Implementation of MPEG-2 Video Decoder using
an associative array processor

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Samarpit Bhatia

to the
Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

May, 2000

Certificate

This is to certify that the work contained in the thesis entitled “Implementation

of MPEG-2 Video Decoder using an associative array processor’, by Samarpit Bhatia,
has been carried out under my supervision and that this work has not been submitted

elsewhere for a degree.

May, 2000 (Dr. Rajat Moona)
Department of Computer Science & Engineering,

Indian Institute of Technology,

Kanpur.

Acknowledgements

I take this opportunity to express my sincere and deep felt gratitude towards my
supervisor Dr. Rajat Moona for his invaluable guidance throughout this work. He
has been an immense source of motivation and inspiration. I thank him for giving

me the opportunity of working under his guidance.

I would like to thank Neomagic Corporation, California, US , for providing me
technical resources and financial support. I would especially like to thank its Vice-
president, Engineering Dr. Clement Leung, for his valuable suggestions and guidance

throughout this work.

My whole hearted thanks to the faculty members of Computer Science and Engi-
neering department for imparting me with the invaluable knowledge that has brought

me to this competent stage.

I have enjoyed the company of all my batch mates especially venky, dharmesh,
ghulam, pogde, rahul, unmesh and sarika. I thank venky for his valuable suggestions

in my thesis work.

My parents, my sisters and my fiance Rachna have been a constant source of love
and affection throughout. I am eternally grateful to them for always being with me

whenever I needed them.

Abstract

Emerging multimedia applications, such as digital versatile disk and high def-
inition television, demand higher quality video than ever before. With increased
market acceptance of such applications, the Motion Picture Expert Groups’ (MPEG)
MPEG-2 standard is being widely used. There arises a need for fast and efficient video
decoder that can decode MPEG-2 bitstream in real time without compromising on

video quality or overloading the system.

In our current work, we have developed a co-hardware/software video decoder
model for MPEG-2 mainprofile@mainlevel video bitstreams. The decoder uses an
associative array processor - Associative Real Time Vision Machine (ARTVM), for
inverse discrete cosine transform (IDCT) computation. The IDCT computation is
done in parallel for all the blocks of a single frame. The simulation results show that

the proposed decoder model meets the real time decoding requirements very easily.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Video Coding Standards 2

1.21 MPEG-1. 3
1.22 MPEG-2 4
1.3 Compression in MPEG 5)
1.4 Discrete Cosine Transform 5t
1.4.1 Definition of DCT 5t
1.5 Related worko 6
1.6 Current Work L 7
1.7 Organization of this report 7

2 Associative Array Processor ARTVM 8
2.1 OVerview 8
2.2 ARTVM Architecture 9

2.2.1 Operations on associative memory 9
2.3 ARTVM configuration 11

3 MPEG VIDEO CODEC 15
3.1 Introduction 15
3.2 Compression Algorithms 16

3.2.1 Overviewo

3.3 Frame Coding
3.3.1 Intra-frame Coding
3.3.2 Inter-frame Coding

3.4 Layered Structure

3.5 MPEG Video Decoder

Implementation Details

4.1 Simulator for ARTVM
4.1.1 TI/O subsystem model L.
4.1.2 Instruction Modeler
4.1.3 Machine cycles Evaluator.

4.2 The video decoder with parallel IDCT

4.3 Parallel IDCT for ARTVM
4.3.1 Pseudo-code to calculate IDCT

Results and Conclusions

5.1 Test Setup
5.2 Results.
5.3 Conclusions e
5.4 Limitations
5.5 Future Work
A.1 List of Acronyms
A.2 Parallel IDCT code for the ARTVM processor simulator
Bibliography

i1

24
24
25
26
26
28
30
31

33
33
34
35
35
35

37
37
39

47

Index

il

49

List of Tables

1.1
1.2
2.1
0.1
0.2
2.3

Digital video standardso oo
MPEG-2 profile and level structure with parameter upper bounds . .
ARTVM instruction set
Test System configuration,
Simulator Results : Maximum time required to decode one frame

Results : Time taken by ARTVM for IDCT calculations

v

14
33
34

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1

The Associative Real Time Vision Machine Architecture 10
Mlustration of COMPARE and WRITE instructions, showing condition

before and after execution. 12
Scan Order 17
Intra-frame Codingo 20
MPEG-2 main profile video syntax 21
A typical MPEG-2 decoder structure 23
Finite Automaton model 28

Chapter 1

Introduction

1.1 Motivation

Digital video is basically collection of related digital frames displayed at a rate of
about 25 frames per second. Since its inception digital video has introduced many
new technologies. Digital versatile disk (DVD), high definition television (HDTV),
video conferencing, video on demand are a few of digital video applications. Digital
video provides much more than better picture quality. Ease of manipulation, lossless

duplication and transmission are a few of the advantages of digital video.

Digital frames are basically 2-D array of pixels. Each pixel holds color information
of a particular small region of the picture. Digital video is usually coded along with
digital audio as there are very few application which use digital video alone. Although
digitization of video & audio has led to many new applications, digital video & audio
in uncompressed form results in enormous amount of data that cannot be handled
by present network bandwidths and storage capacities available. Hence a need for
compression arises. In fact video and audio data have so much redundancies in it that
using them in uncompressed format is a waste of resources. There have been many

standards made for encoding of digital video & audio in an efficient format [16].

MPEG family of standards [12] for motion pictures is one of the widely accepted
standards. Various versions of MPEG standard have been developed taking in con-
sideration the fact that encoding is usually one time job and decoding needs to be

done at many times, hence decoding process should be simpler. Several software and

hardware MPEG decoders ([15, 14, 8, 9]) have been developed so far. The complex-
ity and computational requirements of MPEG decoding process makes the software
decoders unsuccessful, as even on very fast processors MPEG decoding is barely real
time and it slows down the entire system. Dedicated hardware MPEG decoders have
the disadvantage of becoming obsolete as new standards emerge. Further they are not

cost effective as they can not be used in applications other than the MPEG decoding.

In this thesis we have simulated a co-hardware/software video decoder model for
Main Profile at Main Level (MP@QML) MPEG-2 coded motion pictures. The proposed
decoder model uses the processor only for bit-stream parsing and frame display, the
computationally most intensive part of Inverse Discrete Cosine Transform (IDCT) is
done through an associative array processor called ARTVM (Associative Real Time
Vision Machine) [4].

1.2 Video Coding Standards

Table 1.1 gives an overview of a few families of digital standards [16]. The Group
name is listed in the left column. Some of the standards in the family are listed
by number in the center column and the purpose of each standard is shown in the
comments column. This table illustrates how multiple standards are needed to create

a complete video application.

These standards have been developed for different specific applications. p x 64
family is a digital teleconferencing standard that operates in the range of 64 kbits/s
to 2 Mbits/s. The low-bitrate communication (LBC) teleconferencing family is newer
than p x 64 family. It operates at 64 kbits/s or below. Among the various video
standards, MPEG is quiet versatile. It has been developed for a very broad range of

applications and it is gaining more and more acceptance everyday.

