format: AVI files are frequently generated with the
uncompressed PCM audio [6], where the size of the audio track can be reduced
by using 8-bit mono (one channel) PCM audio with 8 KHz sample rate. We
found this 64 kbps format sufficient for the telephonic quality of the voice of

the instructor.

e Synchronization between audio and video: AVI format specifies the
method to integrate audio and video using implicit timing information present
in audio and video streams. Hence, by using AVI format, there is no need of

a separate mechanism to achieve audio-video synchronization.

e Selection of the frame rate: For a fixed bit-rate of coded video, the content-
developer requires to make a trade-off between the frame quality and the frame
rate. For higher frame rate, he has to sacrifice the frame quality and vice

versa. As in a lecture, instructor’s movements are typically slow, we decided

29

to sacrifice the frame rate. (Normally, high frame rate is used for high motion

video, to avoid jerks in the motion.)

Indeo 4.1 allows reducing the frame rate to achieve low bit-rate video encoding.
We assume the frame rate of original lecture movie to be either 30 fps (for
NTSC) or 25 fps (for PAL). Though standard frame rate for AVI is 15 fps,
with several experiments with Indeo 4.1 it was found that 5 fps gives reasonably
smooth quality of the video with reasonable bit-rate. We therefore chose the

frame rate to be 5 fps.

Selection of the frame size: Since the instructor’s visuals occupy a small
region in the lecture video frame, the content-developer can choose the frame
size for the instructor’s video smaller than the frame size of original digital
movie of the lecture. The destination frame size for the instructor’s video
is calculated manually in proportion to the size of the presentation slide for
achieving the realistic display mixing on the remote student’s desktop. How-
ever, not all frame sizes are supported by the video codec. For example, frame
size of 492 x 368 pixels is not supported by Indeo 4.1. In such case, we adjust to
frame size 480 x 360 in pixels, (for the instructor’s video) which is acceptable

by Indeo 4.1, without introducing much error.

4.1.2 System requirements for content-development

Following list specifies the system requirements for the content-developer’s machine.

Win32 (i.e. Windows 95/98/NT4.0/2000) with DirectX 3 or better
avifil32.dll, msvfw32.dll, msacm32.dll in Windows system folder
Display adapter that supports True-Color

Intel’s Indeo Video 4.5 (Indeo 4.1) codec [§]

VideoMach 2.3.5 Editing tool [19]

AMOS segmentation software [21]

30

JDK 1.1.6 or above (with JIT compiler), required by AMOS software

Java Media Framework 1.1 or above, required by AMOS software.

4.1.3 Scheme for the development of the lecture contents

The scheme, followed by the content-developer to develop the low bit-rate coded

audio-video of the instructor, mainly suggests the way to integrate the existing

software tools. The block diagram representing the scheme for the usage of various

tools in the content-development procedure is shown in the figure 4.1. Various inputs

are designated as A, B, C,..., P in this figure and are discussed below.

A: Digital movie of the lecture in MPEG-1 format.

B: Cropping parameters as the user input (for discarding redundant visual

information).

C: Only significant rectangular portion of the lecture video saved as separate
frames in PPM (Portable PixelMap) format.

D: Width of the display window and the positioning information of the presen-

tation slides, with respect to display window, saved as the display parameters.
E: Voice of the instructor saved in a .wav file of bit-rate 64 kbps
F: Cropping parameters as the user input (for speeding up the segmentation).

G: Positioning information of the instructor’s video with respect to the display

window, saved as the display parameters.

H: Subframes of the lecture video (with frame rate 5 fps), containing the

instructor’s body movements, saved in PPM format.

[: The color threshold value, the motion threshold value and the boundary

information as the user input.

J: The binary segmentation masks (one for each input frame) saved in PGM
(Portable GrayMap) format.

31

K: The frames representing instructor’s body on the chroma-key background
saved in PPM format.

e [: Chroma-key value saved as the display parameters.

M: The destination frame rate, the destination frame size, the bit-rate, the

key frame information as the user input.

N: The low bit-rate encoded stream representing the instructor’s video.

O: Interleave duration (in seconds) as the user input.

P: Synchronized low bit-rate encoded audio-video of the instructor saved as
an AVT file.

The lecture contents are developed in the following five steps.

1. Splitting the lecture contents and low bit-rate audio extraction: The
first step is essential to throw away unnecessary (i.e. redundant) audio-visual
information from the lecture movie. This defines the scope for the further

development steps.