The acronym MPEG stands for Moving Picture Expert Group, which worked to
generate the specifications under ISO, the International Organization for Standard-
ization and IEC, the International Electrotechnical Commission. What is commonly
referred to as “MPEG video” actually consists of two finalized standards, MPEG-1
and MPEG-2, with a third standard, MPEG-4, in the process of being finalized. The
MPEG-1 & -2 standards are similar in basic concepts. They both are based on motion

compensated block-based transform coding techniques, while MPEG-4 deviates from

Group name standards Comments
px64 H.261 Video
H.221 Communications
H.230 Initial handshake
H.320 Terminal systems
H.242 Control protocol
G.711 Companded audio (64 kbits/s)
LBC H.263 Video
H.324 Terminal Systems
H.245 Control protocol
H.223 Multiplexing protocol
G.723 Speech
MPEG-1 | ISO/IEC 11172-1 Systems
ISO/IEC 11172-2 Video
ISO/IEC 11172-3 Audio
ISO/IEC 11172-4 Conformance testing
ISO/IEC 11172-5 Software simulation
MPEG-2 | ISO/IEC 13818-1 Systems
ISO/IEC 13818-2 Video
ISO/IEC 13818-3 Audio
ISO/IEC 13818-4 Compliance testing
ISO/IEC 13818-5 Software simulation
ISO/IEC 13818-6 DSM-CC
ISO/IEC 13818-7 NBC Audio
ISO/IEC 13818-8 10-Bit Video
ISO/IEC 13818-9 RTI

Table 1.1: Digital video standards

these more traditional approaches in its usage of software image construct descriptors,
for target bit-rates in the very low range, less than 64Kb/sec.

1.2.1 MPEG-1

MPEG-1 was finalized in 1991, and was originally optimized to work at video res-
olutions of 352x240 pixels at 30 frames/sec (NTSC based) or 352x288 pixels at 25
frames/sec (PAL based). It is often mistakenly thought that the MPEG-1 resolution is
limited to the above sizes, but it in fact may go as high as 4095x4095 at 60 frames/sec.
The target bit-rate is around 1.5 Mb/sec, but again can be used at higher rates if

required. MPEG-1 is defined for progressive frames only, and has no direct provision

3

for interlaced video applications, such as in broadcast television applications.

1.2.2 MPEG-2

MPEG-2 was finalized in 1994, and addressed issues directly related to digital televi-
sion broadcasting, such as the efficient coding of field-interlaced video and scalability.
Also, the target bit-rate was raised to between 4 and 9 Mb/sec, resulting in potentially
very high quality video. MPEG-2 consists of profiles and levels. The profile defines
the bit-stream scalability and the colors-pace resolution, while the level defines the
image resolution and the maximum bit-rate per profile. The most common descriptor
in use currently is Main Profile, Main Level (MP@ML) which refers to up to 720x576

resolution video at 30 frames/sec, at bit-rates up to 15 Mb/sec.

MPEG-2 defines five different profiles, namely Simple profile (SP), Main profile
(MP), SNR-scalable profile (SNR), spatially-scalable profile (Spt) and High profile
(HP). Four levels are defined in MPEG-2 : low (LL), main (ML), high-1440 (H-14),
and high (HL). Of the five profiles and four levels, creating 20 possible combinations,
11 have been defined. The Main profile allows all four levels, the Simple and the
Spatial profiles allow one level each, the SNR profile allows two levels, and the High
profile allows three levels. For the allowed profile and level combinations the upper

bounds on coding rate and picture size parameters are provided in table 1.2 below.

Levels Profiles
SIMPLE MAIN SNR SPATIAL HIGH
nonscalable | nonscalable | scalable scalable nonscalable
4:2:0 4:2:0 4:2:0 4:2:0 4:2:2
HIGH 1920 x 1152 1920x 1152
80 Mb/s 100 Mb/s
HIGH-1440 1440 x 1152 1440x 1152 | 1440x 1152
60 Mb/s 60 Mb/s 80 Mb/s
MAIN 720 x 576 720576 | 720%x576 1440 x 1152
15 Mb/s 15 Mb/s | 15 Mb/s 20 Mb/s
LOW 352 %288 | 352288
4 Mb/s 4 Mb/s

Table 1.2: MPEG-2 profile and level structure with parameter upper bounds

1.3 Compression in MPEG

MPEG-1 & -2 are inter- and intra-frame compression system. Frames are coded in one
of the three formats namely I-,P- and B-frames. I[-frames are intra-coded, i.e. they
only remove the spatial redundancies within the frame and serve as a starting point
in case of out of order access or transmission errors. P- and B-frames are inter-coded,
i.e. they exploit the temporal redundancies also. Spatial redundancies are removed
through the use of Discrete Cosine Transform (DCT). DCT with other encoding al-
gorithms gives a very high compression. Temporal redundancies are removed through

the use of motion compensation (MC).

1.4 Discrete Cosine Transform

In general, neighboring pixels within an image tend to be highly correlated. As
such, it is desired to use an invertible transform to concentrate randomness into
fewer, decorrelated parameters. The Discrete Cosine Transform (DCT) has been
shown to be near optimal for a large class of images in energy concentration and
decorrelating. The DCT decomposes the signal into underlying spatial frequencies,
which then allow further processing techniques to reduce the precision of the DCT

coefficients consistent with the human visual system model.

The DCT doesn’t directly affect compression. In fact for an 8 x8 block of 8 bit
pixels, the DCT produces an 8 x 8 block of 11 bit coefficients. The reduction in
the number of bits follows from the observation that, for typical blocks from natu-
ral images, the distribution of coefficients is non-uniform. The transform tends to
concentrate the energy into the low-frequency coefficients and many of the other co-
efficients are near-zero. The bit rate reduction is achieved by not transmitting the

near-zero coefficients and by quantizing and coding the remaining coefficients

1.4.1 Definition of DCT

The N x N cosine transform matrix C = c(k,n), called discrete cosine transform, is
defined as

For a given 2-d data sequence {z;; : 0 < 7,7 < N—1}, the 2-d DCT sequence
{Yin : 0 <m,n < N — 1} is given by the following [2].

4 N—-1N-1 2 1 2 Y 1
Yin = —u(m)u(n) ‘ T4 cos(z;LN)mW cos(‘7;]—\[)n7r (1.1)

N-1N-1 : ,
21+ 1 2 1
Tij = u(m)u(n)Ymn cos(Z;N)mw cos(‘7;]—\[)nﬁ (1.2)

where
1

u(m) = 7 ifm=20
1, otherwise

The 2-dimensional DCT operation for an 8 x8 pixel block generates an 8 x8 block
of coefficients that represent a “weighting” value for each of the 64 orthogonal basis

patterns that are added together to produce the original image.

1.5 Related work

There have been many software as well as hardware approaches for processing of
multimedia applications, especially MPEG decoding. Many public domain software
decoders for MPEG-1 are available on the net [15], there are many company propri-
etary software decoders also available [14], proprietary decoders are a bit faster as
they usually don’t implement the actual Inverse Discrete Cosine Transform (IDCT).
Instead they make the decoding faster by making some high frequency components
equal to zero and computing the IDCT.

In hardware approaches, there have been designs for fast IDCT/DCT proces-
sors [5, 7, 6, 19], full MPEG decoding chips [8, 9], special multimedia instruction

6

enhancements for general purpose processors (like MMX) and designs of special DSP

architectures for multimedia applications [13].

1.6 Current Work

In the current work, we have simulated a co-hardware/software MPEG-2 video de-
coder for MP@QML. For simulating the IDCT algorithm we have written a simulator
for the associative array processor ARTVM. The video decoder uses ARTVM for
computation of Inverse Discrete Cosine Transform (IDCT) which is the most compu-
tationally intensive part of MPEG video decoding. The bit-stream parsing and frame
display is done by the host processor. A parallel IDCT algorithm has been imple-
mented on ARTVM such that the IDCT can be performed on all the blocks which fit
in the associative memory in parallel. Hence if ARTVM memory size is sufficient we

need to perform IDCT only once per frame.

Total number of ARTVM clock cycles required by our parallel IDCT algorithm
is 149197. At 33 Mhz ARTVM processor speed, time required for IDCT is 4.5 ms.
The simulator predictions for total time requirement meets the real time decoding re-
quirements very easily. The simulator can handle MPEG bit-streams with or without

audio stream but if audio data is present it is discard.

1.7 Organization of this report

The rest of this report is organized as follows. In chapter 2, we describe the associative
array processor ARTVM architecture and its instruction set. In chapter 3, we provide
a small overview of MPEG-2 video bit-stream structure. In chapter 4, we present
the implementation details of ARTVM simulator, discuss design issues involved in
designing the IDCT algorithm for ARTVM and provide details of incorporating the
parallel IDCT routine with an existing video decoder. In chapter 5, we conclude this
thesis and provide test setup, results, conclusions, limitations and scope of future

work.

Chapter 2

Associative Array Processor
ARTVM

In our work we used an associative array processor developed by Dr. Avidan J.
Akerib [3]. In the following sections we describe the processor’s architecture and

explain its instruction set.

2.1 Overview

There are basically two types of architectural organizations for SIMD processors
namely array processors and associative processors. Array processors use random-
access memory whereas associative processors use content-addressable memory. Con-
tent addressable memory or associative memory includes comparison logic with each
bit of storage. A data value is broadcast to all words of storage and compared with
the values there. Words which match are flagged in some way. Subsequent operations
can then work on the flagged words, e.g. read them out one at a time or write to

certain bit positions in all of them.

Associative processors are basically a special type of array processors whose pro-
cessing elements (PEs) correspond to the words of an associative memory. These PEs
operate on each bit cell of every word of the associative memory in parallel and gener-
ate the output corresponding to each word. The associative array processor ARTVM

used in our implementation of parallel IDCT is based on this associative approach.

2.2 ARTVM Architecture

In ARTVM a word of memory is assigned to each pixel of the image, hence vision
algorithms work on all the pixels of an image in parallel. Figure 2.1 describes the
core of machine which is a classical associative processor. ARTVM is a fully parallel
associative processor. It consists of an associative memory A, Mask and Comparand
registers of length equal to associative memory word length ,a Tag register whose size
is equal to the associative memory size and an I/O Buffer Array with 16 bit shift
register attached to each word. ARTVM provides one words for each pixel in the
image to be processed. The pixels are arranged linearly, in the row major order. The

machine instruction set is given in table 2.1.

I/O buffer array is used for loading data in to associative memory and for taking
out the results. It operates without any intervention from the associative processing.
Data can be loaded or read from the I/O buffer array through the I/O bus one word
in each ARTVM clock cycle.

Transfer of data from I/O buffer to the associative memory (and vice-versa) is done
in parallel through the use of an instruction called TAGXCH. TAGXCH instruction
transfers the content of I/O buffer to the tag register one bit slice at a time. Basically

the contents of the I/O buffer are circulating right via the tag register.

2.2.1 Operations on associative memory

ARTVM provides a few very basic but very powerful set of instructions on the associa-
tive memory. These instructions are capable of executing any logical and arithmetic
function. Further the inter connection network between the PEs is very simple as

data transfer among the different PEs is possible only through the tag register.
The two most important instructions are COMPARE and WRITE. In COMPARE

instruction, comparand register is matched against all words of memory simultane-
ously and the match is indicated by setting the corresponding tag bits. The compar-
ison is carried out only for the bits indicated by the mask register. Status bit rsp is
set to indicate that there was at-least one match (fig 2.2). The WRITE instruction
operates in a similar manner. The contents of the comparand are simultaneously

written into the words indicated by the tag register. These bits are written only on

MASK REG M
COMPARANDREG ~ C
K-1 0
L-1 0 0
110
ASSOCIATIVE
BUFFER
MEMORY
ARRAY
A
B
J1

)

CONTROLLER

COUNT
TAG
PYRAMID

FIRST
SELECT
PYRAMID

Figure 2.1: The Associative Real Time Vision Machine Architecture

10

those bit locations that are indicated by the mask register (fig 2.2). The combina-
tion COMPARE - WRITE is of type “if condition then action”, hence all logical and

arithmetic functions can be executed.

The SETM, SETC, SETMC instructions are used to set the mask and comparand
registers. LETM, LETC, LETMC instructions are used for operating on specific
bits of the mask and comparand registers. The READ instruction is normally used
to bring out a single word, the one pointed to by the tag. Only those bits are
read as indicated by the mask register. Data communication among the neighboring
pixels is possible only through the tag register, a bit slice at a time, using SHIFTAG
instruction. The number of shifts applied to the tag register determines the distance
or relation between source and destination. Usually this relation is uniform in image
processing applications , hence communication between all processor is simultaneous

and the processing is in parallel.

FIRSEL instruction is used to reset the entire tag register excluding the first bit.
Another instruction COUNTAG is used to return the number of bits set in the tag

register.

Each word in the associative memory acts as a simple processor so that memory
and processor are indistinguishable. Input, output and processing go on simultane-
ously in different fields of the same word. The field to be accessed or processed,
is flexible, and can be selected by the application. Hence the processing capabilities
(image processing algorithms) can be easily expanded by increasing word length K. It
has been shown that for K = 152 almost all the vision algorithms (such as histogram

evaluation, convolution, morphological operations etc.) run in real time.

2.3 ARTVM configuration

The designers of ARTVM chose the image size to be 512x512 after analyzing various
vision algorithms and real time processing requirements. Thus the associative memory
capacity is 256K words (one word per pixel). The word length was fixed at 136 (four
32 - bit sectors and an 8 - bit flag).

11

1

0
0
1
0
0
1
0

0100011

1100010

1100010

0100000
1101111
1111010
1111111
0110001

1110110
1101101

COMPARE

1

1
1
1
1
1
1
1

0100011

1100010

1100010

01000O00O0
1101111
1111010
1111111
010006001

1100110
1101101

M

C

— O O «H O O O O
o o O O «H O O O O
o — O O I 1 O «+H O -
o — - O «H «d O O O <
— — I O «H «+H€ O «+H O i
— o o O «+4 O O «+H O O
o — — A A A O
o o - O « «d O «H O <«

LLl

=

=

— O O «H O O O O
o o O O «+H O O O O
o — O O « «d1 O «+H O -
o — I O «+H «+4 O O O -
i — O O «+d O O «+d O -
i o O O «H O O «+H O o
o — = A d A O
o o - O « «+d O «=H O <
= O

Figure 2.2: Tllustration of COMPARE and WRITE instructions, showing condition
12

before and after execution.

ARTVM Instruction Set
The instructions given below are for
Vji=012..J1 Vk=012..K-1 and VI=1,273,..L-1
The symbols used in the instruction have the following meaning.
T — Tag
B — I/O buffer array
A — Associative memory
C — Comparand
M — Mask
Math symbols:
\V — or

@ — exclusive-or

A — and
Tag Operation
SETAG: T; <1
SHIFTAG: T4 < T; (One-Place Shift)
SHIFTAG: Tjiy < T (Long Shift)

TAGXCH: T+ Bjy Bju 1) + Bji, Bju_1) < Tj
COUNTAG: S« %, T,

1 if Tj is the first “17 of T

FIRSEL: T; <)
0 otherwise

Comparand and Mask Initialization

Let X denote any one of the following:
M(Mask), C(Comparand), MC(Mask and Comparand)

SETX: X, <«1
LETX: optl opt2 opt3

13

where:
optl = d(r),d(ry),...d(rs)
opt2 = dseq(uy,uz)
opt3 = dvar(vy,va,p)

and options can be intermingled in any order. Then:

1 Vk =r;,19,...7% if opt1 defined

1 Vk = u;,u; + 1,...us if opt2 defined
X .

Pk—v, Vk € {v1,v2} if opt3 defined

0 otherwise

Compare Operation

COMPARE: T + T; A(V, M, AN(Ajx ® Cy))
rsp < V,; T}

Read Write Operations

READ Gy + V(A AT))
WRITE Ay, + (T A Aje) V(T A(Mp ACL N My A Ajy))

Table 2.1: ARTVM instruction set

If the 16 - bit image buffer is also included, the total word length becomes 152.
Loading an entire comparand or mask word would require 136 bits wide bus. However,
associative algorithms operate only on one or two short fields and on a number of flag
bits at a time. Hence buses are provided for simultaneous access to the flag field and
one sector only. The cycle time used for timing analysis is taken to be 30 nanoseconds
(33 Mhz).