We use VideoMach software for this step. It takes the digital movie of captured
lecture in MPEG-1 format as input, and generates the audio and the video
of the lecture in two separate files. The audio containing the voice of the
instructor is generated in a .wav file with 64 kbps bit-rate. The video contains
only the significant rectangular portion of the lecture’s visuals that is later

displayed on the remote student’s desktop.

The video output is generated in the form of the cropped video frames saved
as separate PPM (Portable PixelMap) files for each video frame. The PPM
files generated by this step serve as the input to the next step. The content-
developer manually calculates the width of the display window (for a fixed
height of 540 pixels) from the cropping parameter values, i.e., top, bottom,
left and right margins, which are used for cropping the video. (The player
supports the display window of height 540 pixels) Also the content-developer

manually calculates the positioning information of the slides for the calculated

32

size of the display window. The calculated information serve as the display

parameters to the player.

The audio output, of bit-rate 64 kbps, is generated by tuning the parameters
of VideoMach as follows.

e The sampling rate of the original audio is changed to 8 KHz.
e The number of bits per sample are changed to 8-bits.

e Only one channel (mono) is retained.

. Video preprocessing required before the segmentation: This step is
essential to improve the efficiency of the execution of segmentation algorithm,
which is computationally intense. We further reduce the frame rate and the
frame size of the input visuals in this step by using the VideoMach editing
software. It selects every fifth PPM file to represent a frame rate of 5 fps and
contain only the rectangular region of the video frame which shows instructor’s
body (i.e., arm movements, shoulder and head) during the whole video. The
positioning information of the instructor’s video is also extracted and saved as

the display parameters for the player’s reference.

. Active object segmentation: This step is essential to segment out the video
containing only the instructor’s body movements. We use AMOS software to
implement this step. The usage of the AMOS software is described in the
section 3.3. It takes as input the PPM files generated by the preprocessing step
and the color and motion threshold values specified by the content-developer.
The software executes semi-automatically taking manual input to decide about
the boundary of the foreground object (i.e., the instructor’s body). The output
is the binary segmentation masks in PGM (Portable GrayMap) file format
where the AMOS software chooses white color to represent the foreground
object’s region and black color to represent the background object’s region.
The AMOS software generates one PGM file for each input PPM file. An

example is given in the figure 3.3.

The effective usage of the AMOS software is possible only after gaining some

33

experience of its behavior. It is advised to set the low color threshold value
for accurate segmentation. However, this setting results in the slow execution
of the AMOS software. The motion threshold value can be low whenever the
PPM sequence has slow instructor’s body movements. This should be set to a
high value whenever the movie sequence has fast instructor’s body movements.
This results in a fast execution without compromising the accuracy of the

segmentation.

. Chroma-key screening: This step is essential to make a fixed color (chroma-
key) background for the video of instructor’s body movements. We developed a
small code in ANSI C to implement this step. It takes the PPM files generated
by the preprocessing step and the PGM files generated by the active object
segmentation step as input. It treats a pixel in a PPM file as the background
pixel, if the corresponding PGM file contains the black pixel for the same
position, and replaces the pixel with chroma-key color. Otherwise, the pixel
in the PPM file is left unchanged. The chroma-key information is then saved

as the display parameter for the player’s reference.

. Low bit-rate video encoding and audio-video synchronization: This
is the final step essential to generate the low bit-rate encoded audio-video of
the instructor as a single file. We use Indeo 4.1 AVI encoder for encoding the
instructor’s video. In addition, the audio-video synchronization is achieved by

using the VideoMach software.

The PPM files, generated after the chroma-key screening, and the audio (.wav)
file of the instructor’s voice, generated by the splitting (i.e., the first step), are
used to generate the synchronized low bit-rate encoded audio-video of the

instructor saved in an AVI file.

The following parameters are used in the VideoMach software.

(a) Frame rate = 5 fps
(b) Key frame = (after) 5 frames (Only key frames are intra-coded)
(c) Data rate = 8 Kbytes/second (i.e. 64 kbps)

34

nterleave audio every 5 frames (thus interleave duration is set to 1 sec-
d) Interl di 5 f thus interl duration is set to 1
ond.)

(e) Resolution (i.e. the destination frame size)

The resolution for the instructor’s video is computed manually using the

following information.

e The size (width x height in pixels) of the PPM files found during the
splitting (i.e., the first step).

e The size (width x height in pixels) of the display window of the player,
calculated during the splitting.

e The size (width x height in pixels) of PPM files calculated during
the second step of content-development. This is the size of the rect-
angular region (in the digital movie of the lecture) containing the

instructor’s body movements throughout the lecture.