The parallel IDCT algorithm that we have designed operates under this word
length. For simulating the MPEG decoding process we didn’t required such a high
memory size, hence we have introduced the option of setting the memory size in the

simulator we have designed.

14

Chapter 3

MPEG VIDEO CODEC

3.1 Introduction

Bringing video pictures into the digital format introduces one major problem. Un-
compressed digital video pictures take up enormous amount of storage. For example
a CD can hold only about five minutes of an uncompressed movie. A suitable com-
pression algorithm such as MPEG can compress video data many times over, while

still managing to retain very high picture quality.

MPEG-1, formally known as ISO/IEC 11172, is a standard in 5 parts. The first
three parts represent Systems, Video and Audio, in that order. Two more parts in
the standards for suite of MPEG-1 standard are Conformance Testing, which specifies

the methodology of conformance verification, and Software Simulation.

The MPEG-2 (ISO/IEC 13818) concept is similar to MPEG-1, but includes ex-
tensions to cover a wider range of applications. It is designed for diverse applications.
MPEG-2 is used in applications like digital high-definition TV (HDTV), interactive
storage media (ISM), cable TV (CATV). MPEG-2 has bitstream scalability. Thus it
is possible to extract a lower bitstream rate from the high quality image to get lower

resolution or frame rate.

15

3.2 Compression Algorithms

3.2.1 Overview

In MPEG, video is represented as a sequence of pictures, and each picture is treated
as a two-dimensional array of pixels (pels). The color of each pel consists of three
components : Y (luminance), U and V (two chrominance components). In order to
achieve high compression ratio, MPEG uses hybrid coding techniques to reduce both
spatial redundancy and temporal redundancy. These techniques are described as the

following.

e Color Space Conversion and Subsampling of Chrominance. In general,
each pels in a picture consists of three components : R (Red), G (Green), B
(Blue). However (R,G,B) must be converted to (Y,U,V) before they are pro-
cessed. (Y,U,V) representation of pel has low correlation among the components
as compared to the (R,G,B) components. Therefore (Y,U,V) components can
be coded more efficiently. After color space conversion, each pels is represented
as (Y,U,V) components. The human eye is most sensitive to the Y component.
Therefore for a good quality picture it is necessary to encode Y component
with high resolution. At the same time U and V components, can be stored less

frequently by subsampling without compromising the picture quality.

¢ Quantization. Quantization is used to reduce a range of numbers to a single
value, requiring fewer bits for representation. For example, we can round off a
real number to an integer. Inverse Quantization is the reverse process to recon-
struct original value. However the reconstructed value is not the same as the
original value. The difference between the actual value and the reconstructed

one is called the quantization error.

e DCT (discrete cosine transform). As described in section 1.3, DCT is very
efficient in encoding natural (highly correlated) images. The DCT coefficient
at location (0,0) is called the DC coefficient. Other coefficients represent the
AC coeflicients at various frequencies. In general, we use large quantization
step in quantizing AC coefficients, and use small quantization step to quantize
DC coefficient so as to preserve high precision. Below is an example of DCT

coefficient array for the corresponding 8 x 8 pixel block.

16

88
86
82
81
81
81
82
88

84
82
82
86
84
85
81
88

83
82
84
87
83
85
86
90

An 8 x

84
83
87
89
87
86
83
84

85
82
87
82
85
81
86
85

86
83
87
82
89
89
89
88

8 Block

83
83
81
84
80
81
81
88

82
81
84
87
81
85
84
81

67.51-6 2-2 0 b5 -5
-4 1 2 1 5 1-3 0
2 3 4 6-2 2 1 b
-3 -1 0 2 0-2 2 -4
4 3 1-1-2 1-3 1
1 -2 0-3 2-1 1 1
3 0-1 0-1-1 0-2
-1 -1-56 6 2-2 2 0

DCT Coefficients

e Zig-Zag Scan And Run Length Encoding (RLE). After DCT and quan-

tization most AC coefficients are close to 0. In fact, higher the frequency, lower

is the coefficient in most images. By using a zig-zag scan (figure 3.1) the con-

secutive zeros are brought together, and then RLE is used to gain compression

ratio.

ncreasing vettical frequency

increasing horizomntal frequetcy

Figure 3.1: Scan Order

The bitstream after zigzag scan is encoded as (skip,value) pairs, where skip is

the number of zeros and value is the next non-zero coefficient. Zig-zag scan and

17

RLE are used only for the AC coefficients. For DC coefficients, DPCM coding

method is used as is described next.

Predictive Coding. Predictive coding is a technique to reduce statistical
redundancy. That is based on the current value, the next value can be predicted
and the difference between the predicted one and the actual can be stored. If
the prediction algorithm is good, the prediction error will be small. Thus fewer
bits can be used to encode the prediction error. In MPEG, we use Differential
Pulse Coded Modulation (DPCM) technique [11] for prediction and storage of

errors.

Motion Compensation (MC) And Motion Estimation (ME). Motion
Estimation is used to predict a block of pels’ value in next picture using a
block in current picture. The location difference between these blocks is called
the Motion Vector. Similarly the difference between two blocks is called the
prediction error. Motion compensation is the inverse of motion estimation. The
decoders implement the motion compensation while the encoder implement the

motion estimation.

Variable Length Coding (VLC). Variable Length Coding is a statistical
coding technique. It uses short codeword to represent the value which occurs
frequently and uses long codeword to represent the value which occurs less
frequently. This method makes the overall data storage smaller than the original
data storage. In MPEG, it is the last step in the encoding process and the first

step in the decoding process.

3.3 Frame Coding

All MPEG frames are encoded in one of three different ways - Intra-coded (I-frames),

Predictive-coded (P-frames), or Bidirectionally-predictive-coded (B-frames). I-frames

are encoded as discrete frames, independent of adjacent frames. Thus, they provide

randomly accessible points within the video stream. Because of this, I-frames have

the least compression ratio of the three frames. P-frames are coded with respect to a

past I-frame or P-frame, resulting in a smaller encoded frame size than that for the

[-frames. The decoding of B-frames require a preceding frame and a future frame,

18

any of which may be either an I-frames or a P-frames. Thus the B-frames offer the
highest degree of compression. In MPEG, frames are ordered together as Group of
Pictures (GOP). Each GOP begins with an I-frame followed by arrangement of P and

B frames. A typical sequence of frames is:

..y By By Is By Bs Ps By Bg Py Big By Pia Bis Big Iis...

In the above sequence a GOP in display order is:

Bl B2I3B4B5P6B7B8PQBIOB11 P12

The corresponding encoding bit-stream order will be:

Is By By Ps By Bs Py B; By Py By By

3.3.1 Intra-frame Coding

[-frames are coded by intra-frame coding. When encoding I-frame, we only reduce
the spatial redundancy in the picture without referencing other pictures. The coding
process is much similar to JPEG Standard. Figure 3.2 describes the intra-frame

coding process.

3.3.2 Inter-frame Coding

P-frames and B-frames are coded using inter-frame coding techniques. Coding of the
P and B frames is more complex than that of the I frames, since motion-compensated
macroblocks have to be searched in it. P-frames use the previous I- or P-frame for
motion compensation and may be used as a reference for further prediction. Each
block in a P-frame can either be predicted or intra-coded. By reducing spatial and

temporal redundancy, P-frames offer increased compression compared to the I-frames.