After these various parameters are set, the VideoMach software achieves the
authoring of the AVI file by encoding of the video stream and interleaving the
encoded video stream with the audio stream. The output of this process is the
AVT file of the instructor’s audio-video of the bit-rate 128 kbps.

The lecture contents are now ready comprising of these files. The low bit-rate
audio-visuals of the instructor is available in the AVT file. The display parameters
are saved in a text file PlayerRef.txt. The slides are in a .ppt file. All these three

files are made available through a web server.

4.2 Implementation of the player

The role of the player is to play the highly compressed lecture contents, downloaded
from the web server, such that the original quality of the slides is maintained on the
remote student’s desktop. For this, the player treats the presentation slides and the
instructor’s video as two separate inputs and achieves the realistic synchronization
between the running slides and the instructor’s explanation of the slides on the

remote student’s desktop. As mentioned earlier, the current implementation gives

35

the partial solution towards real-time distance education and provides a framework
for future extension. In other words, the current implementation of the player does
not support the streaming media format for the instructor’s audio-visuals.

The implementation of the player follows the architecture of the player shown in
the figure 2.2. We have implemented two components of the player, namely, Slides
Extractor (SE), required to decode the presentation file; and Chroma-key Based
Display Mixer (CBDM), required to mix the visuals of the slides with the movie
of the instructor’s body movements. In the current implementation, the CBDM
itself chooses the suitable audio and video decoders among those provided by the

ActiveMovie.

4.2.1 System requirements to execute the player

The player can run on the student’s desktop with the following hardware and soft-

ware.
e Pentium processor running at 90 MHz or above, with at least 16 MB of RAM.
e A sound card with DirectSound drivers.
e VGA-compatible card with DirectDraw support.
e Win32 (i.e. Windows 95/98/NT4.0/2000)
e DirectX and ActiveMovie 1.0 or better (i.e. DirectShow)
e Microsoft Powerpoint COM object library

e IrfanView image converter

4.2.2 Slides Extractor (SE)

The main job of the SE is to extract the displayable information, i.e., the lecture
material on the slides, from the Microsoft Powerpoint file (i.e. .ppt file) and to make
it available, on local storage of the remote student’s desktop, in a format supported
by the CBDM. The SE takes the Microsoft Powerpoint presentation file (.ppt) that

36

also contains the recorded transition timing for each slide. The SE generates the
slides, in the form of 256-color bitmap images of size 720x540 and extracts the
transition timing per slide, in seconds, to a separate file on the local storage, which
is then used by the CBDM.

We have implemented the SE in the Microsoft Visual Basic 6.0. The implemen-
tation is done in two steps. The first step is the decoding of the .ppt file using the
Microsoft Powerpoint COM object library [9]. The second step is the post processing

of the slides using IrfanView image converter [5].

B Decoding of the .ppt file

For the decoding of the .ppt file, the SE uses the functionality of the Powerpoint
COM object library. The methods and properties of the classes available in the
library are accessible using the Visual Basic programming environment. The SE
extracts the bitmap of each slide using ‘saveas’ method of ‘presentation’ class. The
‘saveas’ method treats each bitmap file separately. For instance, some of the slides
may be saved as 16-color (i.e., 4 BPP) bitmap images while the other slides may be
saved as 256-color (i.e., 8 BPP) bitmap images. The SE also extracts the transition
timing for each slide from the value of the property namely AdvanceTime of the

class ‘SlideShowTransition’. These values are saved in a temporary file, which are
later, used by the CBDM.

m Post processing of the slides

This step is required because the slide images, required by the CBDM, need to be
all 256-color bitmap images (i.e., 8 BPP bitmap images). The SE uses IrfanView
image converter in order to convert all bitmap files, generated by the previous step,
to the 256-color (i.e. 8 BPP) bitmap files. The SE uses the ‘Shell’ function of Visual

Basic that runs an executable program given its pathname as the first argument.

37

4.2.3 Chroma-key Based Display Mixer (CBDM)

We use Intel’s RDX (Realistic Display miXer) technology [4] to implement the
CBDM. The RDX provides object-oriented support for multimedia objects. We
use various RDX objects, which mainly represent the visual entities in the lecture
contents, i.e., the sequence of the slides and the instructor’s body movements over-
lapping the slides.

The use model that we follow in the implementation of the CBDM is shown in

the figure 4.2. The model has three phases.