B-frames are introduced for increasing the frame rate without increasing too

19

Image -

RGBToY UV and Subsample

.| Foreachplane

<
\J

— For each 8x8
VLC DC DPCM block

Zig-zag Quantize DCT

<~ | | | —

ACRLE

Figure 3.2: Intra-frame Coding

much bitrate. B-frames use the previous and the next I- or P-frames for motion-
compensation, and offer the highest degree of compression. Each block in a B-frame
can be forward, backward or bidirectionally predicted or intra-coded. To enable
backward prediction from a future frame, the coder reorders the frames from natural
‘display’ order to ‘bitstream’ order so that a B-frame is transmitted after the previous
and the next frames it references. This introduces a reordering delay dependent on

the number of consecutive B-frames.

20

ISO/IEC 13818-2 video sequence

sequence sequer.nce GOP header * sequence GOP header * sequence sequence layer
header extension and picture(s) header and picture(s) end_code
GOP user group of pictures layer
, | data*
header (GOP header and user
”””” data are optional)
picture picture 9oding extension dice dice R ! dice ! picture layer
header extension | ansuser data o 3
slice | | b |
macroblock macroblock ' macroblock + macroblock | s e *. 1 macroblock !
header ! ! |) S |
n;%%)bl ock | block(0) | block(1) | block(2) | block(3) | block(4) | block(5) | macroblock layer
er
(if block coded)
differential DC coeff| run-level VLC i run-level VLC i i\\ end_of_block | layer

(if intra macroblock)

Figure 3.3: MPEG-2 main profile video syntax

21

dice layer

3.4 Layered Structure

The syntax of a typical MPEG-2 main profile is given in a hierarchical representation
with six layers in the figure 3.3. MPEG video is broken up into a hierarchy of layers to
help with error handling, random search and editing, and synchronization for example
with an audio bitstream. From the top level, the first layer is known as the sequence
layer. It is a self-contained bitstream. For example it may contain a coded movie or
an advertisement. The second layer represents the group of pictures. It is composed
of one or more intra (I) frames and/or non-intra (P and/or B) frames. The third layer
down is the picture layer that represents one of the frames. The next layer is called the
slice layer. Each slice consists of macroblocks, which are 16x16 arrays of luminance
pixels, and two 8x8 arrays of associated chrominance pixels. The macroblocks are
further divided into distinct 8x8 block layers. Each of the layers has its own unique
32 bit start code defined in the syntax.

3.5 MPEG Video Decoder

The structure of a typical MPEG video decoder is shown in the figure 3.4. First the
bit-stream is parsed and blocks are extracted before the inverse quantization. Inverse
Discrete Cosine Transform (IDCT) is performed on these DCT coefficients. The DCT
coefficients of a block are not always the DCT of actual pixel values as many of the
MPEG-2 frames (P- and B-frames) are inter-coded to take the advantages of temporal

redundancies between successive frames in a normal video sequence.

As shown in the figure 3.4, the IDCT coefficients are either directly sent for post
processing for generation of frame or they are added with the form predictor to
generate the actual frame data before being sent for post processing. The decoded
frame is also stored for the generation of subsequent frames. At most two frames are

stored as reference frames.

22

input bitstream

t

variahle

length
decoding

imrerse
quantization

IDCT

post

"| processing

|

r

form
predictor

reference
frames

MFPEG-2 Decader

Figure 3.4: A typical MPEG-2 decoder structure

23

QUTPUT VIDEC

Chapter 4

Implementation Detalils

In our present work we have designed a parallel IDCT algorithm for the ARTVM pro-
cessor. In order to verify the algorithm, we also built a simulator for the ARTVM pro-
cessor. The simulator was used to test the algorithm for its functionality and perfor-
mance. The parallel IDCT algorithm was tested against IEEE standard 1180-1990 [1]
accuracy test for inverse DCT. We have modified an existing MPEG-2 MP@ML video
decoder to use the parallel IDCT algorithm. Necessary changes have been made in
the video decoder so that instead of performing IDCT on each block of data sequen-
tially, IDCT on all the blocks in a frame is taken in parallel. We have also analyzed
the timing performance and calculated the time required for bit-stream parsing, and
number of clock cycles required by the ARTVM processor for IDCT. It gives a rough
estimate of the time that will be taken if the ARTVM processor is used in the system.

In our simulator we simulate the processor’s instructions. The simulated decoder
takes considerable amount of time to decode one frame of the video sequence. Since
our aim was to perform efficient video decoding, we do not decode the audio data.
This data is ignored if it is present in the bit-stream. Further we have limited our
work to handling MPQML MPEG-2 streams only.

4.1 Simulator for ARTVM

The simulator for ARTVM is written in ‘C’ programming language. It basically con-

sists of three parts - I/O subsystem model, instruction modeler and machine cycles

24

evaluator. In I/O subsystem model we model the data transfer from the host proces-
sor to the ARTVM I/O buffer and from the I/O buffer to the associative memory.
Instruction modeler models each instruction of ARTVM as a ‘C’ function. In machine
cycles evaluator the ARTVM processor is modeled as a finite state machine where
state transitions represent the cost in machine cycles. It is used for calculating the
total number of ARTVM clock cycles taken by an algorithm running on the ARTVM

simulator.

4.1.1 1I/0O subsystem model

There are the following two steps in an I/O operation.

1. Transfer of data into and out of the I/O buffer.

2. Transfer of data from the I/O buffer to the associative array.

In the first step the I/O buffer is filled through an I/O bus by transferring the
given number of bits in each clock cycle. Two functions are available in the ARTVM
simulator for transfer of data to the I/O buffer. They are named ioread and iowrite.
Function ioread is used to read a particular word from the I/O buffer array. Similarly

iowrite is used to write to a particular word of the I/O buffer.

The second step of date transfer from I/O buffer to the associative array is done
through the use of TAGXCH instruction in the ARTVM instruction set.

In our application of IDCT implementation, the I/O bus width is decided taking
in consideration the timing requirements of MPEG decoding. The total time available
to decode and display one frame is /0 ms for a display requirement of 25 frames per
second. Out of this, the time taken by ARTVM for IDCT computation is 4.6 ms.
The average time taken for parsing bitstream on Pentium (233 Mhz) processor is 19
ms per frame. Therefore about a maximum of 16.4 ms time is available for the I/O of
all the blocks of a frame. For VCD quality video stream (352x288 with 4:2:0 format),
maximum number of IDCT blocks in a single frame is 2376. Thus at 33 Mhz bus

clock speed the bus width requirement comes out to be 16 bits.

25

4.1.2 Instruction Modeler

The instruction modeler implements the simulation of ARTVM instructions. All
ARTVM instructions are implemented as ‘C’ functions. These functions effect only
the values of members of an external structure called parameters. The structure

parameters is defined in a header file. It’s members include the following.

A[MEM_SIZE] [WORD_LENGTH]
B[MEMSIZE] [16]

mask [WORD_LENGTH]
comparand [WORD_LENGTH]
tag [MEM_SIZE]

Here, the variable A represents associative memory array, B represents the 1/0
buffer array and the variables mask comparand and tag represent the corresponding
registers in the ARTVM processor respectively. The contents of the structure pa-
rameters change upon simulation of ARTVM instructions. In our simulations, the
ARTVM word length is fixed at 128 bits and the memory size is fixed at 160000 (which
can store upto a maximum of 2500 8 x 8 blocks). These parameters can however be

changed by editing the header file and recompiling the simulator.