1. Building phase: The role of the building phase is to define the required
RDX objects to represent the visual input, namely the slides; the video of the
instructor’s body movements and a default background surface of the display

window.

RDX provides a sprite object to represent the 2-d bitmap image available on
the local storage. A sequenced sprite object is used to encapsulate a sequence
of bitmap images. We define a sequenced sprite object to represent the se-
quence of slides (in bitmap image format) and associate it with the 256-color

slide images each of size 720x540, generated by the SE.

RDX provides an AM (ActiveMovie) object to represent the audio-video data
from the network. In addition, RDX requires an association of a filter graph
with the AM object for rendering such audio-video data. The ActiveMovie
filter graphs are the interconnection of the filters or the software components
that handle the basic functions while dealing with the audio-video files. These
filters include functions for reading from a file, writing to a file, compressing
or decompressing a file, rendering the video etc. In our approach, we use a
predefined filtergraph in RDX for handling the AVI file. We associate the AVI
file of the instructor’s movie with the predefined filtergraph and an AM object.
This results in attaching the RDX renderer filter to RDX surface for playing
the AVT file of the instructor, taken from the network.

2. Managing phase: The role of the managing phase is to manipulate the RDX

objects, namely the surface, the sequenced sprite and the AM object, in order

38

to mix the visual contents represented by these RDX objects in a desired
way. The manipulation is guided by the display parameters, generated by the

content-developer.

Surface manipulation: The surface is manipulated by setting its attributes
such as the size in pixels, the draw order, the color and the destination. We set
the height of the surface to 540 pixels same as the height of the slide images
generated by the SE. We set the width of the surface to the value provided
by the display parameters. The color of the surface is set to black and the

destination of the surface is set to the display window created by the player.

The draw order is an attribute of the surface, the sprite and the AM object.
Conceptually a surface consists of multiple planes arranged one behind the
other like sheets in a notepad. The planes are numbered with plane 1 in front
of plane 2, plane 2 in front of plane 3 and so on. An Intel RDX object’s draw
order is the plane in which it is drawn. We want the surface to be behind the
sprite as well as the AM object. Therefore we set the draw order of the surface

to an arbitrary high value (say 100).

Sprite manipulation: The sequenced sprite represents the sequence of the
slide images. The sprite is manipulated by setting its attributes such as the
position and the draw order. In addition, the updating of the displayed image
to the next one at an appropriate time, is achieved by using ‘timer and events’
mechanism provided by the RDX.

The position (i.e., X and Y coordinates) of the top-left corner of the sprite is
defined with respect to the coordinate system of the surface. Since the height
of the surface, in pixels, matches exactly with the height of the sprite (i.e. 540),

we set the Y value to 0 and X value as obtained from the display parameters.

The draw order of the sprite is set to a value (say 50) that is less than the draw
order value of the surface (in this case, 100) and greater than the draw order
value of the AM object (say 30). It ensures that after rendering the surface,

the instructor’s body movements overlap the slides.

The slides should be displayed in the original order synchronized with the

39

instructor’s video and audio. We achieve the realistic presentation of the
slides by advancing the current image to the next one after the pre-recorded
slide timing as generated by the SE. We use the ‘timer and events’ mechanism,
provided by RDX, to perform this transition. We define an event object for
each image in the sequenced sprite and program the event handler to advance
the current slide to the next one. The timer object is programmed to schedule

the event at the appropriate time.

AM object manipulation: The AM object represents the audio-video of
the instructor. We manipulate the AM object by setting the position and the

transparency color as attributes.

The position (i.e., X and Y coordinates) of the AM object refers to the posi-
tion of the top-left corner of the video frame containing the instructor’s body
movements, with respect to the coordinate system of the surface. The X and

Y are set to the values as obtained from the display parameters.

The transparency color attribute of the video of the AM object is set to the

chroma-key (e.g. green color) obtained from the display parameters.

. Rendering phase: In the rendering phase the surface, the sequenced sprite
and the AM object are displayed with manipulations as performed in the
previous phase. The rendering takes place throughout the length, of the lecture
contents, in time. In this phase, the only responsibility of the programmer is
to draw the surface, in a loop, so that the updated visual data on the surface

gets drawn in the display window.

When the RDX AM object is played, both of its audio and video tracks are
automatically synchronized and played simultaneously. RDX communicates
with Indeo 4.1 decompression filter for getting uncompressed video frames of
the instructor. For each uncompressed video frame, only the non-transparent
pixels are drawn on the surface, thus producing the effect of superimposing
the instructor’s body on the currently displayed slide. The mixed visual data
is displayed using DirectDraw. Further RDX also communicates with ACM

drivers to decompress the audio data and generates the voice of the instructor

40

using DirectSound.

The synchronization between the slides and the instructor’s talk is based on
an assumption. The CBDM assumes that the total duration of the instruc-
tor’s audio-visuals is same as that of the total rehearsed timing of the whole
presentation. Since the CBDM starts, as well as stops, the rendering of both
the slides and the instructor’s audio-video exactly at the same time, this auto-
matically results in the synchronization between the running presentation and

the instructor’s explanation of the slides.

41

Input, output and intermediate results

Q User input

Splitting the lectur e contents
and low bit-rate audio extraction

Video preprocessing before
the segmentation

Active obj ect segmentation

. Chroma-key
Chroma-key screening _
| Screening Software

O
-
L ow bit-rate video encoding md:r?ci';e:/'deo

and N

VideoMach
Software

Audio-video synchronization

Figure 4.1: The scheme followed during the content-development

42

Sour ce data
Bitmap files
representing the
sides

AV file representing

the audio-video of
the instructor

Building

Managing

Rendering

Sour ce Data Objects
Sequence object
(representing a sequence

of bitmap images

Filtergraph object
(encapsulating the audio
and video streamsof an
ActiveMovie filter graph)

Intel RDX objects
Surface (adefault background)

Sprite (foreground 2D object)

AM object
(attaching an ActiveMovie

stream to Intel RDX surface
for playing video from network)

Objects

of the surface

control the sprite's

__object.

Setting width, height and color

Setting draw order of the sprite
Using atimer and eventsto

current image attribute

Setting draw order, position and
transparency color of the AM

Video mixing

Surface

Y
Window

Audio processing

gudio Buffer

|

’ Sound System ‘

Figure 4.2: Our usage model for Intel RDX objects

43

Chapter 5
Results and conclusion

To test the implementation, we use a sample lecture movie (in MPEG-1 format) of 4
minutes duration. The movie is of size 57 MB, of bit-rate 1904 kbps, with the frame
rate of 25 fps and the frame size of 352x288 pixels. Using this movie, we developed
the lecture contents in the form of an AVI file, representing the audio-video of the
instructor, and a presentation file (made using the Microsoft Powerpoint). The size
of the resulting AVT file is 3.88 MB, with a bit-rate of 128 kbps, frame rate of 5 fps
and the frame size of 480x360 pixels. The size of the PowerPoint file is 103 KB.
Thus the compression ratio achieved for this lecture is approximately 15:1 (from
MPEG-1 video).

5.1 Visual outcome at various stages of the content-

development

We developed the contents on Windows 2000 platform (with Pentium III, 64 MB
RAM) and generated the low bit-rate encoded audio-video of the instructor in the
AVT format.

For the complete content-development task, we required 2 GB disk space. The
procedure took around 5 hours including 4 and half hours, required for the execution
of the AMOS software to segment out the instructor’s body. The other steps of the

content-development took a small time of around 10 minutes each.

44

Following are the intermediate results, represented in the form of one video frame
of the lecture, generated by different steps of the content-development as discussed

in section 4.1.3.

e Figure 5.1 shows a video frame in the original digital movie of the frame
size 352x288 pixels. It represents the input to the first step of the content-

development.

o

-

-

Figure 5.1: Frame before discarding the redundant information

e Figure 5.2 shows the video frame cropped to size 352x235 pixels containing
only the significant portion of the lecture video. It represents the outcome of
the first step, saved in the PPM (Portable PixelMap) format.

e Figure 5.3 shows the video frame cropped to size 200x150 pixels containing
the instructor’s body as the main visual object. It represents the outcome, of

the second step, saved in the PPM format.

45

Figure 5.2: Frame after discarding redundant information

e Figure 5.4 shows the binary segmentation mask of size 200x150 pixels repre-
senting the outcome, of the third step (i.e., the active object segmentation
step), saved in the PGM format.

e Figure 5.5 shows the video frame of size 200x150 pixels containing the in-
structor’s body in front of the chroma-key background. (In this case, the
chroma-key is green color shown in gray variation). It represents the outcome,
of the fourth step (i.e., the chroma-key screening step), saved in the PPM

format.

The sequence of the PPM files, generated by the fourth step serves as the visual input
to the fifth (final) step for generating low bit-rate encoded video of the instructor.