4.1.3 Machine cycles Evaluator

For evaluation of ARTVM cycles for a program, a simplified model is given by the
designer of ARTVM [3]. In this model the ARTVM processor is viewed as a simplified
Finite State Machine (FSM). Each state transition of this FSM is assigned a cost in
units of machine cycles. The FSM has only two states: Sy and S;. The input alpha-
bet for FSM was selected by grouping the ARTVM instructions into 5 categories as

following.

26

letm d(.)
lete d(.)
letme d(.)

I, = one of letm d(.) setc
letc d(.) setm
setm
setc

| setmc
(setag

I, = one of shiftag(+1)

| shiftag(£b)
[compare

I3 = one of ¢ write

read

14 = countag

Is = firsel

The Finite State Automation used to evaluate machine complexity is given in
Fig 4.1

In the original model, TAGXCH instruction is not considered in this grouping
of instructions. This model considered ARTVM performance only for associative
memory processing and neglected the data transfer from I/O buffer to associative
memory. It has however been accounted for in our implementation. We assume that
it takes one clock cycles to execute. Therefore we take the state transition cost as
one clock cycle when ever it occurs and change the FSM state to Sy as done for the

instructions of groups I, and I5.

To find the total number of ARTVM clock cycles taken by an algorithm a function
clockcount is introduced in the ARTVM simulator. This function is called at the end
of the algorithm to get the total number of clock cycles taken by the algorithm.

27

In Out
Group| State State | Cost in clockeycles
1 0 S1 0
1 S1 S1 0.5
2 S0/S1 SO 0.5
3 0 0 0.5
3 S1 0 1
4 S0/S1 0 12
5 S0/S1 S0 6
12/0.5
13/1
14/12
15/6
12/0.5
13/0.5
15/6

LI

Figure 4.1: Finite Automaton model

4.2 The video decoder with parallel IDCT

We used a video decoder in public domain provided by “MPEG Software Simulation
Group” [10]. Necessary changes have been made in the video decoder code so that
instead of taking IDCT of the blocks sequentially, the blocks are stored and a full
frame IDCT is taken, once for every frame, using the ARTVM simulator. The pseudo-

codes below gives the decoder structure.

28

main()

{
process_options();
Initialize_Buffers();
Initialize_Decoder();
Decode_Bitstream() ;

}

Decode_Bitstream()

{
for(; ;)
{
/* parse through all the headers till it finds
Picture_Start_Code or Sequence_End_Code */
ret = Parse_Headers();
if(ret == 1)
Video_sequence();
else
return(ret);
}
}

Video_sequence()
{
Initialize_Sequence();
Decode_Picture();
while(ret=Parse_Headers())
Decode_Picture();
Output_Last_Frame_of_Sequence();

Deinitialize_Sequence();

29

Decode_Picture()

{
Update_Picture_Buffers();
Decode_Picture_data();
artvm_idct () ;
add_Frame () ;
frame_reorder();

}

The decoder gives timing information to parse the video bit-stream and clock
cycles required by ARTVM for IDCT calculation. It also provides total time required
for decoding if it is done using a real ARTVM processor. The simulator takes around
30 minutes to decode one frame of video sequence. The decoded frames are stored in
TrueVision Targa file format [17].

4.3 Parallel IDCT for ARTVM

Inverse Discrete Cosine Transform (IDCT) is one of the most computationally inten-
sive part of MPEG-2 decoding. It amounts for almost 50 percent of processing require-
ments of MPEG-2 video stream [13], hence we have concentrated mainly on IDCT
computation. We have designed an algorithm for IDCT computation on ARTVM pro-
cessor which takes IDCT of all the blocks which are stored in the associative memory

in parallel.

The 8 x8 IDCT is defined as:

1 KL 2i+1 2j+1
Tij = 7 >N u(m)u(n) Yo COS%W COS%W

1 oifm —
u(m) = 75 ifm=20
1, otherwise

30

The time complexity of IDCT as given in equation 4.1 is O(N*). Many fast
algorithms and hardware architectures have been proposed for computing 1- and 2-D
DCT/IDCT’s ([5, 7, 6, 19]). However, most of them involve high communication
complexity. Since nonuniform data communication is very difficult to achieve in
ARTVM, none of the fast IDCT algorithms were found suitable for implementation
on ARTVM. For ARTVM processor we require an IDCT algorithm with uniform data

communication.

We have taken the standard row-column approach for IDCT computation. The 2-
D IDCT given in equation 4.1, is broken into 16 1-D IDCT’s. In row-column approach
we first take 1-D IDCT of all the 8 rows of the 8 x8 block, after that we take 1-D
IDCT of all the 8 columns of the block. This way the time complexity is reduced to

O(N?) and the data communication is also uniform.

The IDCT computation is made parallel by loading many 8 x 8 blocks of DCT
coefficient into the associative memory, linearly one after the other. The Row IDCT
is implemented by taking IDCT of DCT coefficients at i, i+1, i+2..., i+7 indexes in
the associative memory. Similarly the column IDCT is implemented by taking IDCT
of DCT coefficients at i, i+8, i+16..., i+56 indexes in the associative memory. As the
processing is associative, IDCT of all the blocks is taken in parallel. The algorithm
takes 149197 ARTVM clock cycles and requires a minimum of 115 bit word length of

the associative memory.

4.3.1 Pseudo-code to calculate IDCT

The pseudo-code for performing IDCT for an 8 x8 block is given below. In this code
the DCT coefficients are stored in a one-dimensional array data. The output IDCT

coefficients are returned in the same array.

artvm_idct (data)

{
clear_memory() ;
load_blocks_in_I/0_buffer();
transfer_blocks_to_associative_mem();
for(m = O;m < 2;m++)

for(n = O;n < 8;n++) {

31

load_cosine_terms_in_I/0_buffer();
transfer_cosine_terms_in_associative_mem() ;
if (m==0)

idctrow() ;
else

idctcol();

transfer_result_in_I/0_buffer();

store_result_back();

The actual ARTVM code for IDCT is given in appendix A.2.

32

Chapter 5

Results and Conclusions

5.1 Test Setup

The co-hardware/software MPEG-2 decoder simulator is developed on linux operating
system in C programming language. It has been tested on many linux versions like
Linux 2.0.36, Linux 2.2.9-19mdk, and Linux 2.2.14-15mdk. The decoder was tested
on 3 different systems mainly to test it’s robustness and the efficiency of simulator.

The table 5.1 shows the configuration of the systems.

Resource System 1 System 2 System 3
Processor Pentium-IT (Klamath) Pentium-II (i686) AMD (K6-3)
CPU Clock Speed 233 MHz 350 MHz 450 Mhz
Memory 32 MB RAM 64 MB RAM 64 MB RAM

Table 5.1: Test System configuration

MEM_SIZE of ARTVM was chosen to be 160000 (for a maximum of 2500 8 x 8
blocks). The simulator performs the timing analysis and provides output such as
number of clock cycles required by the ARTVM, time taken to parse the bitstream
and the total time required to decode each frame with real ARTVM processor.

33

5.2 Results

Table 5.2 gives the output of MP@MIL MPEG-2 video decoder simulator. The time
shown is the maximum time required to decode a frame of the video sequence. It can

be seen that the decoder meets real time decoding constraints very easily.

Sample | Frame Simulator Output
Maximum time for decoding one frame
no. Size P-II (Klamath) P-II (i686) AMD K6-3
1. 352 x 288 34 ms 28 ms 25 ms
2. 256 x 192 26 ms 21 ms 17 ms
3. 176 x 120 14 ms 11 ms 10 ms

Table 5.2: Simulator Results : Maximum time required to decode one frame

The parallel IDCT algorithm designed for ARTVM was tested against IEEE stan-
dard 1180-1990 [1] accuracy test for inverse DCT. The test was run several times, it
was found that usually a few (around 12) IDCT values out of the 64 values differed
from the reference values by 1. This conforms to the IEEE 1180-1990 standard for
worst peak error. The other tests of IEEE standard 1180-1990 accuracy test, like the
peak mean square error (pmse) and the mean square error (mse) were not tested for
because it required testing for very large numbers of iterations which was not possible

with one iteration taking 30 mins of time.