46

Figure 5.3: Outcome of the preprocessing, done before the actual segmentation

Figure 5.4: Outcome of the active object segmentation

5.2 Visuals generated by the components of the player

We tested the player, on Windows 2000 platform (with Pentium III, 64 MB RAM),
for the lecture contents available on the web server. The inputs of the player are the
low bit-rate coded AVI file that represents the instructor’s audio-visuals, the .ppt
file (made using the Microsoft Powerpoint) and a text file namely PlayerRef.txt that
contains the display parameters generated during the content-development.

The size of the executable file for the player is around 100 KB. For the lecture of
4 minutes duration, the actual playback took around 6 minutes including 1 minute
to download and process the presentation file of size 103 KB and around 1 minute

to download the audio-video of the instructor, in the form of AVI file of size 3.88

47

Figure 5.5: Outcome of the chroma-key screening

MB. The total 5 presentation slides, when processed, took around 2 MB of the local
storage.
Following are the visual outcome, represented in the form of one video frame of

the lecture, generated by various components of the player.

e Figure 5.6 shows the decoded video frame of size 480x360 pixels, representing
the instructor’s body in front of the chroma-key background (in this case,
green color shown in gray variation). The frame is generated by Indeo 4.1
video decoder. It serves as the input to the CBDM.

e Figure 5.7 shows the slide image of size 720x540 pixels. It is the outcome of the
SE, saved as 256-color bitmap image, and serves as the input to the CBDM.

e Figure 5.8 shows the display window of size 805x540 pixels, showing one visual
frame of the lecture displayed by the player. The display window shows the
instructor’s visuals superimposed on the slide. The visuals are generated by

the CBDM by making use of the display parameters.

The player also plays the telephone quality voice of the instructor synchronized with

the visuals of the lecture.

48

5.3 Analysis of the results

5.3.1 Achievements

Following is the list of achievements confirmed by the test. The test has been

undertaken for the sample lecture of 4 minutes duration.

e Low download time: The low bit-rate encoding (i.e. high compression)
of the instructor’s audio-video, applied during the content-development, dras-
tically reduces the download-time of the lecture contents over the existing

bandwidth of the communication channels.

e Excellent quality of the slides: On the remote student’s desktop, the
original quality of the slides is maintained because of the separate downloading
of the presentation file (.ppt) and decoding it to the slide images on the local
storage. Thus the quality of the slides is independent of the (possibly poor)

lighting conditions during the actual lecture event.

e Realistic display mixing: The CBDM in the player realistically mixes the
two visual entities of a lecture, i.e., the slides and the instructor’s body move-

ments overlapping the slides.

e Accurate synchronization of the presentation and the instructor’s
talk: The RDX technology, used in the implementation of the player, accu-
rately synchronizes the running presentation and the instructor’s audio-video

by using its ‘timer and events’ mechanism.

5.3.2 Limitations

The limitations of the current work are mainly due to the limitations of the tech-

nologies used in the current implementation.

e The decoded video frame representing the instructor’s body shows some block-
ing artifacts at the boundary of the instructor’s body, thus showing the chroma-

key (in this case, green color), instead of smooth edge, at the boundary. It is

49

clear from the figure 5.8. This may be because of the wavelet transform used
in Indeo 4.1 codec. To solve this issue, we suggest to use the sophisticated

version of the codec namely Indeo Video 5.11 [8].

e Since the frame rate of the instructor’s video is kept at 5 fps, the instructor’s
body movements, in uncompressed video, are jerky as compared to the original

body movements in MPEG-1 movie of the lecture.

e Since Indeo 4.1 video encoder, used for the content-development, applies “lossy”
compression algorithm for achieving low bit-rate (64 kbps), the facial expres-

sions of the instructor are unclear on the student’s desktop.

e The voice of the instructor appears different due to the telephonic quality of
the voice at 64 kbps. With the audio compression, better quality voice can be
integrated with the lecture content and the voice can be presented in a better

quality.

e The player and the current scheme for the content-development execute only
on the Win32 platform. This is because the audio-video processing tools,
namely VideoMach, AMOS, Indeo 4.1 and the Intel’s RDX technology, used

in the implementation, are available only for the Win32 platform.

e Current implementation doesn’t make use of the web server streaming. In
other words, the low bit-rate audio-video of the instructor is downloaded on
the remote student’s machine before the actual start-up of the playback. Hence

the issue of the quick start-up of the playback remains unresolved.

5.4 Future work

5.4.1 Future extension based on the current framework

A major modification proposed is to integrate the streaming media technology.
The content-developer needs to develop the instructor’s audio-video contents in the

streaming format and the player needs to support that format.

20

8 Modifications in the content-development scheme

The major change in the content-development scheme is the use of Indeo 5.11 video
codec in place of Indeo 4.1 video codec for low bit-rate encoding of the instructor’s
video. Indeo 5.11 shows performance enhancements over Indeo 4.1 because of the

following features.

1. A new wavelet compression algorithm improves the visual quality of the de-

coded frames.

2. Interpolated playback, on Pentium class processors with MMX technology,

allows smoother playback even with low frame rate.
3. Scalability of the video allows progressive download.

These features eliminate some of the limitations of the current implementation.
With the same bit-rate, output of Indeo 5.11 decoder is less jerky and clearer.
Further the synchronized low bit-rate audio-video of the instructor is converted to
the progressive playback format using Ligos’ Indeo Video 5.11 Progressive Download
Publisher tool. The tool takes Indeo 5.11 AVI file as input and generates an IVF
(Indeo Video Format) file which can be streamed through the player. The tool uses
two options, namely the progressive quality and the progressive frame rate, to create

the progressive download file structure of the output IVF file.

8 Modifications in the implementation of the player

The player needs to be modified to support the Indeo 5.11 progressive playback
format. We propose to develop a filter graph explicitly, using the DirectShow (i.e.
ActiveMovie 2.0) COM interface.

In order to attach the IVF file, representing the instructor’s audio-video, to the
RDX surface, we propose to handle the RDX AM object in three steps.

e Building: In this step, the developer needs to create the filter graph. The
pictorial representation of the filter graph is shown in the figure 5.9. The filter

graph consists of four filters.

ol

1. The source filter represents the URL of the IVF file containing the audio-

video of the instructor.

2. The transforming filter is the Indeo 5.11 decompressor filter provided by
the DirectShow SDK.

3. The renderer filter is the Intel RDX renderer filter.

4. The device filter required to play the audio is the DirectSound Device
filter.

The RDX renderer filter is then associated with the RDX AM object.

e Managing: In this step, the associated RDX AM object can be manipulated.
In this case, the transparent color in RDX AM video is set to the chroma-key,
obtained from the display parameters. (Indeo 5.11 supports chroma-key based

transparency.)

e Rendering: The RDX AM object can be played on the screen by sending the
‘play’ command to the filter graph.

5.4.2 Other approaches

Some work can be done to integrate the CELP-based low bit-rate audio coding and
the low bit-rate video coding based on watershed segmentation and control point

tracking algorithm discussed in the section 1.4.

5.5 Concluding remarks

In the current work, we put forth a framework for real-time distance education using
web server streaming. We propose an approach in which the lecture contents are
developed by applying high compression technique on the audio-visuals of lecture
movie. The dedicated player downloads the lecture contents from a web server and
plays the lecture on the remote student’s desktop. The implementation is based on

the existing Win32 based technologies such as Intel’s RDX technology, ActiveMovie,

52

Indeo Video codecs, AMOS video segmentation software, Powerpoint COM object
library etc. We tested the implementation using a digital movie of a classroom
lecture and investigated the limitations of the current work. To remove some of the
limitations, we proposed an extension of the current work, based on the Microsoft’s
DirectShow (i.e., ActiveMovie 2.0) filter graph architecture. We conclude to note
that the integration of the streaming media technology and Intel’s RDX technology

can be the solution in order to fully realize our approach.

23

Figure 5.6: Outcome of the video decoder, i.e., a decoded frame

o4

Teeads o1 JO Uresns
OSPIA-OTIPIE SUI[UOC [)Lar UIBAI)S vIep uonejuasard
AUILJO 21} a81aur 0] AIrqedes spasu I3s()

"RIpA UL BUTUIRSn)S djeredas
e se Joxeads a1y JO s[ENSIA-OIPOR 3} PO

puy

OPI[S YOBA JO] UOHEULIOJUT
sunwmn a1 yILm suole o Jutodismod ajeredass
SB Waty) aABs 03 asodord am ‘oapia amyoa]
at) Jo Jred se sapifs ot Sursresard Jo peajsu]

yoroidde ano jo eop]

Figure 5.7: Outcome of the slides extractor

95

“Fayeads o) JO Weams
OAPHA-OLDTIE L O LM TS R _h_,....P._.T._._:DmU.:.._”
JUT[IJO aU) @sTatl o) Almiqedeo spoatl Tas))

PIPSLL SUIuIRaIs sjeIedas
Taxeads aU3 10 S[ROSTA-OTPNR B1[1 BP0

|

puy

‘APLE Yovs 10T WOTBULIDIUL
Burum ot s fuole ey imodramod sqeredas
3B U1 aabs 0} asodord am “oapia 8108

) 30 1aed se soprjE ol Surarosard Jo peajsu]

P T IeH3ImI3T 99

56
Figure 5.8: Outcome, of the CBDM, displayed by the player

[URL of the IVF file of the lecture contents]

!