Sample Frame ARTVM Time required by simulator for IDCT
no. Size MEM _SIZE | P-1T (Klamath) P-IT (i686) AMD K6-3
required
1. 352 x 288 115200 2519 s 1721 s 1260 s
2. 256 x 192 76800 1667 s 1123 s 829 s
3. 176 x 120 38400 789 s 524 s 404 s

Table 5.3: Results : Time taken by ARTVM for IDCT calculations

Number of ARTVM clock cycles required by the IDCT algorithm is 149197. This
is independent of the number of blocks for which IDCT is taken in parallel. The

algorithm can be made more accurate with more number of clock cycles.

34

The simulator takes considerable amount of time to decode even one frame of
video sequence. Table 5.3 below gives simulation time required for various MPEG

files over different processors.

5.3 Conclusions

Associative array processing has been found to be a good alternative for IDCT calcu-
lations in MPEG decoding. The IDCT algorithm takes only 4.5 ms on the ARTVM
processor to compute IDCT of all the blocks loaded in the associative memory in
parallel. The IDCT algorithm conformed to the IEEE standard 1180-1990 accu-
racy test for worst peak errors. Therefore the decoded picture quality is extremely
good. The proposed MPEG-2 MP@MTL decoder model meets the real time decoding

requirements very easily without overloading the system or dropping the frames.

5.4 Limitations

e Audio - MPEG-2 bit-streams usually also contain audio data. Since we were

simulating the video decoding process, audio data is discarded.

e Simulation speed - In spite of considerable efforts the ARTVM simulator de-
signed was not very fast. This was a big bottleneck in testing the MPEG decoder

simulator for large bit-streams.

e User features - None of the usual user features like random access, fast forward,

fast-rewind or other trick modes were implemented in the MPEG decoder.

5.5 Future Work

e Other Applications - We have tested ARTVM processors viability for MPEG
decoding process. To make the full use of ARTVM we should make use of its

parallel processing capabilities in other applications also.

e MPEG Video - In our present design we have used the ARTVM for only IDCT

35

calculations. There are a few other parts of video decoding like inverse quan-
tization and variable length decoding which might also be possible through
ARTVM. We should look into these possibilities also in future. Further we can
also try to parse the video bitstream for more than a single frames data to make

the full use of associative memory.

MPEG Audio - Audio decoding should also be combined with the present de-
coder design. We should look into audio compression algorithms to see if there

is any possibility of making audio decoding parallel so that it can also be done
through ARTVM.

36

Appendix A

A.1 List of Acronyms

ARTVM Associative Real Time Vision Machine
CBP Coded Block Pattern

CD Compact Disk

DCT Discrete Cosine Transform

DSM Digital Storage Media

DSP Digital Signal Processing

FSM Finite State Machine

FA Finite Automation

GOP Group Of Pictures

HDTV High Definition Television

HP High Profile

IDCT Inverse Discrete Cosine Transform

IEC International Electrotechnical Commission
ISM Interactive Storage Media

ISO International Organization for Standardization
ITU International Telecommunications Union
JPEG Joint Photographic Experts Group
Kbps Kilobits per second

LBC Low Bitrate Communication

LL Low Level

Mbps Megabits per second

MB Macroblock

37

MC
ME
ML
MP
MPEG
NTSC
PE
RAM
RLE
SIF
SNR
VLC
VLSI
WG

Motion Compensation

Motion Estimation

Main Level

Main Profile

Moving Picture Experts Group
National Television System Committee
Processing Element

Random Access Memory
Run-Length Encoding

Source Input Format
Signal-to-Noise Ratio

Veriable Length Coding

Very Large Scale Integration
Working Group

38

A.2 Parallel IDCT code for the ARTVM processor

simulator

/**

* *
* Implementation of parallel *
* Inverse Discrete Cosine Transform(IDCT) *
* *
* for ARTVM processor *
* *
* By : Samarpit Bhatia (9811118) *
* *
* Under the guidance of Dr. Rajat Moona *
* *
* January, 2000 *

**/
#include "asslib.h"

void artvm_dct (short *data)

{

static int COS_TERM[8][8] = {
{ 23170, 32138, 30274, 27246, 23170, 18205, 12540, 6393},
{ 23170, 27246, 12540, -6393,-23170,-32138,-30274,-18205},
{ 23170, 18205,-12540,-32138,-23170, 6393, 30274, 27246},
{ 23170, 6393, -30274,-18205, 23170, 27246,-12540,-32138},
{ 23170,-6393,-30274, 18205, 23170,-27246,-12540, 32138},
{ 23170,-18205,-12540, 32138,-23170,-6393, 30274,-27246%},
{ 23170,-27246, 12540, 6393,-23170, 32138,-30274, 18205},
{ 23170,-32138, 30274,-27246, 23170,-18205, 12540,-6393%}
};

static int shift[8][3] = {

39

-1, -2, -4 },

{

{ 1, -2, -4},
{-1, 2, -4},
{ 1, 2, -4},
{-1, -2, 41},
{ 1, -2, 473,
{-1, 2, 473,
{1, 2, 4}
}

int DCTi=0,C0Si=32,SUMi=64,RESULTi=96;
int row=112,co0l=113,tempbit=114,carrybit=115;
int temp,m=0,n=0,1,j,k,1;

/*clear all of the contents of memory*/

initial();

for (i = 0;1 < MEM_SIZE;i++)

{

if ((i%64)==0)

iowrite(i,3);

else if ((i%8)==0)

iowrite(i,1);

else if ((i%64)<8)

iowrite(i,2);

}

tagxch() ;letmc(d(row)) ;a_write();
tagxch() ;letmc(d(col));a_write();

/* Transfer all the idct blocks in IO buffer */

for (i = 0;i < MEM_SIZE;i++)

40

{
iowrite(i,*(data+i));

}

for (i = DCTi;i < DCTi+16;i++)
{
tagxch() ;letmc(d(i));a_write();
}

while (m<2)

{

letmc (d(DCTi+15)) ;setag() ;compare() ;
letmc (dseq(DCTi+16,DCTi+31)) ;a_write();
letm(d(DCTi+15)) ;setag() ; compare() ;
letm(dseq(DCTi+16,DCTi+31));
letc();a_write();

n = 0;
while(n<8)
{

if(m == 0)
{

k = row;
1=1,;

}

else

{

k = col;

1 =8;

}

letmc(d(k)) ;setag();compare();

41

for(j = 0; < 8;j++)

{

i = (j+n)%8;
letc(dvar(C0Si,C0Si+31,C0S_TERM[n][i]));
letm(dseq(C0Si,C0Si+31));a_write();
shiftag(l);

3

/* clear the assoc. mem from SUMi for multiplication */

letm(dseq(SUMi, (SUMi+31)),d(carrybit) ,d(tempbit));setag();a_write();

/* Multiply the DCT coeff with it’s COS TERM x*/

for(i = DCTi;i < DCTi+32;i++)

{

k =1 - DCTi;

1 = C0Si;
letm(d(carrybit));

letc();setag();a_write();

for(j = SUMi+k;j < SUMi+32;j++)
{

letmc(d(i)) ;setag();compare();
letm(d(j),d(carrybit),d(1));
letc(d(carrybit)) ; compare() ;
letc(d(j));a_write();
letmc(d(i)) ;setag();compare();
letm(d(j),d(carrybit),d(1));
letc(d(carrybit),d(j)) ;compare();
letc(d(carrybit));a_write();
letmc(d(i)) ;setag();compare();
letm(d(j),d(carrybit),d(1));

42

letc(d(j),d(1)) ;compare();
letc(d(carrybit) ,d(1));a_write();
letmc(d(i)) ;setag();compare();
letm(d(j),d(carrybit),d(1));
letc(d(1)) ;compare();
letc(d(j),d(1));a_write();

1 = 1+1;
}

}

if (m==0)
k =1,
else

k = 8;

/*Move the multiplication results to other pixels for summation */

for(i = 0;i < 3;i++)
{
for(j
{
letmc(d(j)) ;setag() ;compare() ;
shiftag(shift[n] [1]*k);

letmc (d(tempbit) ,d(j-32));a_write();
letm(d(tempbit));

SUMi;j < SUMi+32;j++)

letc() ;setag() ;compare();
letm(d(j-32));a_write();
letm(d(tempbit)) ;setag();a_write();
}

letm(d(carrybit));

letc() ;setag();a_write();

/* summation */

43

for(j = SUMi;j < SUMi+32;j++)

{

letm(d(j),d(carrybit),d(j-32));
letc(d(carrybit)) ;setag() ;compare() ;
letc(d(j));a_write();
letc(d(j),d(carrybit)) ;setag();compare();
letc(d(carrybit));a_write();
letc(d(j),d(j-32)) ;setag();compare();
letc(d(carrybit) ,d(j-32));a_write();
letc(d(j-32)) ;setag() ;compare();
letc(d(j-32),d(j));a_write();

}

}

if (m==0)
k = row;
else

k = col;

/* This will take care of truncation errors */

letm(dseq(C0Si+15,C0Si+31) ,d(carrybit));
i = C0Si+15;
letc(d(i));setag();a_write();

for(j = SUMi+15;j < SUMi+32;j++)

{

letm(d(j),d(carrybit) ,d(i));
letc(d(carrybit)) ;setag() ;compare();
letc(d(j));a_write();
letc(d(j),d(carrybit));setag();compare();
letc(d(carrybit));a_write();
letc(d(j),d(i)) ;setag() ;compare();

44

letc(d(carrybit),d(i));a_write();
letc(d(i));setag() ;compare();
letc(d(i++),d(j));a_write();

}

j = RESULTi;

for(i = SUMi+16;i < SUMi+32;i++)
{

letmc(d(k)) ;setag() ;compare() ;

letmc(d(i)) ;compare();

letmc (d(j));a_write();

J = 3+

}

letmc(d(k)) ;setag() ; compare() ;

if (m==0)

shiftag(1);

else

shiftag(8);

a_write();

letmc(d(tempbit));a_write();

letc() ;setag() ;compare();
letm(d(k));a_write();

letm(d(tempbit)) ;setag();a_write();

n = n+l;

letm(dseq(COSi,RESULTi-1)) ;setag();a_write();
}

letm(dseq(DCTi,RESULTi-1)) ;setag();a_write();
j = DCTi;

/* Row IDCT has been done now move the coefficients back to index DCTi */

/* For column IDCT calculations */

45

for(i = RESULTi;i < RESULTi+16;i++)
{

letmc(d(i)) ;setag() ; compare();
letmc(d(j));a_write();

i =3+
}

letm(dseq(RESULTi,RESULTi+15)) ;setag();a_write();

m = m+l;

}

/* transfer the results from associative memory to the I/0 buffer x/

for(i = DCTi;i < DCTi+16;i++)
{

letmc(d(i)) ;setag() ; compare();
tagxch();

}

/* print the total number of clock cycles required */
clockcount () ;

/* transfer the results back to the array ‘data’ x*/
for(i = 0;i < MEM_SIZE;i++)

{

*(data+i) = ioread(i);

}
}

46

Bibliography

1]

IEEE Test for IDCT accuracy
http://www.mpegl.de/imaa/util /unix/ieee1180/

N.Ahmed, T. Natarajan and K. R. Rao, “Discrete cosine transform”,
IEEE Trans Commun., vol. COM-23, pp 90-93, Jan. 1974

Avidan J. Akerib, Phd Thesis, “Associative Real Time Vision Ma-
chine”, Department of Applied Mathematics and Computer Science

Weizmann Institute of Science, March 1992

Avidan J. Akerib, Phd Thesis, “Associative Real Time Vision Ma-
chine”, Department of Applied Mathematics and Computer Science

Weizmann Institute of Science, pp 22, March 1992

A. Madisetti & A. N. Willson, “A 100 MHz 2-D 8x8 DCT/IDCT Pro-
cessor for HDTV Applications”, IEEE Trans on Circuits and Systems
for Video Tech, Vol 5, No 2, April 1995

Nam Ik Cho and Sang Uk Lee, “Fast Algorithm and Implementation
of 2-D DCT”, IEEE Trans. on CAS, vol 38, pp 297-305, Mar. 1991

Darren Slawecki and Weiping Li, “DCT/IDCT Processor Design for
High Data Rate Image Coding”, IEEE Trans on Circuits and Systems
for Video Tech, Vol 2, No 2, June 1992

MPEG-1 Decoder Boards:
http://www.visiblelight.com /mpeg/products/p_play3.htm

MPEG-1 Decoder Boards:
http://www.visiblelight.com /mpeg/products/p_com.htm

47

[10] MPEG Software Simulation Group
ftp://ftp.cstv.to.cnr.it/pub/MPEG2/conformance-

bitstreams/video/verifier/

[11] B. G. Haskell, A. Puri, A. N. Nerravali, “DIGITAL VIDEO AN IN-
TRODUCTION TO MPEG-2", in Digital Multimedia Standards Se-
ries, Chapman & Hall, pp 116, 1997

[12] MPEG Homepage
http://www.cselt.it/mpeg/

[13] 1. Kuroda, T. Nishitani, “Multimedia Processors”, Proceedings of the
TEEE, Vol 86, No. 6, Jun. 1998.

[14] Software MPEG-1 Decoders:
http://www.visiblelight.com /mpeg/products/p_play4.htm

[15] Public domain MPEG decoders
http://www.mpeg.org/ MPEG /video.html

[16] J.L.Mitchell, W.B.Pennebaker, C.E.Fogg and D.J.LeGall, “MPEG
Video Compression Standard”, in Digital Multimedia Standards Se-
ries,Chapman & Hall, pp 396, New York, 1997.

[17] TGA File Format Spec
ftp://ftp.truevision.com/pub/TGA File.Format.Spec/PC.Version/

(18] MPEG Video Group Homepage
http://bs.hhi.de/mpeg-video/

[19] Chin-Liang Wang and Chang-Yu Chen, “High-Throughput VLST Ar-
chitectures for the 1-D and 2-D Discrete Cosine Transform”, IEEE
Trans on Circuits and Systems for Video Tech, Vol 5, No 1, Feb 1995

48

Index

ARTVM, 8
architecture, 9
idct, 30
instruction modular, 26
instruction set, 13
simulator, 24

Associative real time vision machine, 8

Color components, 16

Compression, 5

Digital video, 1

Discrete cosine transform, 5-16
definition of, 5
inverse, 6, 30-31

DPCM, 18

Form predictor, 22
Frame, 18
b-, 19
i-, 18
p-, 19
Frame coding, 18
inter-, 19

intra-, 19

Inverse discrete cosine transform, 30-31
definition of, 6

Motion compensation, 18

Motion estimation, 18

MPEG, 2
compression, 5, 16
video decoder, 22

MPEG-1, 3

MPEG-2, 4
levels, 4

profiles, 4
Predictive coding, 18
Quantization, 16

RLE, 17
Run length encoding, 17

Variable length coding, 18
Video standards, 2
VLC, 18

Zig-zag scan, 17