Source filter
Indeo 5.11 Decompressor filter DirectSound Device filter

RDX Video Renderer

Figure 5.9: Filter graph for rendering progressive download Indeo 5.11 video on
RDX surface

57

Appendix A
Software tools used

e IrfanView: IrfanView [5] is a fast freeware image viewer/converter for Win32.
Some of the supported file formats are BMP/DIB, GIF, JPEG, PBM/PGM /PPM

etc.

e VideoMach: VideoMach [19] is a powerful audio/video builder and converter.
It can be used to build video clips from still images, to extract audio tracks
and pictures from movies or just to convert media clips from one file format
to another. It can also be used to change frame rate, frame size, color depth

and other properties of a media clip.

o8

Bibliography

[1] B.PRABHAKAR. “Low bit-rate video coding using watershed segmentation and
control point tracking”. Master’s thesis, EE, [.LI.T. Kanpur, Feb 2000.

[2]| FABIAN MEIER. “Current issues in Streaming Media”, Jan 2001.

http:/ /streamingmedialand.com /issues.html.

[3] H.SCHULZRINNE, A.RA0, R. “Real-Time Streaming Protocol(RTSP)
RFC:2326”, Apr 1998.

[4] INTEL ARCHITECTURE LABS. “Intel’s Realistic Display miXer”, 1997.
http://developer.intel.com /ial /rdx/index.htm.

[5] IrfanView Homepage. http://www.irfanview.com A fast freeware image

viewer/converter for Win32.

[6] JOHN F. McGOWAN. “AVI Overview”, 1999.

http://www.jmcgowan.com /avi.html.

[7] K.A1zawa, T. “Model-based Image Coding: Advanced Video Coding Tech-
niques for Very Low Bit-rate Applications”. Proceedings of The IEEE 83, 2
(Feb 1995), 259-271.

[8] Licos CORPORATION. “Ligos ~ Indeo Video Codecs”.
http://www.ligos.com /index.phtml.

[9] MICROSOFT. “Visual Basic Programmer’s Guide: Microsoft Powerpoint Ob-
jects”. MSDN (Microsoft Developer Network) Library Visual Studio 6.0a.

29

[10] MICROSOFT. “NetShow Theater Server”, Oct 1998.
http://www.microsoft.com /theater/.

[11] MICROSOFT. “Streaming methods: Web Server and Streaming Media Server”,
Feb 2000. http://www.microsoft.com/windows/windowsmedia/en/compare//-

webservvstreamserv.asp.
[12] MICROSOFT CORPORATION. “DirectShow”. Microsoft DirectX 8.0: Help.

[13] MICROSOFT CORPORATION. “What is DirectX?”. Microsoft Windows 2000
Server: Help.

[14] M.KAss, A.WITKIN, D. “Snakes: Active contour models”. International Jour-
nal of Computer Vision (1988), 321-331.

[15] P.WESTERINK L.AMINI S.VELIAH, W. “A live intranet distance learning
system using MPEG-4 over RTP/RTSP”. IEEE (2000), 601-604.

[16] T.BERNERS LEE, R.FIELDING, H. “HyperText Transfer Protocol/1.0
RFC:1945”, May 1996,

[17] TED NETTERFIELD. “The Building of a Virtual Lecture Hall: Netcasting at
the University of South Florida”. Proceedings of CAUSS/EFFECT 22, 2 (1999).

[18] T.K.CAPIN, E.PETAJAN, J. O. “Very Low Bitrate Coding of Virtual Human
Animation in MPEG-4". IEEE (2000), 1107-1110.

[19] “VideoMach Home Page”.
http://www.videomach.com/VideoMach.html.

[20] WALLACE, G. K. “The JPEG Still Picture Compression Standard”. Commu-
nications of the ACM 34, 4 (Apr 1991), 30-44.

[21] ZHONG, AND S.F.CHANG. “AMOS: An Active System for MPEG-4 Video
Object Segmentation”. IEEE International Conference on Image Processing
(Oct 1998).

60

